2020年广东省各市中考数学试题(8套)打包下载广东珠海
年广东省中考数学试卷以及答案
2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.9的相反数是A .﹣9B .9C .91D .﹣912.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.53.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为A .(﹣3 ,2)B .(﹣2 ,3)C .(2 ,﹣3)D .(3 ,﹣2) 4.若一个多边形的内角和是540°,则该多边形的边数为A .4B .5C .6D .7 5.若式子4-x 2在实数范围内有意义,则x 的取值范围是A .x≠2B .x≥2C .x≤2D .x≠﹣2 6.已知△ABC 的周长为16,点D 、E 、F 分别为△ABC 三条边的中点,则△DEF的周长为A .8B .22C .16D .4 7.把函数y=(x ﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A .y=x 2+2B .y=(x ﹣1)2+1C .y=(x ﹣2)2+2D .y=(x ﹣1)2+38.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1 9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,△EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .210.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:△abc>0;△b2﹣4ac>0;△8a+c<0;△5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:xy ﹣x=____________.12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________. 13.若2-a +|b+1|=0,则(a+b )2020=_________.14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________. 15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,△ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为_________________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,△ABE=△ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.22.如题22图,在四边形ABCD 中,AD△BC ,△DAB=90°,AB 是△O 的直径,CO 平分△BCD .(1)求证:直线CD 与△O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE △上一点,AD=1,BC=2,求tan△APE 的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=________;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD .(1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是A .﹣9B .9C .91D .﹣91 【答案】A【解析】正数的相反数是负数.【考点】相反数2.一组数据2、4、3、5、2的中位数是A.5B.3.5C.3D.2.5【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【答案】D【解析】关于x轴对称:横坐标不变,纵坐标互为相反数.【考点】对称性4.若一个多边形的内角和是540°,则该多边形的边数为A.4B.5C.6D.7【答案】B【解析】(n-2)×180°=540°,解得n=5.【考点】n边形的内角和5.若式子4-x2在实数范围内有意义,则x的取值范围是A.x≠2B.x≥2 C.x≤2 D.x≠﹣2【答案】B【解析】偶数次方根的被开方数是非负数.【考点】二次根式6.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF 的周长为2C.16D.4 A.8B.2【答案】A【解析】三角形的中位线等于第三边的一半.【考点】三角形中位线的性质.7.把函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【答案】C【解析】左加右减,向右x变为x-1,y=(x﹣1﹣1)2+2y=(x﹣2)2+2.【考点】函数的平移问题.8.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1【答案】D【解析】解不等式.【考点】不等式组的解集表示.9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,△EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .2【答案】D【解析】解法一:排除法过点F 作FG ∥BC 交BE 与点G ,可得∠EFG=30°,∵FG=3,由三角函数可得EG=3,∴BE >3.解法二:角平分线的性质延长EF 、BC 、B’C’交于点O ,可知∠EOB=∠EOB’=30°,可得∠BEO=∠B’EO=60°, ∴∠AEB’=60°.设BE=B ’E=2x ,由三角函数可得AE=x ,由AE+BE=3,可得x=1,∴BE=2.【考点】特殊平行四边形的折叠问题、辅助线的作法、三角函数.10.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:△abc>0;△b2﹣4ac>0;△8a+c<0;△5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1【答案】B【解析】由a<0,b>0,c>0可得△错误;由△>0可得△正确;由x=-2时,y <0可得△正确.当x=1时,a+b+c>0,当x=-2时,4a-2b+c>0即-4a+2b-c >0,两式相减得5a-b+2c>0,即5a+2c>b,∵b>0,∴5a+b+2c>0可得△正确.【考点】二次函数的图象性质.二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy﹣x=____________.【答案】x(y-1)【解析】提公因式【考点】因式分解12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________.【答案】4【解析】m=3,n=1【考点】同类项的概念13.若2-a +|b+1|=0,则(a+b )2020=_________.【答案】1【解析】算术平方根、绝对值都是非负数,∴a=2,b=-1,-1的偶数次幂为正【考点】非负数、幂的运算14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________.【答案】7【解析】x+y=5,原式=3(x+y )-4xy ,15-8=7【考点】代数式运算15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.【答案】45°【解析】菱形的对角线平分对角,∠ABC=150°,∠ABD=75° 【考点】垂直平分线的性质、菱形的性质16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .【答案】31【解析】连接BO 、AO 可得△ABO 为等边,可知AB=1,l=32π,2πr=32π得r=31 【考点】弧长公式、圆锥17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,△ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.【答案】2-52【解析】 点B 到点E 的距离不变,点E 在以B 为圆心的圆上,线段BD 与圆的交点即为所求最短距离的E 点,BD=52,BE=2 【考点】直角三角形的性质、数学建模思想、最短距离问题三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x ﹣y) ﹣2x 2,其中x=2,y=3. 【答案】 解:原式=x 2+2xy+y 2+x 2-y 2-2x 2=2xy把x=2,y=3代入, 原式=2×2×3=26【解析】完全平方公式、平方差公式,合并同类项【考点】整式乘除,二次根式19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级 .随机抽取了120名学生的有效问卷,数据整理如下:等级 非常了解 比较了解 基本了解 不太了解人数(人) 247218x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人? 【答案】 解:(1)由题意得24+72+18+x=120,解得x=6 (2)1800×1207224 =1440(人) 答:估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人. 【解析】统计表的分析 【考点】概率统计20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,△ABE=△ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.【答案】 证明:△BD=CE ,△ABE=△ACD ,△DFB=△CFE △△BFDF△△CFE (AAS ) △△DBF=△ECF△△DBF+△ABE=△ECF+△ACD △△ABC=△ACB △AB=AC△△ABC 是等腰三角形【解析】等式的性质、等角对等边【考点】全等三角形的判定方法、等腰三角形的判定方法四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由. 【答案】 解:(1)由题意得⎩⎨⎧==+2y -x 4y x ,解得⎩⎨⎧==1y 3x由⎩⎨⎧=+=+15b 3310-32a 3,解得⎩⎨⎧==12b 34-a(2)该三角形的形状是等腰直角三角形,理由如下: 由(1)得x 2﹣43x+12=0 (x -32)2=0 x 1=x 2=32 △该三角形的形状是等腰三角形 △(26)2=24,(32)2=12 △(26)2=(32)2+(32)2 △该三角形的形状是等腰直角三角形【解析】理解方程组同解的概念,一元二次方程的解法、三角形形状的判断 【考点】二元一次方程组、一元二次方程、勾股定理逆定理22.如题22图,在四边形ABCD 中,AD△BC ,△DAB=90°,AB 是△O 的直径,CO 平分△BCD .(1)求证:直线CD 与△O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE △上一点,AD=1,BC=2,求tan△APE 的值.【答案】(1)证明:过点O 作OE△CD 交于点E △AD△BC ,△DAB=90° △△OBC=90°即OB△BC△OE△CD ,OB△BC ,CO 平分△BCD △OB=OE△AB 是△O 的直径 △OE 是△O 的半径 △直线CD 与△O 相切 (2)连接OD 、OE△由(1)得,直线CD 、AD 、BC 与△O 相切 △由切线长定理可得AD=DE=1,BC=CE=3, △ADO=△EDO ,△BCO=△ECO △△AOD=△EOD ,CD=3E△AE △=AE △△△APE=21△AOE=△AOD△AD△BC△△ADE+△BCE=180°△△EDO+△ECO=90°即△DOC=90° △OE△DC ,△ODE=△CDO △△ODE△△CDO △CD OD OD DE =即3ODOD 1=△OD=3△在Rt△AOD 中,AO=2△tan△AOD=AO AD=22 △tan△APE=22 【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法【考点】切线的判定、切线长定理、圆周角定理、相似三角形、三角函数 23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53.(1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用. 【答案】解:(1)设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米.53x 602x 60•=+ 解得x=3经检验x=3是原方程的解 △x+2=5(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.(2)设A 类摊位数量为a 个,则B 类摊位数量为(90-a )个,最大费用为y 元. 由90-a≥3a ,解得a≤22.5 △a 为正整数 △a 的最大值为22y=40a+30(90-a )=10a+2700 △10>0△y 随a 的增大而增大△当a=22时,y=10×22+2700=2920(元)答:这90个摊位的最大费用为2920元.【解析】分式方程的应用题注意检验,等量关系的确定是关键 【考点】分式方程的应用,不等式的应用,一次函数应用五、解答题(三)(本大题2小题,毎小题10分,共20分) 24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk(x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG . (1)填空:k=_2_______; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(2)解:过点D 作DP ⊥x 轴交于点P 由题意得,S 矩形OBC=AB •AO=k=8,S 矩形ADPO=AD •AO=k=2 ∴AB AD =41即BD=43AB ∵S △BDF=21BD •AO=83AB •AO=3 (3)连接OE 由题意得S △OEC=21OC •CE=1,S △OBC=21OC •CB=4 ∴41CB CE =即CE=31BE ∵∠DEB=∠CEF ,∠DBE=∠FCE ∴△DEB ∽△FEC∴CF=31BD∵OC=GC ,AB=OC ∴FG=AB -CF=34BD -31BD=BD ∵AB ∥OG ∴BD ∥FG∴四边形BDFG 为平行四边形【解析】反比例函数k 的几何意义,三角形面积的表示,清楚相似比与线段比的关 【考点】反比例函数、相似三角形、三角形的面积比、平行四边形的判定25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD . (1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.【答案】解:(1)由题意得A (-1,0),B (3,0),代入抛物线解析式得⎪⎪⎩⎪⎪⎨⎧=++⨯+=++0c b 396330c b -633,解得⎪⎪⎩⎪⎪⎨⎧==23-23-c 33-1-b(2)过点D 作DE ⊥x 轴交于点E∵OC ∥OC ,BC=3CD ,OB=3 ∴3DCBC OE OB == ∴OE=3∴点D 的横坐标为x D =-3∵点D 是射线BC 与抛物线的交点∴把x D =-3代入抛物线解析式得y D =3+1∴D(-3,3+1)设直线BD 解析式为y=kx+m ,将B (3,0)、D(-3,3+1)代入⎩⎨⎧+=++=m k 3-13m k 30,解得⎪⎩⎪⎨⎧==3m 33-k ∴直线BD 的直线解析式为y=3x 33-+ (3)由题意得tan ∠ABD=33,tan ∠ADB=1 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332tan ∠PQB=tan ∠ADB ,即x -1n -=1,解得x=332-1 ②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1,解得-n=2 tan ∠QPB=tan ∠ABD ,即x -1n -=33,解得x=32-1 ③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=1-334 ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1,解得-n=2 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=32-5 综上所述,Q 1(332-1,0)、Q 2(32-1,0)、Q 3(1-334,0)、Q 4(32-5,0) 【解析】分类讨论不重不漏,计算能力要求高【考点】一次函数、二次函数、平面直角坐标系、相似三角形、三角函数、分类讨论、二次根式计算。
广东省珠海市2020年中考数学试卷C卷
广东省珠海市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)计算的结果是-1的式子是()A . -|-1|B . (-1)0C . -(-1)D . 2-12. (2分)两个有理数的积为负数,和也为负数,那么这两个数()A . 都是负数B . 互为相反数C . 绝对值较大的数是正数,另一个是负数D . 绝对值较大的数是负数,另一个是正数3. (2分)(2017·荆门) 已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A . 6个B . 7个C . 8个D . 9个4. (2分)下列水平放置的几何体中,俯视图不是圆的是()A .B .C .D .5. (2分)一元二次方程x2+px=2的两根为x1 , x2 ,且x1=﹣2x2 ,则p的值为()A . 2B . 1C . 1或﹣1D . ﹣16. (2分) (2020九上·宽城期末) 如图,在5×4的正方形网格中,每个小正方形的边长均是1,△ABC的顶点均在小正方形的顶点上,则tanA的值为()A .B .C .D .7. (2分)(2011·杭州) 在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为SABCD和SBFDE ,现给出下列命题正确的是()①若,则;②若DE2=BD•EF,则DF=2AD.A . ①是真命题,②是真命题B . ①是真命题,②是假命题C . ①是假命题,②是真命题D . ①是假命题,②是假命题8. (2分)下列说法错误的是()A . 有一组对边平行但不相等的四边形是梯形B . 有一个角是直角的梯形是直角梯形C . 等腰梯形的两底角相等D . 直角梯形的两条对角线不相等二、填空题 (共10题;共10分)9. (1分)(2018·平南模拟) 分解因式: =________.10. (1分)若双曲线与直线的一个交点的横坐标为-1,则k的值为________.11. (1分) (2019八上·阳东期末) 如图,中,∠ 900 ,∠A=200 ,△ABC≌△ ,若恰好经过点B,交AB于D,则的度数为________°.12. (1分) (2017九上·肇源期末) 若2a=3b=4c,且abc≠0,则的值是 ________.13. (1分)如图,原点是和的位似中心,点与点是对应点,点,则点的坐标________.14. (1分)一个不透明的袋中只装有1个红球和2个篮球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是________.15. (1分)如图,等边三角形ABC的边长如图所示,那么y=________.16. (1分)(2019·瑶海模拟) 如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为________.17. (1分)如图,等边三角形ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60,则CD的长为________ .18. (1分) (2019八下·雁江期中) 若a2+5ab-b2=0,则-的值为________.三、解答题 (共8题;共86分)19. (5分)(2017·普陀模拟) 计算:()﹣3+(﹣1)2017+ ﹣3sin60°.20. (10分)(2014·内江) 如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.21. (10分)(2018·无锡) 如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.22. (6分)(2017·埇桥模拟) 某商场二楼摆出一台游戏装置如图所示,小球从最上方入口处投入,每次遇到黑色障碍物,等可能地向左或向右边落下.(1)若乐乐投入一个小球,则小球落入B区域的概率为________.(2)若乐乐先后投两个小球,求两个小球同时落在A区域的概率.23. (15分) (2019九上·闵行期末) 如图,在梯形ABCD中,AD // BC,AB = CD,AD = 5,BC = 15,.E为射线CD上任意一点,过点A作AF // BE,与射线CD相交于点F.联结BF,与直线AD相交于点G.设CE = x,.(1)求AB的长;(2)当点G在线段AD上时,求y关于x的函数解析式,并写出函数的定义域;(3)如果,求线段CE的长.24. (10分)(2017·邵阳模拟) 某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25. (15分) (2019九下·黄石月考) 如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP= ,求AD;(3)请猜想PF与FD的数量关系,并加以证明.26. (15分)(2019·杭州模拟) 如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1, ),且与x轴交于点B,△AOB的面积为。
珠海市中考数学试题及答案
2020年珠海市初中毕业生学业考试数学一、选择题(本小题5分,每小题3分,共15分)1.-5的相反数是( ) AA.5B.-5C.51D.51 2.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为( ) BA.12B.13C.14D.153.在平面直角坐标系中,将点P (-2,3)沿x 轴方向向右平移3个单位得到点Q ,则点Q 的坐标是( ) DA.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)4.现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是( )B图 1 图2A. B CD5.如图,PA 、PB 是O 的切线,切点分别是A 、B ,如果∠P =60°,那么∠AOB 等于( ) DA.60°B.90°C.120°D.150°二、填空题(本大题5分,每小题4分,共20分)6.分解因式22ay ax -=________________. a(x+y)(x-y)7.方程组 7211=-=+y x y x 的解是__________. 56==y x 8.一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65米,由此可推断出树高是_______米. 3.39.如图,P 是菱形ABCD 对角线BD 上一点,PE ⊥AB 于点E ,PE =4cm ,则点P 到BC 的距离是_____cm. 410.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:5104212021)101(0122=++=⨯+⨯+⨯=1121212021)1011(01232=⨯+⨯+⨯+⨯=按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 9三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:92|21|)3(12-+---- 解:原式=6321219=-+- 12.如图,在梯形ABCD 中,AB ∥CD(1)用尺规作图方法,作∠DAB 的角平分线AF (只保留作图痕迹,不写作法和证明)(2)若AF 交CD 边于点E ,判断△ADE 的形状(只写结果)解:(1)所以射线AF 即为所求(2)△ADE 是等腰三角形.13.2020年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的亚运五项球比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图,请你根据这两位同学提供的信息,解答下面的问题:(1)将统计补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.解:(1)抽样人数20006.012=(人) (2)喜欢收看羽毛球人数20020×1800=180(人)14.已知:正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M (a,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,求这两个函数的解析式. 解:∵MN ⊥x 轴,点M (a ,1)∴S △OMN=a 21=2 ∴a=4∴M(4,1)∵正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M (4,1) ∴ 4421k k == 解得 44121==k k ∴正比例函数的解析式是x y 41=,反比例函数的解析式是x y 4= 15.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)解:∵弦AB 和半径OC 互相平分∴OC ⊥ABOM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30°又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120°∴S 扇形=33601120ππ=⋅⋅ 四、解答题(二)(本大题4小题,每小题7分,共28分)16.已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。
2020年广东省珠海市中考数学试卷-含详细解析
2020年广东省珠海市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020年广东省中考数学试卷-含详细解析
2020年广东省中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020年广东中考数学试卷(附答案)
2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是A .﹣9B .9C .91D .﹣91 2.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.53.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为A .(﹣3 ,2)B .(﹣2 ,3)C .(2 ,﹣3)D .(3 ,﹣2)4.若一个多边形的内角和是540°,则该多边形的边数为A .4B .5C .6D .75.若式子4-x 2在实数范围内有意义,则x 的取值范围是A .x≠2B .x≥2C .x≤2D .x≠﹣26.已知△ABC 的周长为16,点D 、E 、F 分别为△ABC 三条边的中点,则△DEF 的周长为A .8B .22C .16D .47.把函数y=(x ﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A .y=x 2+2B .y=(x ﹣1)2+1C .y=(x ﹣2)2+2D .y=(x ﹣1)2+38.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤19.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,∠EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .210.如题10图,抛物线y=ax 2+bx+c 的对称轴是直线x=1.下列结论:①abc >0;②b 2﹣4ac>0;③8a+c <0;④5a+b+2c >0.其中正确的结论有A .4个B .3个C .2个D .1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy ﹣x=____________.12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________.13.若2-a +|b+1|=0,则(a+b )2020=_________.14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________.15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,∠ABE=∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.22.如题22图,在四边形ABCD 中,AD ∥BC ,∠DAB=90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE ⌒上一点,AD=1,BC=2,求tan ∠APE的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x 8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=________;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD .(1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是A .﹣9B .9C .91D .﹣91 【答案】A【解析】正数的相反数是负数.【考点】相反数2.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.5【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为A.(﹣3 ,2)B.(﹣2 ,3)C.(2 ,﹣3)D.(3 ,﹣2)【答案】D【解析】关于x轴对称:横坐标不变,纵坐标互为相反数.【考点】对称性4.若一个多边形的内角和是540°,则该多边形的边数为A.4 B.5 C.6 D.7【答案】B【解析】(n-2)×180°=540°,解得n=5.【考点】n边形的内角和5.若式子4-x2在实数范围内有意义,则x的取值范围是A.x≠2B.x≥2 C.x≤2 D.x≠﹣2【答案】B【解析】偶数次方根的被开方数是非负数.【考点】二次根式6.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF的周长为2C.16 D.4A.8 B.2【答案】A【解析】三角形的中位线等于第三边的一半.【考点】三角形中位线的性质.7.把函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A.y=x2+2 B.y=(x﹣1)2+1C.y=(x﹣2)2+2 D.y=(x﹣1)2+3【答案】C【解析】左加右减,向右x变为x-1,y=(x﹣1﹣1)2+2y=(x﹣2)2+2 .【考点】函数的平移问题.8.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1【答案】D【解析】解不等式.【考点】不等式组的解集表示.9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,∠EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .2【答案】D【解析】解法一:排除法过点F 作FG ∥BC 交BE 与点G ,可得∠EFG=30°,∵FG=3,由三角函数可得EG=3,∴BE >3.解法二:角平分线的性质延长EF 、BC 、B ’C ’交于点O ,可知∠EOB=∠EOB ’=30°,可得∠BEO=∠B ’EO=60°, ∴∠AEB ’=60°.设BE=B ’E=2x ,由三角函数可得AE=x ,由AE+BE=3,可得x=1,∴BE=2.【考点】特殊平行四边形的折叠问题、辅助线的作法、三角函数.10.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:①abc>0;②b2﹣4ac >0;③8a+c<0;④5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1【答案】B【解析】由a<0,b>0,c>0可得①错误;由△>0可得②正确;由x=-2时,y<0可得③正确.当x=1时,a+b+c>0,当x=-2时,4a-2b+c>0即-4a+2b-c>0,两式相减得5a-b+2c >0,即5a+2c>b,∵b>0,∴5a+b+2c>0可得④正确.【考点】二次函数的图象性质.二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy﹣x=____________.【答案】x(y-1)【解析】提公因式【考点】因式分解12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=________.【答案】4【解析】m=3,n=1【考点】同类项的概念13.若2-a +|b+1|=0,则(a+b )2020=_________.【答案】1【解析】算术平方根、绝对值都是非负数,∴a=2,b=-1,-1的偶数次幂为正【考点】非负数、幂的运算14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________.【答案】7【解析】x+y=5,原式=3(x+y )-4xy ,15-8=7【考点】代数式运算15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.【答案】45°【解析】菱形的对角线平分对角,∠ABC=150°,∠ABD=75°【考点】垂直平分线的性质、菱形的性质16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .【答案】31 【解析】连接BO 、AO 可得△ABO 为等边,可知AB=1,l=32π,2πr=32π得r=31 【考点】弧长公式、圆锥 17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.【答案】2-52【解析】 点B 到点E 的距离不变,点E 在以B 为圆心的圆上,线段BD 与圆的交点即为所求最短距离的E 点,BD=52,BE=2【考点】直角三角形的性质、数学建模思想、最短距离问题三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.【答案】解:原式=x2+2xy+y2+x2-y2-2x2=2xy把x=2,y=3代入,原式=2×2×3=26【解析】完全平方公式、平方差公式,合并同类项【考点】整式乘除,二次根式19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】解:(1)由题意得24+72+18+x=120,解得x=6(2答:估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】统计表的分析【考点】概率统计20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,∠ABE=∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.【答案】证明:∵BD=CE ,∠ABE=∠ACD ,∠DFB=∠CFE∴△BFDF ≌△CFE (AAS )∴∠DBF=∠ECF∵∠DBF+∠ABE=∠ECF+∠ACD∴∠ABC=∠ACB∴AB=AC∴△ABC 是等腰三角形【解析】等式的性质、等角对等边【考点】全等三角形的判定方法、等腰三角形的判定方法四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同. (1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.【答案】解:(1)由题意得⎩⎨⎧==+2y -x 4y x ,解得⎩⎨⎧==1y 3x 由⎩⎨⎧=+=+15b 3310-32a 3,解得⎩⎨⎧==12b 34-a(2)该三角形的形状是等腰直角三角形,理由如下:由(1)得x 2﹣43x+12=0(x-32)2=0x 1=x 2=32∴该三角形的形状是等腰三角形∵(26)2=24,(32)2=12∴(26)2=(32)2+(32)2∴该三角形的形状是等腰直角三角形【解析】理解方程组同解的概念,一元二次方程的解法、三角形形状的判断【考点】二元一次方程组、一元二次方程、勾股定理逆定理22.如题22图,在四边形ABCD 中,AD ∥BC ,∠DAB=90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如题22﹣2图,记(1)中的切点为E,P为优弧AE⌒上一点,AD=1,BC=2,求tan∠APE 的值.【答案】E(1)证明:过点O作OE⊥CD交于点E∵AD∥BC,∠DAB=90°∴∠OBC=90°即OB⊥BC∵OE⊥CD,OB⊥BC,CO平分∠BCD∴OB=OE∵AB是⊙O的直径∴OE是⊙O的半径∴直线CD与⊙O相切(2)连接OD、OE∵由(1)得,直线CD、AD、BC与⊙O相切∴由切线长定理可得AD=DE=1,BC=CE=3,∠ADO=∠EDO,∠BCO=∠ECO∴∠AOD=∠EOD,CD=3∵AE ⌒=AE ⌒∴∠APE=21∠AOE=∠AOD ∵AD ∥BC ∴∠ADE+∠BCE=180°∴∠EDO+∠ECO=90°即∠DOC=90°∵OE ⊥DC ,∠ODE=∠CDO∴△ODE ∽△CDO∴CD OD OD DE =即3OD OD 1= ∴OD=3∵在Rt △AOD 中,AO=2∴tan ∠AOD=AO AD =22 ∴tan ∠APE=22 【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法【考点】切线的判定、切线长定理、圆周角定理、相似三角形、三角函数23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】解:(1)设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米. 53x 602x 60•=+ 解得x=3经检验x=3是原方程的解∴x+2=5(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.(2)设A 类摊位数量为a 个,则B 类摊位数量为(90-a )个,最大费用为y 元.由90-a≥3a ,解得a≤22.5∵a 为正整数∴a 的最大值为22y=40a+30(90-a )=10a+2700∵10>0∴y 随a 的增大而增大∴当a=22时,y=10×22+2700=2920(元)答:这90个摊位的最大费用为2920元.【解析】分式方程的应用题注意检验,等量关系的确定是关键【考点】分式方程的应用,不等式的应用,一次函数应用五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x 8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=_2_______;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(2)解:过点D 作DP ⊥x 轴交于点P由题意得,S 矩形OBC=AB •AO=k=8,S 矩形ADPO=AD •AO=k=2∴AB AD=41即BD=43AB∵S △BDF=21BD •AO=83AB •AO=3(3)连接OE由题意得S △OEC=21OC •CE=1,S △OBC=21OC •CB=4∴41CB CE 即CE=31BE∵∠DEB=∠CEF ,∠DBE=∠FCE∴△DEB ∽△FEC∴CF=31BD ∵OC=GC ,AB=OC∴FG=AB-CF=34BD-31BD=BD ∵AB ∥OG∴BD ∥FG∴四边形BDFG 为平行四边形【解析】反比例函数k 的几何意义,三角形面积的表示,清楚相似比与线段比的关【考点】反比例函数、相似三角形、三角形的面积比、平行四边形的判定 25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD .(1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.【答案】解:(1)由题意得A (-1,0),B (3,0),代入抛物线解析式得 ⎪⎪⎩⎪⎪⎨⎧=++⨯+=++0c b 396330c b -633,解得⎪⎪⎩⎪⎪⎨⎧==23-23-c 33-1-b(2)过点D 作DE ⊥x 轴交于点E∵OC ∥OC ,BC=3CD ,OB=3∴3DC BCOE OB==∴OE=3∴点D 的横坐标为x D =-3∵点D 是射线BC 与抛物线的交点∴把x D =-3代入抛物线解析式得y D =3+1∴D(-3,3+1)设直线BD 解析式为y=kx+m ,将B (3,0)、D(-3,3+1)代入⎩⎨⎧+=++=m k 3-13m k 30,解得⎪⎩⎪⎨⎧==3m 33-k ∴直线BD 的直线解析式为y=3x 33-+ (3)由题意得tan ∠ABD=33,tan ∠ADB=1 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQB=tan ∠ADB ,即x -1n -=1,解得x=332-1 ②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1,解得-n=2 tan ∠QPB=tan ∠ABD ,即x -1n -=33,解得x=32-1 ③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=1-334 ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1,解得-n=2tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=32-5 综上所述,Q 1(332-1,0)、Q 2(32-1,0)、Q 3(1-334,0)、Q 4(32-5,0) 【解析】分类讨论不重不漏,计算能力要求高【考点】一次函数、二次函数、平面直角坐标系、相似三角形、三角函数、分类讨论、二次根式计算考试小提示试卷一张一张,发的是希望;考试一场一场,考的是能力;笔尖一动一动,动的是梦想;问候一声一声,道的是真情;考试日,愿你们认真、细心做题,取得好成绩。
2020年广东省中考数学试卷和答案解析
2020年广东省中考数学试卷和答案解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣解析:】根据相反数的定义即可求解.参考答案:解:9的相反数是﹣9,故选:A.点拨:此题主要考查相反数的定义,比较简单.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5解析:】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.参考答案:解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.点拨:本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)解析:】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.参考答案:解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.点拨:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7解析:】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.参考答案:解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.点拨:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2解析:】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.参考答案:解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.点拨:此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4解析:】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.参考答案:解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.点拨:此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3解析:】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.参考答案:解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.点拨:本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1解析:】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B 恰好落在AD边上,则BE的长度为()A.1B.C.D.2解析:】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE =3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x 即可得出答案.参考答案:解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.点拨:本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个解析:】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.参考答案:解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.点拨:本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).解析:】直接提取公因式x,进而分解因式得出答案.参考答案:解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).点拨:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.解析:】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.参考答案:解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.点拨:本题考查同类项的定义,正确根据同类项的定义得到m,n 的值是解题的关键.13.(4分)若+|b+1|=0,则(a+b)2020=1.解析:】根据非负数的意义,求出a、b的值,代入计算即可.参考答案:解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.点拨:本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.解析:】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.参考答案:解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.点拨:本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为45°.解析:】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.参考答案:解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.点拨:本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.解析:】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.参考答案:解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.点拨:本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.解析:】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE 求解即可.参考答案:解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.点拨:本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.解析:】根据整式的混合运算过程,先化简,再代入值求解即可.参考答案:解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.点拨:本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?解析:】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.参考答案:解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.点拨:本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC 是等腰三角形.解析:】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.参考答案:证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.点拨:本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x 的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.解析:】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.参考答案:解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.点拨:本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.解析:】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB =DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.参考答案:(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.点拨:本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.解析:】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.参考答案:解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.点拨:本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x >0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.解析:】(1)设点B(s,t),st=8,则点M(s,t),则k=s •t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.参考答案:解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.点拨:本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.解析:】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP =30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.参考答案:解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).点拨:本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020广东中考数学试题及答案
2020年广东省、初中学业水平考试数学说明:I. <•.満»为120今.F试吋时为90分忡.2.犷mt色旳的輕亍工成金芒在斤誉5写口己的准乌证认牲乩旳;、冷位」;.HEBiae把对庇许、;討的床档津鵲.3.创用埒储抑斤*百•讥B«5上把衿补卜•对応則违顼的誉知詛点涂*•3;丹g・则栋些H;M.再込沬兀他详璽・rrw卜施去化试匡上•j. Il ME心和州色恥毗或硏3齐、柠丈必预歸左杏誉指定区城内w I.:农禺曲功・充它捋誌米的告樂•然祈再耳匕侨的斤*: ”准便HjntWiMiJi.卜按以上婪;灿冷的答*无汶•5.『I•存必“讪F恿匸的整沽.号试结求时•将试住和斧題卡一并交冋•一、选绎丹0本大越10小题•每小迪3分・共⑷分〉在每小題列岀的四个透禺中•只有一个星正矗的.请把答題卡上对应Si目所选的选坝涂静.I. 9的相反校址A. -9B・9 C・一9D・*9•>纲竝据2・4, 3・5・2的中位数足A. 5B. 35C. 3D.153・征和nfifti坐杯系中•点(3.2)X "轴对称的点的生标为A. (-3.2)B・(-23) C・(2・・" D.(3--2)4.Xi个多边形的内角和足5%则诛&边形的边故为A. 4B. 5C. 6D.75.杆式f J2.r- 4 A实数范閑内仃总义.划T的取(ii范例上A. x#2B・ 22 C. x^2 D.*76. a^MBC的周K为16•虑D・E, F分别为MBC边的中点.则的gA 8 B. 275 C. 16 D.47-把两故”2八2的嗽向右平汝个申位K度.恂砸象的曲如析式为A・—、2 B.m" C・g."+2 D."」甘数学试題幻卩-nY> .| D・-K.t9.沁9冈・,匸川』〃⑴屮•・J"八门上• /・•分别们少Q(°匕Zfc7/,"6<)°* *;饰4也《1沱〃"沿"析介・点〃惜/紐1初如・・対必的K皮为A. I «. 42C. v3D. 2io a;料mhl•阳陆“1和•的对網*足”丨・卜翊必1 诃人 7:J A 4<A >0 : J>X<| ♦<•<(): I 2C>0.二填空d本大超7小他刨炮」分.共28分)话将下列各西的正确签创I頁在签題卡相应的位■上11.处爪氐・°・2 ____ ・12.您壯1火穴3八,・—5丄丫崔对形瓦兀么朋"一_ •13.匕、♦卜"・U仙")2二______________ ・14.LfeH ^5-v. jn =2 ・ if (73x4 J>・-4°•你h为15.逊15曲6:^ABCD^.厶-妙•取川;"的K为和去分场以点八/?为岡心H 久•过此点的⑴文乂*Z)山用也(作他紅3刨初帀;〉.ilk处・BD.IUEBD16.如老16用.从快T存为I处的糾形伏戌I呵;I;个関冏対为120。
2020年广东省珠海市中考数学试题(含答案)
2020年珠海市初中毕业生学业考试数 学说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.2的倒数是A .2B .-2C .21 D .21- 2.计算222a a +-的结果为A . a 3-B .a -C .23a -D .2a -3.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为4.7S 1.10S 5.2S 5.82222====丁丙乙甲,,,S .二月份白菜价格最稳定的市场是A .甲B .乙C .丙D .丁 4、下列图形中不是中心对称图形的是A.矩形B.菱形C.平行四边形D.正五边形 5.如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角的大小为 A .30°B .45°C .60°D .90°二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.计算=-2131 .7.使2-x 有意义的x 取值范围是 .8.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴正半轴上,B 点坐标为(3,2),OB 与AC 交于点P ,D 、E 、F 、G 分别是线段OP 、AP 、BP 、CP 的中点,则四边形DEFG 的周长为 .9.不等式组⎩⎨⎧+≤>+23412x x xx 的解集是 .10.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB=26,CD=24,那么sin ∠三、解答题(一)(本大题5小题,每小题6分,共30分)11.(本小题满分6分)计算:1221)2012(1)2(-⎪⎭⎫ ⎝⎛--+---π.12.(本小题满分6分)先化简,再求值:)1(112+÷⎪⎭⎫⎝⎛---x x x x x,其中2=x .13.(本小题满分6分)如图,在△ABC 中,AB=AC ,AD 是高,AM 是△ABC 外角∠CAE 的平分线. (1)用尺规作图方法,作∠ADC 的平分线DN ; (保留作图痕迹,不写作法和证明)(2)设DN 与AM 交于点F ,判断△ADF 的形状. (只写结果) 14.(本小题满分6分)已知关于x 的一元二次方程022=++m x x .(1)当m=3时,判断方程的根的情况; (2)当m=-3时,求方程的根. 15.(本小题满分6分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的45倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元? 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)如图,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A 、B (不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO.(结果精确到1米)(参考数据:41.12,73.13≈≈)17.(本题满分7分)某学校课程安排中,各班每天下午只安排三节课.(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是361.已知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果). 18.(本题满分7分)如图,把正方形ABCD 绕点C 按顺时针方向旋转45°得到正方形A ’B ’CD ’(此时,点B ’落在对角线AC 上,点A ’落在CD 的延长线上),A ’B ’交AD 于点E ,连结AA ’、CE.求证:(1)△ADA ’ ≌△CDE ;(2)直线CE 是线段AA ’的垂直平分线.19.(本题满分7分)如图,二次函数m x y +-=2)2(的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数b kx y +=的图象经过该二次函数图象上点A (1,0)及点B. (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足b kx +≥m x +-2)2(的x 的取值范围.C A ’D ’ 第18题图五、解答题(三)(本大题3小题,每小题9分,共27分) 20.(本题满分9分)观察下列等式:12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”: ①52× = ×25; ② ×396=693× .(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤b a ≤9,写出表示“数字对称等式”一般规律的式子(含a 、b ),并证明. 21.(本题满分9分)已知,AB 是⊙O 的直径,点P 在弧AB 上(不含点A 、B ),把△AOP 沿OP 对折,点A 的对应点C 恰好落在⊙O 上. (1)当P 、C 都在AB 上方时(如图1),判断PO 与BC 的位置关系(只回答结果); (2)当P 在AB 上方而C 在AB 下方时(如图2),(1)中结论还成立吗?证明你的结论; (3)当P 、C 都在AB 上方时(如图3),过C 点作CD ⊥直线AP 于D ,且CD 是⊙O 的切线,证明:AB=4PD.BABPODCBA22.(本题满分9分)如图,在等腰梯形ABCD 中,ABDC ,AB=,DC=,高CE=,对角线AC 、BD 交于H ,平行于线段BD 的两条直线MN 、RQ 同时从点A 出发沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ;当直线RQ 到达点C 时,,两直线同时停止移动.记等腰梯形ABCD 被直线MN 扫过的图形面积为1S 、被直线RQ 扫过的图形面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB= ;AC= ; (2)若123S S =,求x ;(3)设12mS S =,求m 的变化范围.第21题图1第21题图2 第21题图3 第22题备用图QRNMHGFEDCBA第22题图QR NMHGFEDCBA友情提示:一、认真对待每一次考试。
广东省2020年中考数学试题(word含答案)
2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑. 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.9的相反数是A .﹣9B .9C .91D .﹣912.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.5 3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为A .(﹣3 ,2)B .(﹣2 ,3)C .(2 ,﹣3)D .(3 ,﹣2) 4.若一个多边形的内角和是540°,则该多边形的边数为A .4B .5C .6D .75.若式子4-x 2在实数范围内有意义,则x 的取值范围是A .x≠2B .x≥2C .x≤2D .x≠﹣26.已知△ABC 的周长为16,点D 、E 、F 分别为△ABC 三条边的中点,则△DEF 的周长为 A .8 B .22 C .16 D .47.把函数y=(x ﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A .y=x 2+2B .y=(x ﹣1)2+1C .y=(x ﹣2)2+2D .y=(x ﹣1)2+38.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤19.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,∠EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为 A .1 B .2 C .3 D .210.如题10图,抛物线y=ax 2+bx+c 的对称轴是直线x=1.下列结论:△abc >0;△b 2﹣4ac>0;△8a+c <0;△5a+b+2c >0.其中正确的结论有A .4个B .3个C .2个D .1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:xy ﹣x=____________.12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________. 13.若2-a +|b+1|=0,则(a+b )2020=_________.14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________.15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x ﹣y) ﹣2x 2,其中x=2,y=3.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级 非常了解 比较了解 基本了解 不太了解人数(人)247218x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE , ∠ABE=∠ACD ,BE 与CD 相交于点F .求证:ΔABC 是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.22.如题22图,在四边形ABCD 中,AD ∥BC ,∠DAB=90°,AB 是△O 的直径,CO 平分∠BCD .(1)求证:直线CD 与△O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE △上一点,AD=1,BC=2,求tan ∠APE 的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53.(1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x 8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk(x >0)的图象经过OB 的中点M ,与AB 、BC分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=________; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD .(1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.2020年广东省初中学业水平考试数学参考答案一、选择题(本大题10小题,每小题3分,共30分)二、填空题(本大题7小题,每小题4分,共27分)11.___x(y -1)_______. 12.______4_____.13. ______1______.14. ______7______.15. ____45°_______.16. ______31____.17. ____2-52____.三、解答题(一)(本大题3小题,每小题6分,共18分) 18.解:原式=x 2+2xy+y 2+x 2-y 2-2x 2=2xy把x=2,y=3代入, 原式=2×2×3=2619.解:(1)由题意得24+72+18+x=120,解得x=6(2答:估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人. 20.证明:∵BD=CE ,∠ABE=∠ACD ,∠DFB=∠CFE ∴△BFDF△△CFE (AAS ) ∴∠DBF=∠ECF∵∠DBF+∠ABE=∠ECF+∠ACD ∴∠ABC=∠ACB ∴AB=AC∴△ABC 是等腰三角形 四、解答题(二)(本大题3小题,毎小题8分,共24分)21.解:由题意得⎩⎨⎧==+2y -x 4y x ,解得⎩⎨⎧==1y 3x由⎩⎨⎧=+=+15b 3310-32a 3,解得⎩⎨⎧==12b 34-a (2)该三角形的形状是等腰直角三角形,理由如下: 由(1)得x 2﹣43x+12=0 解得:x 1=x 2=32∴该三角形的形状是等腰三角形∵(26)2=24,(32)2=12 ∴(26)2=(32)2+(32)2∴该三角形的形状是等腰直角三角形 22.证明:过点O 作OE ⊥CD 交于点E ∵AD ∥BC ,∠DAB=90° ∴∠OBC=90°即OB ⊥BC∵OE ⊥CD ,OB ⊥BC ,CO 平分∠BCD ∴OB=OE∵AB 是△O 的直径 ∴OE 是△O 的半径 ∴直线CD 与△O 相切 (2)连接OD 、OE∵由(1)得,直线CD 、AD 、BC 与△O 相切 ∴由切线长定理可得AD=DE=1,BC=CE=3, ∠ADO=∠EDO ,∠BCO=∠ECO ∴∠AOD=∠EOD ,CD=3 ∵AE △=AE △∴∠APE=21∠AOE=∠AOD∵AD ∥BC∴∠ADE+∠BCE=180°∴∠EDO+∠ECO=90°即∠DOC=90° ∵OE ⊥DC ,∠ODE=∠CDO ∴△ODE△△CDO ∴CD OD OD DE =即3OD OD 1= ∴OD=3∵在Rt△AOD 中,AO=2 ∴tan ∠AOD=AO AD=22 ∴tan ∠APE=22 23.解:(1)设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米. 53x 602x 60•=+ 解得x=3经检验x=3是原方程的解∴x+2=5(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.(2)设A 类摊位数量为a 个,则B 类摊位数量为(90-a )个,最大费用为y 元. 由90-a≥3a ,解得a≤22.5 ∵a 为正整数∴a 的最大值为22y=40a+30(90-a )=10a+2700 ∵10>0∴y 随a 的增大而增大∴当a=22时,y=10×22+2700=2920(元) 答:这90个摊位的最大费用为2920元.五、解答题(三)(本大题2小题,毎小题10分,共20分) 24.(1)k=_2___(2)解:过点D 作DP ⊥x 轴交于点P由题意得,S 矩形OABC =AB •AO=k=8,S 矩形ADPO =AD •AO=k=2 ∴AB AD =41即BD=43AB ∵S △BDF =21BD •AO=83AB •AO=3(3)连接OE由题意得S △OEC =21OC •CE=1,S △OBC =21OC •CB=4∴41CB CE 即CE=31BE ∵∠DEB=∠CEF ,∠DBE=∠FCE ∴△DEB ∽△FEC∴CF=31BD∵OC=GC ,AB=OC∴FG=AB -CF=34BD -31BD=BD∵AB ∥OG ∴BD ∥FG∴四边形BDFG 为平行四边形25. 解:(1)由题意得A (-1,0),B (3,0),代入抛物线解析式得⎪⎪⎩⎪⎪⎨⎧=++⨯+=++0c b 396330c b -633,解得⎪⎪⎩⎪⎪⎨⎧==23-23-c 33-1-b (2)过点D 作DE ⊥x 轴交于点E∵OC ∥OC ,BC=3CD ,OB=3 ∴3DC BC OE OB == ∴OE=3∴点D 的横坐标为x D =-3 ∵点D 是射线BC 与抛物线的交点 ∴把x D =-3代入抛物线解析式得y D =3+1 ∴D(-3,3+1)设直线BD 解析式为y=kx+m ,将B (3,0)、D(-3,3+1)代入⎩⎨⎧+=++=m k 3-13m k 30,解得⎪⎩⎪⎨⎧==3m 33-k ∴直线BD 的直线解析式为y=3x 33-+ (3)由题意得tan ∠ABD=33,tan ∠ADB=1 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q(x ,0)且x <3①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQB=tan ∠ADB ,即x-1n-=1,解得x=332-1 ②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n-=1,解得-n=2tan ∠QPB=tan ∠ABD ,即x -1n -=33,解得x=32-1③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=1-334 ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n-=1,解得-n=2 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=32-5 综上所述,Q 1(332-1,0)、Q 2(32-1,0)、Q 3(1-334,0)、Q 4(32-5,0)。
2020年广东省中考数学试题(解析版)
2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)(2020•广东)9的相反数是( ) A .﹣9B .9C .19D .−19【分析】根据相反数的定义即可求解. 【解答】解:9的相反数是﹣9, 故选:A .【点评】此题主要考查相反数的定义,比较简单.2.(3分)(2020•广东)一组数据2,4,3,5,2的中位数是( ) A .5B .3.5C .3D .2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数. 【解答】解:将数据由小到大排列得:2,2,3,4,5, ∵数据个数为奇数,最中间的数是3, ∴这组数据的中位数是3. 故选:C .【点评】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.(3分)(2020•广东)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( ) A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【解答】解:点(3,2)关于x 轴对称的点的坐标为(3,﹣2). 故选:D .【点评】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)(2020•广东)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)(2020•广东)若式子√2x−4在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】解:∵√2x−4在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【点评】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.(3分)(2020•广东)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2√2C.16D.4【分析】根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.【点评】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.(3分)(2020•广东)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( ) A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3【分析】先求出y =(x ﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y =(x ﹣2)2+2. 故选:C .【点评】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式. 8.(3分)(2020•广东)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式2﹣3x ≥﹣1,得:x ≤1, 解不等式x ﹣1≥﹣2(x +2),得:x ≥﹣1, 则不等式组的解集为﹣1≤x ≤1, 故选:D .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 9.(3分)(2020•广东)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为()A.1B.√2C.√3D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【点评】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.(3分)(2020•广东)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)(2020•广东)分解因式:xy﹣x=x(y﹣1).【分析】直接提取公因式x,进而分解因式得出答案.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(4分)(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】解:∵单项式3x m y 与﹣5x 3y n 是同类项, ∴m =3,n =1, ∴m +n =3+1=4. 故答案为:4.【点评】本题考查同类项的定义,正确根据同类项的定义得到关于m ,n 的方程组是解题的关键.13.(4分)(2020•广东)若√a −2+|b +1|=0,则(a +b )2020= 1 . 【分析】根据非负数的意义,求出a 、b 的值,代入计算即可. 【解答】解:∵√a −2+|b +1|=0, ∴a ﹣2=0且b +1=0, 解得,a =2,b =﹣1,∴(a +b )2020=(2﹣1)2020=1, 故答案为:1.【点评】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a 、b 的值是解决问题的关键.14.(4分)(2020•广东)已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 7 .【分析】由x =5﹣y 得出x +y =5,再将x +y =5、xy =2代入原式=3(x +y )﹣4xy 计算可得.【解答】解:∵x =5﹣y , ∴x +y =5,当x +y =5,xy =2时, 原式=3(x +y )﹣4xy =3×5﹣4×2 =15﹣8 =7, 故答案为:7.【点评】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x +y 、xy 及整体代入思想的运用.15.(4分)(2020•广东)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 45° .【分析】根据∠EBD =∠ABD ﹣∠ABE ,求出∠ABD ,∠ABE 即可解决问题. 【解答】解:∵四边形ABCD 是菱形, ∴AD =AB ,∴∠ABD =∠ADB =12(180°﹣∠A )=75°, 由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°, 故答案为45°.【点评】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(4分)(2020•广东)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为13m .【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径. 【解答】解:由题意得,阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120π×1180,而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120π×1180,解得,r =13, 故答案为:13.【点评】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.(4分)(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 2√5−2 .【分析】如图,连接BE ,BD .求出BE ,BD ,根据DE ≥BD ﹣BE 求解即可. 【解答】解:如图,连接BE ,BD .由题意BD =√22+42=2√5, ∵∠MBN =90°,MN =4,EM =NE , ∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的圆, ∴当点E 落在线段BD 上时,DE 的值最小, ∴DE 的最小值为2√5−2. 故答案为2√5−2.【点评】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)(2020•广东)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【点评】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)(2020•广东)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【点评】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)(2020•广东)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE ≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,{∠ABE=∠ACD ∠A=∠ABE=CD,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)(2020•广东)已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值;(2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.【解答】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =﹣4√3,b =12;(2)当a =﹣4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2﹣4√3x +12=0,解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【点评】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)(2020•广东)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD . (1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE ̂上一点,AD =1,BC =2.求tan ∠APE 的值.【分析】(1)证明:作OE ⊥CD 于E ,证△OCE ≌△OCB (AAS ),得出OE =OB ,即可得出结论;(2)作DF ⊥BC 于F ,连接BE ,则四边形ABFD 是矩形,得AB =DF ,BF =AD =1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCB OC=OC,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO ⊥BE ,∴∠BCH +∠CBH =∠CBH +∠ABE =90°, ∴∠ABE =∠BCH , ∵∠APE =∠ABE , ∴∠APE =∠BCH , ∴tan ∠APE =tan ∠BCH =OB BC =√22.【点评】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键. 23.(8分)(2020•广东)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x +2)平方米,根据用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【点评】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)(2020•广东)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C 对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【分析】(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD ,即可求解; (3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F (5m ,0),即可求解.【解答】解:(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2, 故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD =12×8−12×2=3;(3)设点D (m ,2m),则点B (4m ,2m),∵点G 与点O 关于点C 对称,故点G (8m ,0), 则点E (4m ,12m),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m, 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F (5m ,0), 故FG =8m ﹣5m =3m ,而BD =4m ﹣m =3m =FG , 则FG ∥BD ,故四边形BDFG 为平行四边形.【点评】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)(2020•广东)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=3+√36(x+1)(x﹣3)=3+√36x2−3+√33x−3+√32,∴b=−3+√33,c=−3+√32;(2)如图1,过点D作DE⊥AB于E,∴CO ∥DE , ∴BC CD=BO OE,∵BC =√3CD ,BO =3, ∴√3=3OE, ∴OE =√3,∴点D 横坐标为−√3, ∴点D 坐标(−√3,√3+1), 设直线BD 的函数解析式为:y =kx +b , 由题意可得:{√3+1=−√3k +b 0=3k +b ,解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3;(3)∵点B (3,0),点A (﹣1,0),点D (−√3,√3+1), ∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C (0,√3), ∴OC =√3,∵tan ∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2, ∴DK =√AD 2−AK2=√8−4=2,∴DK =AK , ∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N (1,0),若∠CBO =∠PBO =30°, ∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD ∽△BPQ , ∴BP BA=BQ BD,∴BQ =4√33×(2√3+2)4=2+2√33,∴点Q (1−2√33,0); 当△BAD ∽△BQP , ∴BP BD=BQ AB,∴BQ=4√33×423+2=4−4√33,∴点Q(﹣1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△BAD∽△BPQ,∴BPAD =BQ BD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1﹣2√3,0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=2√2×2√22√3+2=2√3−2,∴点Q(5﹣2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(﹣1+4√33,0)或(1﹣2√3,0)或(5﹣2√3,0).【点评】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020年广东省中考数学试卷(含答案)
2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑. 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.9的相反数是A .﹣9B .9C .91D .﹣912.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.5 3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为A .(﹣3 ,2)B .(﹣2 ,3)C .(2 ,﹣3)D .(3 ,﹣2) 4.若一个多边形的内角和是540°,则该多边形的边数为A .4B .5C .6D .7 5.若式子4-x 2在实数范围内有意义,则x 的取值范围是A .x≠2B .x≥2C .x≤2D .x≠﹣26.已知△ABC 的周长为16,点D 、E 、F 分别为△ABC 三条边的中点,则△DEF的周长为A .8B .22C .16D .4 7.把函数y=(x ﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A .y=x 2+2B .y=(x ﹣1)2+1C .y=(x ﹣2)2+2D .y=(x ﹣1)2+38.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1 9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,△EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .210.如题10图,抛物线y=ax 2+bx+c 的对称轴是直线x=1.下列结论:△abc >0;△b 2﹣4ac >0;△8a+c <0;△5a+b+2c >0.其中正确的结论有A .4个B .3个C .2个D .1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:xy ﹣x=____________.12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________. 13.若2-a +|b+1|=0,则(a+b )2020=_________.14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________. 15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,△ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,△ABE=△ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.22.如题22图,在四边形ABCD 中,AD△BC ,△DAB=90°,AB 是△O 的直径,CO 平分△BCD . (1)求证:直线CD 与△O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE △上一点,AD=1,BC=2,求tan△APE 的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53.(1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分) 24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk(x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=________; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD . (1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.2020年广东省初中学业水平考试数学(参考答案)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.A 2.C 3.D 4.B 5.B6.A 7.C 8.D 9.D 10.B二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.x(y-1)12.413.114.715.45°116.3217.2-5三、解答题(一)(本大题3小题,每小题6分,共18分)18.解:原式=x2+2xy+y2+x2-y2-2x2=2xy把x=2,y=3代入,原式=2×2×3=2619.解:(1)由题意得24+72+18+x=120,解得x=6(2答:估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.证明:△BD=CE ,△ABE=△ACD ,△DFB=△CFE△△BFDF△△CFE (AAS )△△DBF=△ECF△△DBF+△ABE=△ECF+△ACD△△ABC=△ACB△AB=AC△△ABC 是等腰三角形四、解答题(二)(本大题3小题,毎小题8分,共24分)21.解:(1)由题意得⎩⎨⎧==+2y -x 4y x ,解得⎩⎨⎧==1y 3x 由⎩⎨⎧=+=+15b 3310-32a 3,解得⎩⎨⎧==12b 34-a(2)该三角形的形状是等腰直角三角形,理由如下:由(1)得x2﹣43x+12=02)2=0(x-32x1=x2=3△该三角形的形状是等腰三角形△(26)2=24,(32)2=12△(26)2=(32)22)2+(3△该三角形的形状是等腰直角三角形22.(1)证明:过点O作OE△CD交于点EE△AD△BC,△DAB=90°△△OBC=90°即OB△BC△OE△CD,OB△BC,CO平分△BCD△OB=OE△AB是△O的直径△OE是△O的半径△直线CD与△O相切(2)连接OD、OE△由(1)得,直线CD、AD、BC与△O相切△由切线长定理可得AD=DE=1,BC=CE=3,△ADO=△EDO,△BCO=△ECO△△AOD=△EOD,CD=3△AE△=AE△△△APE=21△AOE=△AOD △AD△BC △△ADE+△BCE=180° △△EDO+△ECO=90°即△DOC=90° △OE△DC ,△ODE=△CDO△△ODE△△CDO△CD OD OD DE =即3OD OD 1= △OD=3△在Rt△AOD 中,AO=2△tan△AOD=AO AD =22 △tan△APE=22 23. 解:(1)设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米.53x 602x 60•=+ 解得x=3经检验x=3是原方程的解△x+2=5(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.(2)设A 类摊位数量为a 个,则B 类摊位数量为(90-a )个,最大费用为y 元. 由90-a≥3a ,解得a≤22.5△a 为正整数△a 的最大值为22y=40a+30(90-a )=10a+2700△10>0△y 随a 的增大而增大△当a=22时,y=10×22+2700=2920(元)答:这90个摊位的最大费用为2920元.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.(1)2(2)解:过点D 作DP ⊥x 轴交于点P由题意得,S 矩形OBC=AB •AO=k=8,S 矩形ADPO=AD •AO=k=2 ∴AB AD =41即BD=43AB ∵S △BDF=21BD •AO=83AB •AO=3 (3)连接OE由题意得S △OEC=21OC •CE=1,S △OBC=21OC •CB=4 ∴41CB CE 即CE=31BE ∵∠DEB=∠CEF ,∠DBE=∠FCE∴△DEB ∽△FEC∴CF=31BD ∵OC=GC ,AB=OC∴FG=AB -CF=34BD -31BD=BD ∵AB ∥OG∴BD ∥FG∴四边形BDFG 为平行四边形25.解:(1)由题意得A (-1,0),B (3,0),代入抛物线解析式得 ⎪⎪⎩⎪⎪⎨⎧=++⨯+=++0c b 396330c b -633,解得⎪⎪⎩⎪⎪⎨⎧==23-23-c 33-1-b (2)过点D 作DE ⊥x 轴交于点E∵OC ∥OC ,BC=3CD ,OB=3∴3DC BC OE OB == ∴OE=3∴点D 的横坐标为x D =-3∵点D 是射线BC 与抛物线的交点∴把x D =-3代入抛物线解析式得y D =3+1∴D(-3,3+1)设直线BD 解析式为y=kx+m ,将B (3,0)、D(-3,3+1)代入⎩⎨⎧+=++=m k 3-13m k 30,解得⎪⎩⎪⎨⎧==3m 33-k ∴直线BD 的直线解析式为y=3x 33-+(3)由题意得tan ∠ABD=33,tan ∠ADB=1 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQB=tan ∠ADB ,即x-1n -=1,解得x=332-1 ②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1,解得-n=2 tan ∠QPB=tan ∠ABD ,即x -1n -=33,解得x=32-1 ③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=1-334 ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1,解得-n=2 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=32-5 综上所述,Q 1(332-1,0)、Q 2(32-1,0)、Q 3(1-334,0)、Q 4(32-5,0)。
2020年广东省珠海市中考数学试卷(含答案)
广东省珠海市2020年中考数学试卷说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
题序一二三四五六七八总分得分一、选择题(本大题5小题,每小题3分,共15分)在毎小题列出的四个选项中,只有一个是正确的,请把答题卡上对应題目所选的选项涂黑.1.(3分)(2020•珠海)﹣的相反数是()A.2B.C.﹣2 D.﹣考点:相反数.专题:计算题.分析:根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为.解答:解:与﹣符号相反的数是,所以﹣的相反数是;故选B.点评:本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.2.(3分)(2020•珠海)边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm考点:菱形的性质.分析:利用菱形的各边长相等,进而求出周长即可.解答:解:∵菱形的各边长相等,∴边长为3cm的菱形的周长是:3×4=12(cm).故选:C.点评:此题主要考查了菱形的性质,利用菱形各边长相等得出是解题关键.3.(3分)(2020•珠海)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a考点:合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.解答:解:A、不是同类二次根式,不能加减,故本选项错误;B、(3a3)2=9a6≠6a6,故本选项错误;C、不是同类二次根式,不能加减,故本选项错误;D、﹣3a+2a=﹣a正确故选:D.点评:本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键.4.(3分)(2020•珠海)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A.24πcm2B.36πcm2C.12cm2D.24cm2考点:圆柱的计算.分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.解答:解:圆柱的侧面积=2π×3×4=24π.故选A.点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.5.(3分)(2020•珠海)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD 等于()A.160°B.150°C.140°D.120°考点:圆周角定理;垂径定理.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.点评:此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.二、填空题(本大题5小题,毎小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)(2020•珠海)比较大小:﹣2>﹣3.考点:有理数大小比较分析:本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.解答:解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.点评:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.7.(4分)(2020•珠海)填空:x2﹣4x+3=(x﹣2)2﹣1.考点:配方法的应用.专题:计算题.分析:原式利用完全平方公式化简即可得到结果.解答:解:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.8.(4分)(2020•珠海)桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为.考点:概率公式.分析:由桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,直接利用概率公式求解即可求得答案.解答:解:∵桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,∴现在从桶里随机摸出一个球,则摸到白球的概率为:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.(4分)(2020•珠海)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为直线x=2.考点:二次函数的性质分析:点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.解答:解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.点评:本题主要考查了抛物线的对称性,图象上两点的纵坐标相同,则这两点一定关于对称轴对称.10.(4分)(2020•珠海)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为8.考点:等腰直角三角形专题:规律型.分析:利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.解答:解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=8.故答案为:8.点评:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.三、解答题(一)(本大题5小题,毎小题6分,共30分>11.(6分)(2020•珠海)计算:()﹣1﹣(﹣2)0﹣|﹣3|+.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣3+2=2﹣1﹣3+2=0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.12.(6分)(2020•珠海)解不等式组:.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>﹣2,由②得,x≤﹣1,故此不等式组的解集为:﹣2<x≤﹣1.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.13.(6分)(2020•珠海)化简:(a2+3a)÷.考点:分式的混合运算.专题:计算题.分析:原式第二项约分后,去括号合并即可得到结果.解答:解:原式=a(a+3)÷=a(a+3)×=a.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.14.(6分)(2020•珠海)某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定供远的人数.考点:条形统计图;扇形统计图专题:计算题.分析:(1)根据跳绳的人数除以占的百分比,得出学生总数即可;(2)求出立定跳远的人数占总人数的百分比,乘以1000即可得到结果.解答:解:(1)根据题意得:30÷60%=50(人),则该校学生人数为50人;(2)根据题意得:1000×=100(人),则估计该年级选考立定供远的人数为100人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.15.(6分)(2020•珠海)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连结AP,当∠B为30度时,AP平分∠CAB.考点:作图—基本作图;线段垂直平分线的性质分析:(1)运用基本作图方法,中垂线的作法作图,(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B.解答:解:(1)如图,(2)如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90°,∴∠PAB=∠PAC=∠B=30°,∴∠B=30°时,AP平分∠CAB.故答案为:30.点评:本题主要考查了基本作图,角平分线的知识,解题的关键是熟记作图的方法及等边对等角的知识.四、解答题(二)(本大题4小题,毎小题7分,共28分>16.(7分)(2020•珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x 的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?考点:一次函数的应用分析:(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.解答:解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586,方案二:y=0.9x+300=5592,5586<5592所以选择方案一更省钱.点评:此题考查一次函数的运用,根据数量关系列出函数解析式,进一步利用函数解析式解决问题.17.(7分)(2020•珠海)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用-方向角问题.分析:(1)过点M作MD⊥AB于点D,根据∠AME的度数求出∠AMD=∠MAD=45°,再根据AM的值求出和特殊角的三角函数值即可求出答案;(2)在Rt△DMB中,根据∠BMF=60°,得出∠DMB=30°,再根据MD的值求出MB 的值,最后根据路程÷速度=时间,即可得出答案.解答:解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM•cos45°=90(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是90海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB==60,∴60÷20=3=3×2.45=7.35≈7.4(小时),答:渔船从B到达小岛M的航行时间约为7.4小时.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.18.(7分)(2020•珠海)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.考点:切线的性质;扇形面积的计算;平移的性质专题:计算题.分析:(1)连结OG,先根据勾股定理计算出BC=5,再根据平移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,由于EF与半圆O相切于点G,根据切线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似比可计算出OE=,所以BE=OE﹣OB=;(2)求出BD的长度,然后利用相似比例式求出DH的长度,从而求出△BDH,即阴影部分的面积.解答:解:(1)连结OG,如图,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE﹣OB=﹣2=;(2)BD=DE﹣BE=4﹣=.∵DF∥AC,∴,即,解得:DH=2.∴S阴影=S△BDH=BD•DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平移的性质、勾股定理和相似三角形的判定与性质.19.(7分)(2020•珠海)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,可的方程组,根据解方程组,可得答案.解答:解:(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,∴A(1,0),D(﹣1,0),B(1,﹣2).∵反比例函数y=的图象过点B,∴,m=﹣2,∴反比例函数解析式为y=﹣,设一次函数解析式为y=kx+b,∵y=kx+b的图象过B、D点,∴,解得.直线BD的解析式y=﹣x﹣1;(2)∵直线BD与反比例函数y=的图象交于点E,∴,解得∵B(1,﹣2),∴E(﹣2,1).点评:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,利用方程组求交点坐标.五、解答题(三)(本大题3小题,毎小题9分,共27分)20.(9分)(2020•珠海)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).考点:一元一次不等式组的应用.专题:阅读型.分析:(1)根据阅读材料所给的解题过程,直接套用解答即可;(2)理解解题过程,按照解题思路求解.解答:解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.点评:本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.21.(9分)(2020•珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)求证:=.考点:四边形综合题分析:(1)根据有一组对边平行且相等的四边形是平行四边形即可判定.(2)先确定三角形GCF是等腰直角三角形,得出CG=AE,然后通过△BAE≌△BCG,得出BE=BG=EG,即可求得.(3)因为三角形BEG是等边三角形,∠ABC=90°,∠ABE=∠CBG,从而求得∠ABE=15°,然后通过求得△AHB∽△FGB,即可求得.解答:解:(1)∵四边形ABCD是正方形,∴AD∥BF,∴四边形ACFE是平行四边形,∴EF∥AC,(2)连接BG,∵EF∥AC,∴∠F=∠ACB=45°,∵∠GCF=90°,∴∠CGF=∠F=45°,∴CG=CF,∵AE=CF,∴AE=CG,在△BAE与△BCG中,,∴△BAE≌△BCG(SAS)∴BE=BG,∵BE=EG,∴△BEG是等边三角形,∴∠BEF=60°,(3)∵△BAE≌△BCG,∴∠ABE=∠CBG,∵∠BAC=∠F=45°,∴△AHB∽△FGB,∴======,∵∠EBG=60°∠ABE=∠CBG,∠ABC=90°,∴∠ABE=15°,∴=.点评:本题考查了平行四边形的判定及性质,求得三角形的判定及性质,正方形的性质,相似三角形的判定及性质,连接BG是本题的关键.22.(9分)(2020•珠海)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC 绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN 分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.考点:二次函数综合题分析:(1)求解析式一般采用待定系数法,通过函数上的点满足方程求出.(2)平行四边形对边平行且相等,恰得MN为OF,即为中位线,进而横坐标易得,D为x轴上的点,所以纵坐标为0.(3)已知S范围求横坐标的范围,那么表示S是关键.由PH不为平行于x轴或y 轴的线段,所以考虑利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来解题,此法底为两点纵坐标得差,高为横坐标的差,进而可表示出S,但要注意,当Q在O点右边时,所求三角形为两三角形的差.得关系式再代入,求解不等式即可.另要注意求解出结果后要考虑Q本身在R、E之间的限制.解答:解:(1)如图1,过G作GI⊥CO于I,过E作EJ⊥CO于J,∵A(2,0)、C(0,2),∴OE=OA=2,OG=OC=2,∵∠GOI=30°,∠JOE=90°﹣∠GOI=90°﹣30°=60°,∴GI=sin30°•GO==,IO=cos30°•GO==3,JO=cos30°•OE==,JE=sin30°•OE==1,∴G(﹣,3),E(,1),设抛物线解析式为y=ax2+bx+c,∵经过G、O、E三点,∴,解得,∴y=x2﹣x.(2)∵四边形OHMN为平行四边形,∴MN∥OH,MN=OH,∵OH=OF,∴MN为△OGF的中位线,文库精品∴x D=x N=•x G=﹣,∴D(﹣,0).(3)设直线GE的解析式为y=kx+b,∵G(﹣,3),E(,1),∴,解得,∴y=﹣x+2.∵Q在抛物线y=x2﹣x上,∴设Q的坐标为(x,x2﹣x),∵Q在R、E两点之间运动,∴﹣<x<.①当﹣<x<0时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),∵S△PKQ=•(y K﹣y Q)•(x Q﹣x P),S△HKQ=•(y K﹣y Q)•(x H﹣x Q),∴S△PQH=S△PKQ+S△HKQ=•(y K﹣y Q)•(x Q﹣x P)+•(y K﹣y Q)•(x H﹣x Q)=•(y K﹣y Q)•(x H﹣x P)=•[﹣x+2﹣(x2﹣x)]•[0﹣(﹣)]=﹣x2+.②当0≤x<时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),同理S△PQH=S△PKQ﹣S△HKQ=•(y K﹣y Q)•(x Q﹣x P)﹣•(y K﹣y Q)•(x Q﹣x H)=•(y K﹣y Q)•(x H﹣x P)=﹣x2+.综上所述,S△PQH=﹣x2+.∵,∴<﹣x2+≤,解得﹣<x<,∵﹣<x<,∴﹣<x<.点评:本题考查了一次函数、二次函数性质与图象,直角三角形及坐标系中三角形面积的表示等知识点.注意其中“利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来表示面积”是近几年中考的考查热点,需要加强理解运用.友情提示:一、认真对待每一次考试。
广东2020年中考数学试卷试题精校打印版(答案详解)
2020年广东省初中学业水平考试数学一、选择题(本大题10小题,每小題3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.实数9的相反数等于()A .﹣9B .+9C .19D .﹣192.一组数据2,4,3,5,2的中位数是()A .5B .35C .3D .253.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为()A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-4.已知一个多边形的内角和是540︒,则这个多边形是().A .四边形B .五边形C .六边形D .七边形5在实数范围内有意义,则x的取值范围是()A .2x ≠B .2x ≥C .2x ≤D .2x ≠-6.已知ABC ∆的周长为16,点D ,E ,F 分别为ABC ∆三条边的中点,则DEF ∆的周长为()A .8B .C .16D .47.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为()A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =--8.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为()A .无解B .1x ≤C .1x ≥-D .11x -≤≤9.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上点B '处,则BE 的长度为()A .1B CD .210.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有()A .4个B .3个C .2个D .1个二、填空题(本大题7小題,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy ―x =_____________.12.若3m x y 与25n x y -是同类项,则m n +=___________.13|1|0b +=,则2020()a b +=_________.14.已知5x y =-,2xy =,计算334x y xy +-的值为_________.15.如图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD ,则EBD ∠的度数为_________.16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,90ABC ∠=︒,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,4MN =,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:22()()()2x y x y x y x +++--,其中x =y =19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在ABC ∆中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:ABC ∆是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.已知关于x ,y 的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为,另外两条边的长是关于x 的方程20x ax b ++=的解.试判断该三角形的形状,并说明理由.22.如图1,在四边形ABCD 中,//AD BC ,90DAB ∠=︒,AB 是O 的直径,CO 平分BCD ∠.(1)求证:直线CD 与O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧»AE 上一点,1AD =,2BC =.求tan APE ∠的值.23.某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,点B 是反比例函数8y x=(0x >)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C ,反比例函数ky x=(0x >)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k =_________;(2)求BDF ∆的面积;(3)求证:四边形BDFG 为平行四边形.25.如图,抛物线236y x bx c =++与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =.(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上,当ABD ∆与BPQ ∆相似时,请直接写出所有满足条件的点Q 的坐标.1.A【分析】根据相反数的定义:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,进行求解即可.【详解】解:实数9的相反数是-9,故选A.【点睛】本题主要考查了相反数的定义,熟知相反数的定义是解题的关键.2.C【分析】把这组数据从小到大的顺序排列,取最中间位置的数就是中位数.【详解】把这组数据从小到大的顺序排列:2,2,3,4,5,处于最中间位置的数是3,∴这组数据的中位数是3,故选:C.【点睛】本题考查了求中位数,熟练掌握中位数的求法是解答的关键.3.D【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x轴对称的点的坐标为(3,-2),故选:D.【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.4.B【详解】根据多边形内角和定理,n 边形的内角和公式为()2180n -︒,因此,由()2180540n ︒-=︒得n =5.故选B .5.B 【分析】根据二次根式里面被开方数240x -≥即可求解.【详解】解:由题意知:被开方数240x -≥,解得:2x ≥,故选:B .【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.6.A 【分析】由D ,E ,F 分别为ABC ∆三条边的中点,可知DE 、EF 、DF 为ABC ∆的中位线,即可得到DEF ∆的周长.【详解】解:如图,∵D ,E ,F 分别为ABC ∆三条边的中点,∴12DF BC =,12DE AC =,12EF AB =,∵16BC AC AB ++=,∴()1116822DF DE EF BC AC AB ++=++=⨯=,故选:A .【点睛】本题考查了三角形的中位线,熟练掌握三角形的中位线平行于第三边且是第三边的一半是解题的关键.7.C 【分析】抛物线在平移时开口方向不变,a 不变,根据图象平移的口诀“左加右减、上加下减”即可解答.【详解】把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为[]22(1)12(2)2y x x =--+=-+,故选:C .【点睛】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点.8.D 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x +2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.D 【分析】由CD ∥AB 得到∠EFD =∠FEB =60°,由折叠得到60FEB FEB '∠=∠=︒,进而得到60AEB '∠=︒,然后在Rt AEB ' 中由30°所对直角边等于斜边一半即可求解.【详解】解:∵四边形ABCD 是正方形,∴CD ∥AB ,∴∠EFD =∠FEB =60°,由折叠前后对应角相等可知:60FEB FEB '∠=∠=︒,∴18060AEB FEB FEB ''∠=︒-∠-∠=︒,∴30AB E '∠=︒,设AE =x ,则2BE B E x '==,∴AB =AE +BE =3x =3,∴x =1,∴BE =2x =2,故选:D .【点睛】本题借助正方形考查了折叠问题,30°角所对直角边等于斜边的一半等知识点,折叠问题的性质包括折叠前后对应边相等,对应角相等,折叠产生角平分线,由此即可解题.10.B 【分析】由抛物线的性质和对称轴是1x =,分别判断a 、b 、c 的符号,即可判断①;抛物线与x 轴有两个交点,可判断②;由12bx a=-=,得2b a =-,令2x =-,求函数值,即可判断③;令2x =时,则420y a b c =++>,令=1x -时,0y a b c =-+>,即可判断④;然后得到答案.【详解】解:根据题意,则a<0,0c >,∵12bx a=-=,∴20b a =->,∴<0abc ,故①错误;由抛物线与x 轴有两个交点,则240b ac ->,故②正确;∵2b a =-,令2x =-时,420y a b c =-+<,∴80a c +<,故③正确;在2y ax bx c =++中,令2x =时,则420y a b c =++>,令=1x -时,0y a b c =-+>,由两式相加,得520a b c ++>,故④正确;∴正确的结论有:②③④,共3个;故选:B .【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质,熟练判断各个式子的符号.11.x (y -1)【详解】试题解析:xy ―x =x (y -1)12.3【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可.【详解】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.13.1【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案.【详解】|1|0b +=∴2a =,1b =-,∴2020()a b +=202011=,故答案为:1.【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键.14.7【分析】将代数式化简,然后直接将5x y +=,2xy =代入即可.【详解】解:由题意得5x y +=,2xy =,∴3343()41587x y xy x y xy +-=+-=-=,故答案为:7.【点睛】本题考查了提取公因式法,化简求值,化简334x y xy +-是解题关键.15.45°【分析】根据题意知虚线为线段AB 的垂直平分线,得AE=BE ,得EBA EAB ∠=∠;结合30A ∠=°,1275ABD ABC =∠=︒,可计算EBD ∠的度数.【详解】18030150ABC ∠=-=︒︒︒1275ABD ABC =∠=︒∵AE EB=∴EAB EBA∠=∠∴753045EBD ∠=-=︒︒︒故答案为:45°.【点睛】本题考查了菱形的性质,及垂直平分线的性质,熟知以上知识点是解题的关键.16.13【分析】连接OA ,OB ,证明△AOB 是等边三角形,继而求得AB 的长,然后利用弧长公式可以计算出 BOC的长度,再根据扇形围成圆锥底面圆的周长等于扇形的弧长即可作答.【详解】连接OA ,OB ,则∠BAO=12∠BAC=11202⨯︒=60°,又∵OA=OB ,∴△AOB 是等边三角形,∴AB=OA=1,∵∠BAC=120°,∴ O B C 的长为:120AB 21803ππ= ,设圆锥底面圆的半径为r223r ππ=13r =故答案为13.【点睛】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,借助等量关系即可算出底面圆的半径.17.2【分析】根据当B 、D 、E 三点共线,距离最小,求出BE 和BD 即可得出答案.【详解】如图当B 、D 、E 三点共线,距离最小,∵4MN =,E 为MN 的中点,∴2BE =,BD ==2DE BD BE =-=,故答案为:2.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,勾股定理,两点间的距离线段最短,判断出距离最短的情况是解题关键.18.2xy ;【分析】根据完全平方公式、平方差公式、整式的加减运算法则进行运算即可,最后代入数据即可求解.【详解】解:原式2222222x xy y x y x =+++--2xy =,将x =,y =原式2==故答案为:.【点睛】本题考查了完全平方公式、平方差公式的运算,实数的化简求值,熟练掌握公式及运算法则是解决此类题的关键.19.(1)6(2)1440人【分析】(1)根据四个等级的人数之和为120求出x 的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例即可求出结果.【详解】(1)解:由题意得:247218120x +++=解得6x =(2)解:247218001440120+⨯=(人)答:估算“非常了解”和“比较了解”垃圾分类知识的学生有1440人.【点睛】本题主要考查了用样本估计总体,属于基础题目,审清题意,找到对应数据是解题的关键.20.见解析【分析】先证明BDF CEF ∆∆≌,得到BF CF =,FBC FCB ∠=∠,进而得到A ABC CB =∠∠,故可求解.【详解】证明:在BDF ∆和CEF ∆中()DFB EFC FBD FCE BD CE ⎧∠=∠⎪∠=∠⎨⎪=⎩对顶角相等∴()BDF CEF AAS ∆∆≌∴BF CF=∴FBC FCB∠=∠又∵ABE ACD∠=∠∴FBC ABE FCB ACD∠+∠=∠+∠即A ABC CB=∠∠∴ABC ∆是等腰三角形.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质.21.(1)-12(2)等腰直角三角形,理由见解析【分析】(1)关于x ,y 的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同.实际就是方程组42x y x y +=⎧⎨-=⎩的解,可求出方程组的解,进而确定a 、b 的值;(2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与【详解】解:由题意列方程组:42x y x y +=⎧⎨-=⎩解得31x y =⎧⎨=⎩将3x =,1y =分别代入ax +=-和15x by +=解得a =-12b =∴a =-12b =(2)2120x -+=解得x ==这个三角形是等腰直角三角形理由如下:∵222+=∴该三角形是等腰直角三角形.【点睛】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(1)证明见解析;(2)2.【分析】(1)如图(见解析),先根据平行线的性质得出OB CB ⊥,再根据角平分线的性质可得OE OB =,然后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得APE ABE ∠=∠,90AEB ∠=︒,再根据圆的切线的判定、切线长定理可得2,1CE BC DE AD ====,然后根据相似三角形的判定与性质可得12AE DE EF CE ==,设AE a =,从而可得2EF a =,又根据相似三角形的判定与性质可得BE AEEF BE=,从而可得BE =,最后根据正切三角函数的定义即可得.【详解】(1)如图,过点O 作OE CD ⊥于点E∵//AD BC ,90DAB ∠=︒∴90OBC ∠=︒,即OB CB⊥又∵CO 平分BCD ∠,OE CD⊥∴OE OB=即OE 是O 的半径∴直线CD 与O 相切;(2)如图,连接BE ,延长AE 交BC 延长线于点F由圆周角定理得:APE ABE ∠=∠,90AEB ∠=︒AB 是O 的直径,AB AD ⊥,AB BC⊥∴AD 、BC 都是O 的切线由切线长定理得:2,1CE BC DE AD ====∵//AD BC∴DAE CFE∠=∠在ADE V 和FCE △中,AED FEC DAE CFE∠=∠⎧⎨∠=∠⎩∴ADE FCE~ ∴12AE DE EF CE ==设(0)AE a a =>,则2EF a=90BAE ABE FBE ABE ∠+∠=∠+∠=︒BAE FBE∴∠=∠在ABE 和BFE △中,90BAE FBE AEB BEF ∠=∠⎧⎨∠=∠=︒⎩ABE BFE∴~ BE AE EF BE∴=,即2BE a a BE =解得BE =在Rt ABE 中,tan2AE ABE BE ∠==则tan tan 2APE ABE ∠=∠=.【点睛】本题考查了圆的切线的判定与性质、圆周角定理、切线长定理、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键.23.(1)5平方米;3平方米(2)10520元【分析】(1)设A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米,根据同等面积建立A 类和B 类的倍数关系列式即可;(2)设建A 类摊位a 个,则B 类(90)a -个,设费用为z ,由(1)得A 类和B 类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.【详解】解:(1)设每个A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米由题意得6060325x x =⨯-解得5x =,∴23x -=,经检验5x =为分式方程的解∴每个A 类摊位占地面积5平方米,B 类占地面积3平方米(2)设建A 类摊位a 个,则B 类(90)a -个,费用为z∵3(90)a a ≤-∴022.5a <≤405303(90)z a a =⨯+⨯-1108100a =+,∵110>0,∴z 随着a 的增大而增大,又∵a 为整数,∴当22a =时z 有最大值,此时10520z =∴建造90个摊位的最大费用为10520元【点睛】本题考查了一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.24.(1)2(2)3(3)见解析【分析】(1)根据题意设点B 的坐标为(x ,8x ),得出点M 的坐标为(2x ,4x ),代入反比例函数k y x =(0x >),即可得出k ;(2)连接OD ,根据反比例函数系数k 的性质可得||12AOD k S ∆==,842AOB S ∆==,可得413BOD S ∆=-=,根据//OF AB ,可得点F 到AB 的距离等于点O 到AB 距离,由此可得出答案;(3)设(),B B B x y ,(),D D D x y ,可得8B B x y ⋅=,2D D x y ⋅=,根据B D y y =,可得4B D x x =,同理4B E y y =,可得31BE EC =,34BD AB =,证明EBD ECF ∆∆∽,可得13CF CE BD BE ==,根据43OC AB BD BD ==,得出41OC CF =,根据O ,G 关于C 对称,可得OC CG =,4CG CF =,3FG CF =,可得BD FG =,再根据//BD FG ,即可证明BDFG 是平行四边形.【详解】解:(1)∵点B 在8y x=上,∴设点B 的坐标为(x ,8x ),∴OB 中点M 的坐标为(2x ,4x ),∵点M 在反比例函数k y x=(0x >),∴k=2x ·4x =2,故答案为:2;(2)连接OD ,则||12AOD k S ∆==,,∵842AOB S ∆==,∴413BOD S ∆=-=,∵//OF AB ,∴点F 到AB 的距离等于点O 到AB 距离,∴3BDF BDO S S ∆∆==;(3)设(),B B B x y ,(),D D D x y ,8B B x y ⋅=,2D D x y ⋅=,又∵B D y y =,∴4B D x x =,同理4B E y y =,∴31BE EC =,34BD AB =,∵//AB BC ,∴EBD ECF ∆∆∽,∴13CF CE BD BE ==,∵43OC AB BD BD ==,∴41OC CF =,∴O ,G 关于C 对称,∴OC CG =,∴4CG CF =,∴43FG CG CF OF CF CF =-=-=,又∵3BD CF =,∴BD FG =,又∵//BD FG ,∴BDFG 是平行四边形.【点睛】本题考查了反比例函数系数的性质,相似三角形的判定和性质,平行四边形的判定,平行线的性质,灵活运用知识点是解题关键.25.(1)1-322--(2)=y x (3)13⎛⎫- ⎪ ⎪⎝⎭,(1-,1,03⎛⎫- ⎪ ⎪⎝⎭,(5-【分析】(1)根据33BD AO ==,得出(10)A -,,(30)B ,,将A ,B代入236y bx c +=++得出关于b ,c 的二元一次方程组求解即可;(2)根据二次函数是2(3316322y x x ⎛⎫+=-+-- ⎪ ⎪⎝⎭,BC =,(3,0)B ,得出D 的横坐标为代入抛物线解析式求出(1)D ,设BD 得解析式为:y kx b =+,将B ,D 代入求解即可;(3)由题意得tan ∠ABD=3,tan ∠ADB =1,由题意得抛物线的对称轴为直线x =1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3,分①当△PBQ ∽△ABD 时,②当△PQB ∽△ABD 时,③当△PQB ∽△DAB 时,④当△PQB ∽△ABD 时四种情况讨论即可.【详解】解:(1)∵33BD AO ==,∴(10)A -,,(30)B ,,∴将A ,B代入2y bx c =++得030b c b c +=+=,解得1322b c ⎧=-⎪⎪⎨⎪=--⎪⎩,∴1b =-32c =--(2)∵二次函数是2(3316322y x x ⎛+=-+-- ⎝⎭,BC =,(3,0)B ,∴D的横坐标为代入抛物线解析式得3312y ⎛=+ ⎝⎭312=-1=∴(1)D ,设BD 得解析式为:y kx b=+将B ,D代入得103b k b =+=+⎪⎩,解得3k b ⎧=-⎪⎨⎪=⎩,∴直线BD的解析式为=y x (3)由题意得tan ∠ABDtan ∠ADB =1,由题意得抛物线的对称轴为直线x =1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3,①当△PBQ ∽△ABD 时,tan ∠PBQ =tan ∠ABD 即2n -,解得n=3-,tan ∠PQB =tan ∠ADB 即11n x-=-,解得x=1-3,此时Q 的坐标为(0);②当△PQB ∽△ABD 时,tan ∠PBQ =tan ∠ADB 即2n -=1,解得n =-2,tan ∠QPB =tan ∠ABD 即1n x --解得x=1-此时Q 的坐标为(1-0);③当△PQB ∽△DAB 时,tan ∠PBQ =tan ∠ABD 即2n -,解得ntan ∠PQB =tan ∠DAB即1n x -=-,解得x,此时Q 的坐标为(3-1,0);④当△PQB ∽△ABD 时,tan ∠PBQ =tan ∠ABD 即2n -=1,解得n =-2,tan ∠PQB =tan ∠DAB 即1n x -=-,解得x =5-Q 的坐标为(5-0);综上:Q 的坐标可能为1⎛⎫ ⎪ ⎪⎝⎭,(1-,1,0⎫-⎪⎪⎝⎭,(5-.【点睛】本题考查了二次函数,一次函数,相似三角形的判定和性质,锐角三角函数,掌握知识点灵活运用是解题关键.。
2020年广东省中考数学试卷
2020年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是()A.B.5 C.﹣ D.﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.(3分)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF =S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=.12.(4分)一个n边形的内角和是720°,则n=.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣4),其中x=.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD 为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2020•广东)5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2020•广东)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2020•广东)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A【点评】此题考查了余角与补角,熟练掌握补角的性质是解本题的关键.4.(3分)(2020•广东)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.5.(3分)(2020•广东)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.(3分)(2020•广东)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.【点评】本题考查了中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.也考查了轴对称图形.7.(3分)(2020•广东)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B 的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【分析】反比例函数的图象是中心对称图形,则它与经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.8.(3分)(2020•广东)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.【点评】本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.9.(3分)(2020•广东)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.【点评】本题考查的是圆内接四边形的性质及等腰三角形的性质,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)(2020•广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF ;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,∴S△ABF =S△ADF,故①正确,∵BE=EC=BC=AD,AD∥EC,∴===,∴S△CDF =2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2020•广东)分解因式:a2+a=a(a+1).【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.12.(4分)(2020•广东)一个n边形的内角和是720°,则n=6.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.(4分)(2020•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b>0.(填“>”,“<”或“=”)【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.【点评】本题考查了实数与数轴,有理数的加法法则,根据数轴得出a、b的符号和二者绝对值的大小关系是解题的关键.14.(4分)(2020•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2020•广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.(4分)(2020•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)(2020•广东)计算:|﹣7|﹣(1﹣π)0+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂的性质、绝对值等考点的运算.18.(6分)(2020•广东)先化简,再求值:(+)•(x2﹣4),其中x=.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.19.(6分)(2020•广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)(2020•广东)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【点评】本题考查了作图﹣基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.21.(7分)(2020•广东)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定,平行线的性质等知识,证明出AD是线段BF的垂直平分线是解题的关键.22.(7分)(2020•广东)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).【点评】本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)(2020•广东)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x 轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.【点评】本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P的坐标是解答此题的关键.24.(9分)(2020•广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【点评】本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.25.(9分)(2020•广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBE=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBE=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBE=∠DCO=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,证明B、D、E、C四点共圆,学会构建二次函数解决问题,属于中考压轴题.。
2020年广东省中考数学试卷
2020年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()19 A.﹣9B.9C.D.−192.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.75.(3分)若式子√2푥−4在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2√2C.16D.47.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3 8.(3分)不等式组{2−3푥≥−1,的解集为()푥−1≥−2(푥+2)A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1 9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.√2C.√3D.22①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4 个B.3 个C.2 个D.1 个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4 分)分解因式:xy﹣x=.12.(4 分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.(4 分)若√푎−2+|b+1|=0,则(a+b)2020=.14.(4 分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.115.(4 分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B2为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.(4 分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4 分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4 和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6 分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.19.(6 分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120 名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800 人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6 分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8 分)已知关于x,y的方程组{푎푥+2√3푦=−10√3,与{푥−푦=2,的解相同.푥+푦=4푥+푏푦=15 (1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0 的解.试判断该三角形的形状,并说明理由.22.(8 分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO 平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧가가퐸上一点,AD=1,BC=2.求tan∠APE 的值.23.(8 分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2 平方米.建A类摊位每平方米的费用为40 元,建B类摊位每平方米的费用为30 元.用60 平方米建A类摊位的个数恰好是用同样面积建B类摊位3个数的.5(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90 个,且B类摊位的数量不少于A类摊位数量的3 倍.求建造这90 个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10 分)如图,点B是反比例函数y=8푥(x>0)图象上一点,过点B分别向坐标轴作푘垂线,垂足为A,C.反比例函数y=푥(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=3+√32+bx+c与x轴交于A,B两点,点A,B分别位于原点6x的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()19 A.﹣9B.9C.D.−19【解答】解:9的相反数是﹣9,故选:A.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.5.(3分)若式子√2푥−4在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2 【解答】解:∵√2푥−4在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2√2C.16D.4【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE= 12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)= 12×16=8.故选:A.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.8.(3分)不等式组{2−3푥≥−1,的解集为()푥−1≥−2(푥+2)A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1【解答】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.√2C.√3D.2 【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;第8页(共20页)∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−푏2푎=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若√푎−2+|b+1|=0,则(a+b)2020=1.【解答】解:∵√푎−2+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy第9页(共20页)=3×5﹣4×2=15﹣8=7,故答案为:7.115.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B2为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=12(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为13m.【解答】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,120휋×1则扇形的弧长为:,2πr=120휋×1180,解得,r=13,1故答案为:.317.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2√5−2.【解答】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,∠퐷퐵퐹=∠퐸퐶퐹在△BDF和△CEF中,{,∠퐵퐹퐷=∠퐶퐹퐸퐵퐷=퐶퐸∴△BDF≌△CEF(AAS),∴BF+EF=CF+DF,即BE=CD,∠퐴퐵퐸=∠퐴퐶퐷在△ABE和△ACD中,{,∠퐴=∠퐴퐵퐸=퐶퐷∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组{푎푥+2√3푦=−10√3,与{푥−푦=2,的解相同.푥+푦=4푥+푏푦=15 (1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0 的解.试判断该三角形的形状,并说明理由.푥+푦=4 【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是程组{푥−푦=2的解,푥=3解得,{푦=1,代入原方程组得,a=﹣4√3,b=12;(2)当a=﹣4√3,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4√3x+12=0,解得,x1=x2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO 平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧가가퐸上一点,AD=1,BC=2.求tan∠APE 的值.第13页(共20页)【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,∠푂퐸퐶=∠푂퐵퐶在△OCE和△OCB中,{,∠푂퐶퐸=∠푂퐶퐵푂퐶=푂퐶∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√퐶퐷2−퐶퐹2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=푂퐵퐵퐶= √2 2.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位3个数的.5(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3 倍.求建造这90个摊位的最大费用.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,60 根据题意得:푥+2 =60푥⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=8푥(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=푘푥(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.1 1【解答】解:(1)设点B(s,t),st=8,则点M(s,t),2 21 则k=1t=12s•4st=2,2故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD= 12×8−12×2=3;2 2(3)设点D(m,),则点B(4m,),푚푚第16页(共20页)∵点G与点O关于点C对称,故点G(8m,0),1则点E(4m,),2푚2푚=푚푠+푛设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得{,解得12푚=4푚푠+푛푘=−12푚2{,푏= 52푚故直线DE的表达式为:y=−12푚2푥+52푚,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.25.(10分)如图,抛物线y=3+√32+bx+c与x轴交于A,B两点,点A,B分别位于原点6x的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=3+√36(x+1)(x﹣3)= 3+√32−3+√33+√36x3x−2,3,c=−2;(2)如图1,过点D作DE⊥AB于E,第17页(共20页)∴CO∥DE,퐵퐶퐶퐷∴=퐵푂푂퐸,∵BC=√3CD,BO=3,∴√3=3푂퐸,∴OE=√3,∴点D横坐标为−√3,∴点D坐标(−√3,√3+1),设直线BD的函数解析式为:y=kx+b,由题意可得:{√3+1=−√3푘+푏,0=3푘+푏√3解得:{푘=−3,푏=√3√3∴直线BD的函数解析式为y=−3x+√3;(3)∵点B(3,0),点A(﹣1,0),点D(−√3,√3+1),∴AB=4,AD=2√2,BD=2√3+2,对称轴为直线x=1,√3∵直线BD:y=−3x+√3与y轴交于点C,∴点C(0,√3),∴OC=√3,∵tan∠COB=퐶푂퐵푂= √3 3,∴∠COB=30°,如图2,过点A作AK⊥BD于K,第18页(共20页)∴AK=12AB=2,∴DK=√퐴퐷2−퐴퐾2=√8−4=2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=√3PN=2,BP=2PN,∴PN=2√33,BP= 4√3 3,当△BAD∽△BPQ,퐵푃퐵퐴∴=퐵푄퐵퐷,∴BQ= 4√33×(2√3+2)2√34=2+3,∴点Q(1−2√33,0);当△BAD∽△BQP,퐵푃퐵퐷∴=퐵푄퐴퐵,第19页(共20页)∴BQ= 4√33×42√3+2=4−4√33,∴点Q(﹣1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△BAD∽△BPQ,퐵푃퐴퐷∴=퐵푄퐵퐷,2√2 2√2 ∴=퐵푄,2√3+2∴BQ=2√3+2∴点Q(1﹣2√3,0);当△BAD∽△PQB,퐵푃퐵퐷∴=퐵푄퐴퐷,∴BQ=2√2×2√22√3+2=2√3−2,∴点Q(5﹣2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(﹣1+3,0)或(1﹣2√3,0)4√3或(5﹣2√3,0).第20页(共20页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省各市中考数学试题(8套)打包下载广东珠海数学一、选择题〔本小题5分,每题3分,共15分〕1.-5的相反数是( ) AA.5B.-5C.51D.51- 2.某校乒乓球训练队共有9名队员,他们的年龄〔单位:岁〕分不为:12,13,13,14,12,13,15,13,15,那么他们年龄的众数为〔 〕 BA.12B.13C.14D.153.在平面直角坐标系中,将点P 〔-2,3〕沿x 轴方向向右平移3个单位得到点Q ,那么点Q 的坐标是〔 〕 DA.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)4.现有如图1所示的四张牌,假设只将其中一张牌旋转180后得到图2,那么旋转的牌是〔 〕B图 1 图2A. B C D5.如图,PA 、PB 是O 的切线,切点分不是A 、B ,假如∠P =60°,那么∠AOB 等于〔 〕 DA.60°B.90°C.120°D.150°二、填空题〔本大题5分,每题4分,共20分〕6.分解因式22ay ax -=________________. a(x+y)(x-y) 7.方程组 711=-=+y x y x 的解是__________. 56==y 8.一天,小青在校园内发觉:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发觉她站立于树影的中点〔如下图〕.假如小青的峰高为1.65米,由此可推断出树高是_______米. 3.39.如图,P 是菱形ABCD 对角线BD 上一点,PE ⊥AB 于点E ,PE =4cm ,那么点P 到BC 的距离是_____cm. 410.我们常用的数是十进制数,运算机程序使用的是二进制数〔只有数码0和1〕,它们两者之间能够互相换算,如将(101)2,(1011)2换算成十进制数应为:5104212021)101(0122=++=⨯+⨯+⨯=1121212021)1011(01232=⨯+⨯+⨯+⨯=按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 9三、解答题〔一〕〔本大题5小题,每题6分,共30分〕11.运算:92|21|)3(12-+---- 解:原式=6321219=-+- 12.如图,在梯形ABCD 中,AB ∥CD〔1〕用尺规作图方法,作∠DAB 的角平分线AF 〔只保留作图痕迹,不写作法和证明〕 〔2〕假设AF 交CD 边于点E ,判定△ADE 的形状〔只写结果〕解:(1)因此射线AF 即为所求(2)△ADE 是等腰三角形.13.2018年亚运会立即在广州举行,广元小学开展了〝你最喜爱收看的亚运五项球竞赛〔只选一项〕〞抽样调查.依照调查数据,小红运算出喜爱收看排球竞赛的人数占抽样人数的6%,小明那么绘制成如下不完整的条形统计图,请你依照这两位同学提供的信息,解答下面的咨询题:〔1〕将统计补充完整;〔2〕依照以上调查,试估量该校1800名学生中,最喜爱收看羽毛球的人数.解:〔1〕抽样人数20006.012=〔人〕 (2)喜爱收看羽毛球人数20020×1800=180〔人〕14.:正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M 〔a,1〕,MN ⊥x 轴于点N 〔如图〕,假设△OMN 的面积等于2,求这两个函数的解析式.解:∵MN ⊥x 轴,点M 〔a ,1〕∴S △OMN=a 21=2 ∴a=4∴M(4,1)∵正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M 〔4,1〕 ∴ 414121k k == 解得 44121==∴正比例函数的解析式是x y 41=,反比例函数的解析式是xy 4= 15.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积〔结果保留π〕解:∵弦AB 和半径OC 互相平分∴OC ⊥ABOM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30°又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120°∴S 扇形=33601120ππ=⋅⋅ 四、解答题〔二〕〔本大题4小题,每题7分,共28分〕16.x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。
解:由题意得:05)1()1(2=-⨯-+-m 解得m=-4当m=-4时,方程为0542=--x x解得:x 1=-1 x 2=5因此方程的另一根x 2=517.为了提高产品的附加值,某公司打算将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分不到这两间工厂了解情形,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.依照以上信息,求甲、乙两个工厂每天分不能加工多少件新产品?解:设甲工厂每天加工x 件产品,那么乙工厂每天加工1.5x 件产品,依题意得 105.112001200=-xx解得:x=40经检验:x=40是原方程的根,因此1.5x=60答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.18.中央电视台举办的第14届〝蓝色经典·天之蓝〞杯青年歌手大奖赛,由部队文工团的A 〔海政〕、B 〔空政〕、C 〔武警〕组成种子队,由部队文工团的D 〔解放军〕和地点文工团的E 〔云南〕、F 〔新疆〕组成非种子队.现从种子队A 、B 、C 与非种子队D 、E 、F 中各抽取一个队进行首场竞赛.(1)请用适当方式写出首场竞赛出场的两个队的所有可能情形〔用代码A 、B 、C 、D 、E 、F 表示〕;(2)求首场竞赛出场的两个队差不多上部队文工团的概率P.解:(1)由题意画树状图如下: A B CD E F D E F D E F所有可能情形是:〔A,D 〕、(A,E) 、(A,F) 、(B,D) 、(B,E) 、(B,F) 、(C,D) 、(C,E) 、(C,F)(2)所有可能出场的等可能性结果有9个,其中首场竞赛出场两个队差不多上部队文工团的结果有3个,因此P(两个队差不多上部队文工团)=3193= 19.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B.(1) 求证:△ADF ∽△DEC(2) 假设AB =4,AD =33,AE =3,求AF 的长.〔1〕证明:∵四边形ABCD 是平行四边形∴AD ∥BC AB ∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180 ∠AFE=∠B∴∠AFD=∠C∴△ADF ∽△DEC(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC CD=AB=4又∵AE ⊥BC ∴ AE ⊥AD在Rt △ADE 中,DE=63)33(2222=+=+AE AD ∵△ADF ∽△DEC∴ CDAF DE AD = ∴4633AF = AF=32 五、解答题〔三〕〔本大题3小题,每题9分,共27分〕20.今年春季,我国云南、贵州等西南地区遇到多少不遇旱灾,〝一方有难,八方支援〞,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台〔每种至少一台〕及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.(1)设甲种柴油发电机数量为x 台,乙种柴油发电机数量为y 台.①用含x 、y 的式子表示丙种柴油发电机的数量;②求出y 与x 的函数关系式;(2)甲、乙、丙柴油发电机每台每小时费用分不为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W 最少?解:〔1〕①丙种柴油发电机的数量为10-x-y② ∵4x+3y+2(10-x-y)=32∴y=12-2x(2)丙种柴油发电机为10-x-y=(x-2)台W=130x+120(12-2x)+100(x-2)=-10x+1240依题意解不等式组 1212121≥-≥-≥x x x 得:3≤x ≤5.5∵x 为正整数 ∴x=3,4,5∵W 随x 的增大而减少 ∴当x=5时 ,W 最少为-10×5+1240=1190〔元〕21.如图,△ABC 内接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明;〔2〕假设cos ∠PCB=55,求PA 的长. 解:〔1〕当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形∵P 是优弧BAC 的中点 ∴弧PB =弧PC∴PB =PC∵BD =AC =4 ∠PBD=∠PCA∴△PBD ≌△PCA∴PA=PD 即△PAD 是以AD 为底边的等腰三角形〔2〕由〔1〕可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2过点P 作PE ⊥AD 于E ,那么AE =21AD=1 ∵∠PCB=∠PAD∴cos ∠PAD=cos ∠PCB=55=PA AE ∴PA=522.如图,平面直角坐标系中有一矩形ABCD 〔O 为原点〕,点A 、C 分不在x 轴、y 轴上,且C 点坐标为〔0,6〕;将BCD 沿BD 折叠〔D 点在OC 边上〕,使C 点落在OA 边的E 点上,并将BAE 沿BE 折叠,恰好使点A 落在BD 的点F 上.(1)直截了当写出∠ABE 、∠CBD 的度数,并求折痕BD 所在直线的函数解析式;(2)过F 点作FG ⊥x 轴,垂足为G ,FG 的中点为H ,假设抛物线c bx ax y ++=2通过B 、H 、D 三点,求抛物线的函数解析式;(3)假设点P 是矩形内部的点,且点P 在〔2〕中的抛物线上运动〔不含B 、D 点〕,过点P 作PN ⊥BC 分不交BC 和BD 于点N 、M ,设h=PM-MN ,试求出h 与P 点横坐标x 的函数解析式,并画出该函数的简图,分不写出使PM<NM 、PM=MN 、PM>MN 成立的x 的取值范畴。
解:〔1〕∠ABE =∠CBD=30°在△ABE 中,AB =6 BC=BE=3430cos =︒AB CD=BCtan30°=4∴OD=OC-CD=2∴B(34,6) D(0,2)设BD 所在直线的函数解析式是y=kx+b2634==+b b k ∴ 233==b k因此BD 所在直线的函数解析式是233+=x y (2)∵EF=EA=ABtan30°=32 ∠FEG=180°-∠FEB-∠AEB=60°又∵FG ⊥OA∴FG =EFsin60°=3 GE=EFcos60°=3 OG=OA-AE-GE=3又H 为FG 中点∴H 〔3,23〕 …………4分 ∵B(34,6) 、 D(0,2)、 H 〔3,23〕在抛物线c bx ax y ++=2图象上 2333263448=++==++c b a c c b a ∴ 23361=-==c b a ∴抛物线的解析式是233612+-=x x y (2)∵MP=x x x x x 33261)23361()233(22+-=+--+MN=6-x x 334)233(-=+ H=MP-MN=4361)334()33261(22-+-=--+-x x x x x 由043612=-+-x x 得34,3221==x x 该函数简图如下图:当0<x<32时,h<0,即HP<MN当x=32时,h=0,即HP=MN 当32<x<34时,h>0,即HP>MN。