立体几何共线共点共面问题

合集下载

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第二节 点、线、面的位置关系

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第二节 点、线、面的位置关系

第二节点、线、面的位置关系【知识点5】平面的概念及点、线、面之间的位置关系2. 点、线、面之间的位置关系点、直线、平面之间的基本位置关系及语言表达1.平面的概念(1)平面的概念:广阔的草原、平静的湖面都给我们以平面的形象.和点、直线一样,平面也是从现实世界中抽象出来的几何概念.(2)平面的画法:一般用水平放置的正方形的直观图作为平面的直观图一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用虚线画出来.(3)平面的表示方法平面通常用希腊字母α,β,γ…表示,也可以用平行四边形的两个相对顶点的字母表示,如图中的平面α、平面AC等.3.平面的基本性质【典例讲解】类型一、符号表示问题【例1】(点、直线、平面之间的位置关系的符号表示)如图,用符号表示下列图形中点、直线、平面之间的位置关系.【反思】(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.【变式1】若点A在直线b上,b在平面β内,则点A,直线b,平面β之间的关系可以记作________.(填序号)①A∈b∈β;②A∈b⊂β;③A⊂b⊂β;④A⊂b∈β.【变式2】空间两两相交的三条直线,可以确定的平面数是______.【思考1】在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体经过P,Q,R的截面图形是________.【变式1】如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.类型二、点线共面问题【例2】(点线共面)如图,已知:a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.【变式1】求证:和同一条直线相交的三条平行直线一定在同一平面内.【反思】证明多线共面的两种方法(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.【变式2】已知l1∩l2=A,l2∩l3=B,l1∩l3=C,如图所示.求证:直线l1,l2,l3在同一平面内.类型三,点共线、线共点问题【例3】(点共线)如图,在正方体ABCD—A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.【反思】证明多点共线通常利用公理2,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在直线上.【变式1】已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示.求证:P,Q,R三点共线.【变式2】若直线l 与平面α相交于点O ,A ,B ∈l ,C ,D ∈α,且AC ∥BD ,则O ,C ,D 三点的位置关系是________.【例4】(线共点问题)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为AA 1的中点.求证:CE ,D 1F ,DA 三线交于一点.【反思】 证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上.此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.【变式1】如图,已知D ,E 是△ABC 的边AC ,BC 上的点,平面α经过D ,E 两点,若直线AB 与平面α的交点是P ,则点P 与直线DE 的位置关系是________.【变式2】如图所示,在空间四边形ABCD 中,E ,F 分别是AB 和CB 上的点,G ,H 分别是CD 和AD 上的点,且AE EB =CF FB =1,AH HD =CGGD=2.求证:EH ,BD ,FG 三条直线相交于同一点.【知识点6】空间两条直线的位置关系典型例题异面直线的判断【例1】(1)在四棱锥P—ABCD中,各棱所在的直线互为异面的有________对.(2)如图是一个正方体的展开图,如果将它还原成正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有几对?分别是哪几对?【反思】(1)判断空间中两条直线位置关系的关键点①建立空间观念,全面考虑两条直线平行、相交和异面三种位置关系,特别关注异面直线.②重视正方体等常见几何体模型的应用,会举例说明两条直线的位置关系.(2)判定两条直线是异面直线的方法1.在同一平面内,两条直线位置关系:平行与相交.空间中,既不平行又不相交的两条直线叫做异面直线。

空间向量的共线与共面问题

空间向量的共线与共面问题

么条件?
bC
p
P
Aa B
O
结论:空间一点P位于平面ABC内
存在有序实数对x,y使 AP x AB y AC
或对空间任一点O,有 OP xOA yOB zOC (x y z 1)
可证明或判断四点共面
三.类似地,有空间向量基本定理:
如果三个向量 a 、b 、c 不共面,那么对于空间任一向
a
+
1 2
b+
1 2
c
A
C N
(C)
1 2
a
+
12b -
23 c
B
(D)
2 3
a
+
2 3
b

1 2
c
课外补充练习:
1.对于空间任意一点O,下列命题正确的是:A
(A)若 OP OA t AB ,则P、A、B共线
(B)若 3OP OA AB ,则P是AB的中点
(C)若 OP OA t AB ,则P、A、B不共线
向量规.规定定a 平:: oo行与与于任任b一一记向向作量量aaa/是/是b共.共线线向向量量..
2.共线向量定理:空间任意两个向量
a
、b(
b

0
),
a // b 的充要条件是存在实数 ,使 a b .
练习.已知A、B、P三点共线,O为直线外
一点,且OP OA OB,求 的值.
那么 A 、B 、P 三点共线吗?
思考:如图, l 为经过已知点 A 且平行非零向量 a 的直线,
如何表示直线 l 上的任一点 P ?
A•
•• l
BP
a
O
注:我们把非零 向量 a 叫做直线 l 的方向向量.

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质

高中立体几何判定定理及性质一、公理及其推论文字语言 符号语言图像语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

ααα⊂⇒∈∈∈∈l B A l B l A ,,,①用来验证直线在平面内; ② 用来说明平面是无限延展的公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)ll P ∈=⋂⇒⋂∈P 且βαβα① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。

公理3经过不在同一条直线上的三点,有且只有一个平面 确定一个平面不共线C B A C B A ,,,,⇒用来证明多点共面,多线共面推论1经过一条直线和这αααα⊂∈⇒∉a A A ,使,有且只有一个平面条直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面ααα⊂⊂⇒=⋂baPba,使,有且只有一个平面推论3经过两条平行直线,有且只有一个平面ααα⊂⊂⇒baba,使,有且只有一个平面∥公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫用来证明线线平行二、平行关系文字语言符号语言图像语言作用(1)公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那ααα∥∥ababa⇒⎪⎭⎪⎬⎫⊂⊄么这条直线和这个平面平行。

(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

baabb∥∥⇒⎪⎭⎪⎬⎫⊂=⋂ββαβ(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.βαααββ∥∥∥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂=⋂baObaba(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

2020年高考数学《三维设计》第八章 立体几何第三节 空间点、线、面之间的位置关系

2020年高考数学《三维设计》第八章  立体几何第三节  空间点、线、面之间的位置关系
在此平面内. (2)公理 2:过不在一条直线上的三点,有且只有一个平面(注意:
三点不一定能确定一个平面). 推论 1:经过一条直线和直线外一点,有且只有一个平面. 推论 2:经过两条相交直线,有且只有一个平面. 推论 不重合的平面有一个公共点,那么它们有且 只有一条过该点的公共直线.
③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;
④α∩β=b,P∈α,P∈β⇒P∈b.
返回
5.若三个平面两两相交,且三条交线互相平行,则这三个平面 把空间分成_____7___部分. 解析:通过举例说明,如三棱柱三个侧面所在平面满足两两 相交,且三条交线互相平行,这三个平面将空间分成 7 部分.
返回
考点——在细解中明规律
返回
2.空间中两直线的位置关系
(1)空间中两直线的位置关系 (1)两条异面直线不能确定一 个平面.
共面直线平相行交
(2) 不 能 把 异 面 直 线 误 解 为 分 别在不同平面内的两条直线.
异面直线:不同在任何一个平面内
(2)异面直线所成的角
①定义:设 a,b 是两条异面直线,经过空间任一点 O 作
题目千变总有根,梳干理枝究其本
返回
考点一 平面的基本性质及应用 [师生共研过关]
[典例精析]
返回
如图所示,在正方体 ABCD-A1B1C1D1 中,E,F 分
别是 AB 和 AA1 的中点.求证:
(1)E,C,D1,F 四点共面;
(2)CE,D1F,DA 三线共点.
[证明] (1)如图,连接 EF,CD1,A1B. ∵E,F 分别是 AB,AA1 的中点,∴EF∥BA1. 又 A1B∥D1C,∴EF∥CD1, ∴E,C,D1,F 四点共面. (2)∵EF∥CD1,EF<CD1,∴CE 与 D1F 必 相交,设交点为 P,如图所示.则由 P∈CE, CE⊂平面 ABCD,得 P∈平面 ABCD. 同理 P∈平面 ADD1A1.又平面 ABCD∩平面 ADD1A1=DA, ∴P∈直线 DA,∴CE,D1F,DA 三线共点.

高中数学立体几何空间点线面的位置关系讲义及练习

高中数学立体几何空间点线面的位置关系讲义及练习

课 题: 2.1 空间点、直线、平面之间的位置关系一、内容讲解知识点1 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 常见的桌面,黑板面都是平面的局部形象 指出: 平面的两个特征:①_薄厚一致___ ②_无限延伸_。

平面的表示:__1.在每个顶点处写大写字母____2.小写的希腊字母,,αβχ______________。

点的表示:大写字母 点A 点B线的表示:小写英文字母 线l,线a 线b平面的画法:在立体几何中,通常画成水平放置的平行四边形来表示平面;锐角画成45ο, 2倍长。

两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。

图形 符号语言 文字语言(读法)A a A ∈a 点A 在直线a 上A aA ∉a 点A 在直线a 外 Aα A ∈α 点A 在平面α上(内) A αA ∉α 点A 在平面α外 b a A a b A =I直线a,b 交于点A a αa α⊂线a 在面α内 aα a α⊄ 线a 在面α外a Aα a A α=I 直线a 交α于点Al αβ=I平面α交β于线l与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。

知识点2 公理1 :如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:(1)符号语言:____________________________________.(2)应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面。

知识点3 公理2 :如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:(1)符号语言:____________________________________(2)应用:确定两相交平面的交线位置;判定点在直线上 知识点4 公理3 :经过不在同一条直线上的三点,有且只有一个平面 指出:(1)符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 经过一条直线和直线外的一点有且只有一个平面.指出:推论1的符号语言:_____________________________-推论2 经过两条相交直线有且只有一个平面指出:推论2的符号语言:____________________________________推论3 经过两条平行直线有且只有一个平面指出:推论3的符号语言:________________________________三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.五、备选习题1. 画图表示下列由集合符号给出的关系:(1) A ∈α,B ∉α,A ∈l ,B ∈l ; (2) a ⊂α,b ⊂β,a ∥c ,b ∩c =P ,α∩β=c .2. 根据下列条件,画出图形.(1)平面α∩平面β=l ,直线AB ⊂α,AB ∥l ,E ∈AB ,直线EF∩β=F ,F ∉l ;(2)平面α∩平面β=a ,△ABC 的三个顶点满足条件:A ∈a ,B ∈α,B ∉a ,C ∈β,C ∉a .3. 画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.4. 正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,(1) 画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2) 设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.5.已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.6. 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上G H AC D E P空间点、线、面位置关系练习题1、下列命题:其中正确的个数为( )①若直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若a ∥b ,α⊂b ,那么直线a 平行于平面α内的无数条直线;A .1B .2C .3D .02、若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面3、如图,在正方体ABCD —A 1B 1C 1D 1中判断下列位置关系:(1)AD 1所在直线与平面BCC 1的位置关系是 ;(2)平面A 1BC 1与平面ABCD 的位置关系是 ;4、如果直线l 在平面α外,那么直线l 与平面α( )A .没有公共点B .至多有一个公共点C .至少有一个公共点D .有且只有一个公共点5、以下四个命题:其中正确的是( ) A .①② B .②③ C .③④ D .①③ ①三个平面最多可以把空间分成八部分;②若直线⊂a 平面α,直线⊂b 平面β,则“a 与b 相交”等价于“α与β相交”;③若l =⋂βα,直线⊂a 平面α,直线⊂b 平面β,且P b a =⋂,则l P ∈;④若n 条直线中任意两条共面,则它们共面,6、若一条直线上有两点到一个平面的距离相等,那么这条直线和这个平面的位置关系是( )A .在平面内B .相交C .平行D .以上均有可能7、若直线m 不平行于平面α,且α⊄m ,则下列结论中正确的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一一条直线与m 平行D .α内的直线与m 都相交8、在长方体ABCD —A 1B 1C 1D 1的六个表面与六个对角面(面AA 1C 1C ,面BB 1D 1D ,面ABC 1D 1,面ADC 1B 1,面A 1BCD 1及面A 1B 1CD )所在平面中,与棱AA 1平行的平面共有( )A .2个B .3个C .4个D .5个9、两条直线都与一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均有可能10、下列命题:其中正确的个数是( )A .0 B .1 C .2 D .3①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面,11、下列命题中正确的个数是( )A .1 B .2 C .3 D .4①四边相等的四边形是菱形;②若四边形有两个对角都是直角,则这个四边形是圆内接四边形; ③“直线不在平面内”的等价说法是“直线上至多有一个点在平面内”;④若两平面有一条公共直线,则这两个平面的所有公共点都在这条公共直线上;12、若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面13、与两个相交平面的交线平行的直线和这两个平面的位置关系是14、经过平面外两点可作这个平面的平行平面的个数是15、设有不同的直线a ,b 和不同的平面γβα,,,给出下列三个命题:其中正确命题的序号是 ①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β;③若α∥β,β∥γ,则α∥γ。

高考数学第七章立体几何第三节空间点线面之间的位置关系教案高三全册数学教案

高考数学第七章立体几何第三节空间点线面之间的位置关系教案高三全册数学教案

第三节 空间点、线、面之间的位置关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.[小题体验]1.(2019·湖州模拟)已知l,m,n为三条不重合的直线,α,β为两个不同的平面,则( )A.若m⊥α,m⊥β,则α∥βB.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αC.若α∩β=l,m⊂α,m⊥l,则m⊥βD.若m∥n,m⊂α,则n∥α解析:选A 由l,m,n为三条不重合的直线,α,β为两个不同的平面知,在A中,若m⊥α,m⊥β,则由面面平行的判定定理得α∥β,故A正确;在B中,若l⊥m,l⊥n,m⊂α,n⊂α,则l与α相交、平行或l⊂α,故B错误;在C中,若α∩β=l,m⊂α,m⊥l,则m与β相交,故C错误;在D中,若m∥n,m⊂α,则n∥α或n⊂α,故D错误.故选A.2.(教材习题改编)设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.答案:③④1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.3.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.[小题纠偏]1.(2018·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行B.相交或异面C.平行或异面 D.相交、平行或异面解析:选D 依题意,直线b和c的位置关系可能是相交、平行或异面.2.(2019·杭州诊断)设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列四个命题:①若l⊥α,m⊥α,则l∥m;②若m⊂β,n是l在β内的射影,m⊥l,则m⊥n;③若m⊂α,m∥n,则n∥α;④若α⊥γ,β⊥γ,则α∥β.其中真命题有( )A.①②B.①②③C.②③④ D.①③④解析:选A ①可以根据直线与平面垂直的性质定理得出;②可以根据三垂线定理的逆定理得出;对于③,n可以在平面α内,故③不正确;对于④,反例:正方体共顶点的三个平面两两垂直,故④错误.故选A.3.(教材习题改编)下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数为( )A.4 B.3C.2 D.1解析:选D ①中若三点在一条直线上,则不能确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定四个平面;④中这三个公共点可以在这两个平面的交线上.故错误的是①③④,正确的是②.所以正确命题的个数为1.考点一平面的基本性质及应用重点保分型考点——师生共研[典例引领]如图所示,在正方体ABCD­A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明:(1)如图,连接EF,A1B,CD1.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥CD1,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.[由题悟法]1.点线共面问题证明的2种方法(1)纳入平面法:先确定一个平面,再证有关点、线在此平面内;(2)辅助平面法:先证有关点、线确定平面α,再证其余点、线确定平面β,最后证明平面α,β重合.2.证明多线共点问题的2个步骤(1)先证其中两条直线交于一点;(2)再证交点在第三条直线上.证交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.[即时应用]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F,求证:E,F,G,H四点必定共线.证明:因为AB∥CD,所以AB,CD确定一个平面β.又因为AB∩α=E,AB⊂β,所以E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,因为两个平面有公共点,它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线.考点二空间两直线的位置关系重点保分型考点——师生共研[典例引领]如图,在正方体ABCD­A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[由题悟法][即时应用]1.上面例题中正方体ABCD­A1B1C1D1的棱所在直线中与直线AB 是异面直线的有________条.解析:与AB异面的有4条:CC1,DD1,A1D1,B1C1.答案:42.在图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填上所有正确答案的序号)解析:图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.答案:②④考点三异面直线所成的角重点保分型考点——师生共研[典例引领](2018·全国卷Ⅱ)在长方体ABCD­A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.56C.55D.22解析:选C 法一:如图,将长方体ABCD ­A 1B 1C 1D 1补成长方体ABCD ­A 2B 2C 2D 2,使AA 1=A 1A 2,易知AD 1∥B 1C 2,所以∠DB 1C 2或其补角为异面直线AD 1与DB 1所成的角.易知B 1C 2=AD 1=2,DB 1=12+12+32=5,DC 2=DC 2+CC 22=12+232=13.在△DB 1C 2中,由余弦定理,得cos ∠DB 1C 2=DB 21+B 1C 22-DC 222DB 1·B 1C 2=5+4-132×5×2=-55, 所以异面直线AD 1与DB 1所成角的余弦值为55. 法二:以A 1为坐标原点建立空间直角坐标系(如图),则A (0,0,3),D 1(0,1,0),D (0,1,3),B 1(1,0,0), 所以AD 1=(0,1,-3),DB 1=(1,-1,-3),所以cos 〈AD 1,DB 1〉=AD 1·DB 1|AD 1|·|DB 1|=0×1+1×-1+-3×-32×5=55.[由题悟法]1.用平移法求异面直线所成的角的3步骤(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.2.有关平移的3种技巧求异面直线所成的角的方法为平移法,平移的方法一般有3种类型:(1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移.计算异面直线所成的角通常放在三角形中进行.[即时应用]如图所示,在正方体ABCD­A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解:(1)连接B1C,AB1,由ABCD­A1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)连接BD,在正方体ABCD­A1B1C1D1中,AC⊥BD,AC∥A1C1,∵E,F分别为AB,AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.一抓基础,多练小题做到眼疾手快1.(2019·台州一诊)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β解析:选D 由a,b是空间中不同的直线,α,β是不同的平面知,在A中,a∥b,b⊂α,则a∥α或a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,a∥β,b∥β,则α与β相交或平行,故C错误;在D中,α∥β,a⊂α,则由面面平行的性质定理得a∥β,故D正确.故选D.2.(2018·平阳期末)已知a,b是异面直线,直线c∥直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线解析:选C 由平行直线公理可知,若c∥b,则a∥b,与a,b是异面直线矛盾.所以c与b不可能是平行直线.3.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )A.6 2 B.12C.12 2 D.242解析:选A 如图,已知空间四边形ABCD,设对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的45°角,故S四边形EFGH=3×4·sin 45°=62,故选A.4.如图所示,平行六面体ABCD­A1B1C1D1中,既与AB共面又与CC1共面的棱有________条;与AB异面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.与AB异面的棱有CC1,DD1,B1C1,A1D1,共4条.答案:5 45.如图,在三棱锥A­BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理易求得AN=DN=CM=22,∴MK= 2.在Rt△CKN中,CK=22+12= 3.在△CKM中,由余弦定理,得cos∠KMC=22+222-322×2×22=78.答案:78二保高考,全练题型做到高考达标1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n ⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A ∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.(2018·宁波模拟)如图,在正方体ABCD­A1B1C1D1中,M,N 分别是BC1,CD1的中点,则下列说法错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行 D.MN与A1B1平行解析:选D 如图,连接C1D,在△C1DB中,MN∥BD,故C正确;因为CC1⊥平面ABCD,所以CC1⊥BD,所以MN与CC1垂直,故A正确;因为AC⊥BD,MN∥BD,所以MN与AC垂直,故B正确;因为A1B1与BD异面,MN∥BD,所以MN与A1B1不可能平行,故D错误.3.(2018·义乌二模)已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.若α⊥β,m⊥β,则m∥αB.若平面α内有不共线的三点到平面β的距离相等,则α∥βC.若m⊥α,m⊥n,则n∥αD.若m∥n,n⊥α,则m⊥α解析:选D 由m,n为两条不同的直线,α,β为两个不同的平面知,在A中,若α⊥β,m⊥β,则m∥α或m⊂α,故A错误;在B中,若平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故B错误;在C中,若m⊥α,m⊥n,则n∥α或n⊂α,故C错误;在D中,若m∥n,n⊥α,则由线面垂直的判定定理得m⊥α,故D正确.故选D.4.(2019·湖州模拟)如图,在下列四个正方体ABCD­A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是( )解析:选D 如图,在正方体ABCD­A1B1C1D1中,E,F,G,M,N,Q均为所在棱的中点,易知多边形EFMN Q G是一个平面图形,且直线BD1与平面EFMN Q G垂直,结合各选项知,选项A、B、C中的平面与这个平面重合,只有选项D中的平面既不与平面EFMN Q G重合,又不与之平行.故选D.5.(2018·宁波九中一模)正三棱柱ABC­A1B1C1中,若AC=2 AA1,则AB1与CA1所成角的大小为( )A.60°B.105°C.75° D.90°解析:选D 取A1C1的中点D,连接AD,B1D(图略),易证B1D⊥A1C,因为tan∠CA1C1·tan∠ADA1=22×2=1,所以A1C⊥AD,又B1D∩AD=D,所以A1C⊥平面AB1D,又AB1⊂平面AB1D,所以A1C ⊥AB1,故AB1与CA1所成角的大小为90°.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.答案:37.(2018·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是_______(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c 可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB 的另一中点D ,连接C 1D ,AD , 因为C 是圆柱下底面弧AB 的中点,所以AD ∥BC ,所以直线AC 1与AD 所成角等于异面直线AC 1与BC所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD ,因为圆柱的轴截面ABB 1A 1是正方形,所以C 1D =2AD , 所以直线AC 1与AD 所成角的正切值为2,所以异面直线AC 1与BC 所成角的正切值为 2.答案:29.(2018·舟山模拟)在空间四边形ABCD 中,已知AD =1,BC=3,且AD ⊥BC ,对角线BD =132,AC =32,求AC 和BD 所成的角.解:如图,分别取AD ,CD ,AB ,BD 的中点E ,F ,G ,H ,连接EF ,FH ,HG ,GE ,GF .由三角形的中位线定理知,EF ∥AC ,且EF =34,GE ∥BD ,且GE =134,GE 和EF 所成的锐角(或直角)就是AC 和BD 所成的角.同理,GH ∥AD ,HF ∥BC ,GH =12,HF =32.又AD ⊥BC ,所以∠GHF =90°,所以GF 2=GH 2+HF 2=1.在△EFG 中,GE 2+EF 2=1=GF 2,所以∠GEF =90°,即AC 和BD 所成的角为90°.10.如图所示,在三棱锥P ­ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =90°,AB =2,AC =23,PA =2.求: (1)三棱锥P ­ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23, 故三棱锥P ­ABC 的体积为V =13·S △ABC ·PA =13×23×2=433. (2)如图所示,取PB 的中点E ,连接DE ,AE ,则DE ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD所成的角.在△ADE 中,DE =2,AE =2,AD =2,则cos ∠ADE =DE 2+AD 2-AE 22DE ·AD =22+22-22×2×2=34.即异面直线BC 与AD 所成角的余弦值为34. 三上台阶,自主选做志在冲刺名校 1.(2019·绍兴质检)如图,在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,A 1C 与底面ABCD 所成的角为60°.(1)求四棱锥A 1­ABCD 的体积;(2)求异面直线A 1B 与B 1D 1所成角的余弦值.解:(1)∵在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,连接AC ,∴AC =22+22=22,又易知AA 1⊥平面ABCD ,∴∠A 1CA 是A 1C 与底面ABCD 所成的角,即∠A 1CA =60°,∴AA 1=AC ·tan 60°=22×3=26,∵S 正方形ABCD =AB ·BC =2×2=4,∴VA 1­ABCD =13·AA 1·S 正方形ABCD =13×26×4=863. (2)连接BD ,易知BD ∥B 1D 1,∴∠A 1BD 是异面直线A 1B 与B 1D 1所成的角(或所成角的补角).∵BD =22+22=22,A 1D =A 1B =22+262=27,∴cos ∠A 1BD =A 1B 2+BD 2-A 1D 22·A 1B ·BD =28+8-282×27×22=1414, 即异面直线A 1B 与B 1D 1所成角的余弦值是1414. 2.(2018·台州一模)如图所示的圆锥的体积为33π,圆O 的直径AB =2,点C 是AB 的中点,点D 是母线PA 的中点.(1)求该圆锥的侧面积;(2)求异面直线PB 与CD 所成角的大小.解:(1)∵圆锥的体积为33π,圆O 的直径AB =2,圆锥的高为PO ,∴13π×12×PO =33π,解得PO =3,∴PA = 32+12=2,∴该圆锥的侧面积S =πrl =π×1×2=2π.(2)法一:如图,连接DO ,OC .由(1)知,PA =2,OC =r =1.∵点D 是PA 的中点,点O 是AB 的中点,∴DO ∥PB ,且DO =12PB =12PA =1,∴∠CDO 是异面直线PB 与CD 所成的角或其补角.∵PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC ,又点C 是 AB 的中点,∴OC ⊥AB . ∵PO ∩AB =O ,PO ⊂平面PAB ,AB ⊂平面PAB ,∴OC ⊥平面PAB ,又DO ⊂平面PAB ,∴OC ⊥DO ,即∠DOC =90°.在Rt △DOC 中,∵OC =DO =1,∴∠CDO =45°.故异面直线PB 与CD 所成角为45°.法二:连接OC ,易知OC ⊥AB ,又∵PO ⊥平面ABC ,∴PO ,OC ,OB 两两垂直,以O 为坐标原点,OC所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立如图所示的空间直角坐标系.其中A (0,-1,0),P (0,0,3),D ⎝ ⎛⎭⎪⎪⎫0,-12,32,B (0,1,0),C (1,0,0),∴PB =(0,1,-3),CD =⎝⎛⎭⎪⎪⎫-1,-12,32, 设异面直线PB 与CD 所成的角为θ,则cos θ=|PB ·CD ||PB |·|CD |=222=22, ∴θ=45°,∴异面直线PB 与CD 所成角为45°.3.如图所示,三棱柱ABC ­A 1B 1C 1,底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解:(1)法一:如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为侧棱A 1A ⊥底面ABC ,所以侧面A 1ACC 1⊥底面ABC .又因为EC =2FB =2,所以OM ∥FB ∥EC 且OM =12EC =FB , 所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.法二:如图所示,取EC 的中点P ,AC 的中点Q ,连接P Q ,PB ,B Q.因为EC =2FB =2,所以PE 綊BF ,所以P Q ∥AE ,PB ∥EF ,所以P Q ∥平面AFE ,PB ∥平面AEF ,因为PB ∩P Q =P ,PB ,P Q ⊂平面PB Q ,所以平面PB Q ∥平面AEF .又因为B Q ⊂平面PB Q ,所以B Q ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155, 所以BM 与EF 所成的角的余弦值为155.。

立体几何中的所有结论

立体几何中的所有结论

第九章:直线、平面、简单几何体小结一、重要的概念和定理 1.公理和推论公理1.如果一条直线上的两个点在一个平面内,那么这条直线上的所有点都在 这个平面内。

作用:判断直线在平面内的依据。

公理2.如果两个平面有一个公共点,那么它们还有其它公共点,且这些公共点的集合是通过该公共点的一条直线。

作用:判断两个平面相交和共线的依据。

公理3.经过不在同一直线上的三个点,有且只 有一个平面。

推论1.经过一条直线和这条直线外一点,有且 作用:确定平面的依据。

只有一个平面。

推论2.经过两条相交直线,有且只有一个平面。

推论3.经过两条平行直线,有且只有一个平面。

公理4.同平行于一条直线的两条直线互相平行。

作用:判断平行的依据。

2.概念⑴直线与直线 ①异面直线:不在任何一个平面内的两条直线叫做异面直线。

②异面直线所成角:如果a 、b 是异面直线,经过空间任意一点0作a '∥a ,b '∥b ,那么把a '和b '所成的锐角(或直角)叫做异面直线a 和b 所成的角。

如果两条异面直线所成的角是直角,就称这两条异面直线互相垂直。

显然若设异面直线所成角为α,则0<α≤2π。

③异面直线间的距离:和异面直线都垂直相交的直线叫做两条异面直线的公垂线。

两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离。

⑵直线和平面①直线和平面平行:如果一条直线和一个平面没有公共点,那么就说这条直线和这个平面平行。

②直线和平面垂直:如果一条直线和一个平面内的任何一条直线都垂直,那么就说这条直线和这个平面垂直,这条直线叫做平面的垂线,平面叫做直线的垂面。

③射影:自一点P 向平面α引垂线,垂足P ' 叫做点P 在平面α内的正射影(简称射影)。

如果图形F 上的所有点在一平面内射影构成图形F ',则F '叫做图形F 在这个平面内的射影。

过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影。

立体几何共线、共点、共面问题

立体几何共线、共点、共面问题

立体几何中的共点、共线、共面问题一、共线问题一、共线问题 例1. 若ΔABC 所在的平面和ΔA 1B 1C 1所在平面相交,所在平面相交,并且直线并且直线AA 1、BB 1、CC 1相交于一点O ,求证:,求证:(1)AB 和A 1B 1、BC 和B 1C 1、AC 和A 1C 1分别在同一平面内;分别在同一平面内;(2)(2)如果如果AB 和A 1B 1、BC 和B 1C 1、AC 和A 1C 1分别相交,那么交点在同一直线上分别相交,那么交点在同一直线上((如图如图). ).例2. 点点P 、Q 、R 分别在三棱锥A-BCD 的三条侧棱上,且PQ PQ∩∩BC BC==X,QR X,QR∩∩CD CD==Z,PR ∩BD BD==Y.Y.求证:求证:求证:X X 、Y 、Z 三点共线三点共线. .例3. 已知△ABC 三所边所在直在直线分别线分别线分别与平与平面面α交于P 、Q 、R 点三点,求,求证证:P 、Q 、R 三点线共线。

二、共面问题 例4. 直线直线m 、n 分别和平行直线a 、b 、c 都相交,交点为A 、B 、C 、D 、E 、F ,如图,求证:直线a 、b 、c 、m 、n 共面共面. .例5. 证明两两相交而不共点的四条直线在同一平面内证明两两相交而不共点的四条直线在同一平面内证明两两相交而不共点的四条直线在同一平面内. . 已知:如图,直线l 1,l 2,l 3,l 4两两相交,且不共点两两相交,且不共点. . 求证:直线l 1,l 2,l 3,l 4在同一平面内在同一平面内例6. 已知:已知:已知:A A 1、B 1、C 1和A 2、B 2、C 2分别是两条异面直线l 1和l 2上的任意三点,上的任意三点,M M 、N 、R 、T 分别是A 1A 2、B 1A 2、B 1B 2、C 1C 2的中点的中点..求证:求证:M M 、N 、R 、T 四点共面四点共面. .例7. 在空间四边形在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足MB AM =NBCN =QD AQ =PDCP =k. (1)(1)求证:求证:求证:M M 、N 、P 、Q 共面共面. .(2)(2)当对角线当对角线AC AC==a,BD a,BD==b ,且MNPQ 是正方形时,求AC AC、、BD 所成的角及k 的值的值((用a,b 表示表示) )三、共点问题三、共点问题例8. 三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行. .1、(1)证明:∵:∵AA AA 1∩BB 1=O,∴AA 1、BB 1确定平面BAO BAO,,∵A 、A 1、B 、B 1都在平面ABO 内,内,∴AB Ì平面ABO ABO;;A 1B 1Ì平面ABO.同理可证,同理可证,BC BC 和B 1C 1、AC 和A 1C 1分别在同一平面内分别在同一平面内. .(2)(2)分析:欲证两直线的交点在一条直线上,可根据公理分析:欲证两直线的交点在一条直线上,可根据公理2,证明这两条直线分别在两个相交平面内,那么,它们的交点就在这两个平面的交线上两个相交平面内,那么,它们的交点就在这两个平面的交线上. .2证明:如图,设AB AB∩∩A 1B 1=P ;AC AC∩∩A 1C 1=R ;∴ 面面ABC ABC∩面∩面A 1B 1C 1=PR.∵ BC Ì面ABC ABC;;B 1C 1Ì面A 1B 1C 1,且 BC BC∩∩B 1C 1=Q Q ∴∴ Q Q∈∈PR,即 P P、、R 、Q 在同一直线上在同一直线上. .3解析:∵A 、B 、C 是不在同一直线上的三点是不在同一直线上的三点∴过A 、B 、C 有一个平面b又b a Ì=ÇAB P AB 且,.,,l p l P Î=Ç\则设内内又在既在点b a a b.,,,:三点共线同理可证R Q P l lR R l l Q Q \ÎÎ 4解析: 证明若干条直线共面的方法有两类:一是先确定一个平面,证明其余的直线在这个平面里;二是分别确定几个平面,然后证明这些平面重合线在这个平面里;二是分别确定几个平面,然后证明这些平面重合. .证明 ∵∵a ∥b,b,∴过∴过a 、b 可以确定一个平面α.∵A ∈a,a Ìα,∴,∴A A ∈α,同理B ∈a.又∵又∵A A ∈m ,B ∈m,m,∴∴m Ìα.同理可证n Ìα.∵b ∥c,c,∴过∴过b,c 可以确定平面β,同理可证m Ìβ.∵平面α、β都经过相交直线b 、m,∴平面α和平面β重合,即直线a 、b 、c 、m 、n 共面共面. .5、解析:证明几条直线共面的依据是公理3及推论和公理1.1.先证某两线确定平面先证某两线确定平面α,然后证其它直线也在α内.证明:图①中,:图①中,l l 1∩l 2=P ,∴ l 1,l 2确定平面α.又 l 1∩l 3=A,l 2∩l 3=C, C, ∴∴ C,A C,A∈∈α.故 l 3Ìα. 同理同理 l l 4Ìα.∴ l 1,l 2,l 3,l 4共面共面. .图②中,图②中,l l 1,l 2,l 3,l 4的位置关系,同理可证l 1,l 2,l 3,l 4共面共面. .所以结论成立所以结论成立. .6、证明 如图,连结如图,连结MN MN、、NR NR,则,则MN MN∥∥l 1,NR ,NR∥∥l 2,且M 、N 、R 不在同一直线上不在同一直线上((否则,根据三线平行公理,知l 1∥l 2与条件矛盾与条件矛盾).).).∴∴ MN MN、、NR 可确定平面β,连结B 1C 2,取其中点S.S.连连RS RS、、ST ST,则,则RS RS∥∥l 2,又RN RN∥∥l 2,∴,∴ N N N、、R 、S 三点共线三点共线..即有S ∈β,又ST ST∥∥l 1,MN MN∥∥l 1,∴,∴MN MN MN∥∥ST ST,又,又S ∈β,∴,∴ ST ST Ìβ.∴ M 、N 、R 、T 四点共面. 7解析:(1)(1)∵∵ MB AM=QD AQ =k∴ MQ MQ∥∥BD BD,且,且MB AM AM +=1+k k ∴ BD MQ =AB AM =1+k k ∴ MQ MQ==1+k kBD 又 NB CN =PDCP =k ∴ PN PN∥∥BD BD,且,且NB CN CN +=1+k k ∴ BD NP =CB CN =1+k k 从而NP NP==1+k k BD ∴ MQ MQ∥∥NP NP,,MQ MQ,,NP 共面,从而M 、N 、P 、Q 四点共面四点共面. .(2)(2)∵∵ MA BM =k1,NC BN =k 1 ∴ MA BM=NC BN =k 1,MA BM BM +=11+k∴ MN MN∥∥AC AC,又,又NP NP∥∥BD.∴ MN 与NP 所成的角等于AC 与BD 所成的角所成的角. .∵ MNPQ 是正方形,∴是正方形,∴ ∠∠MNP MNP==9090°°∴ AC 与BD 所成的角为9090°,°,°,又AC AC==a ,BD BD==b ,AC MN =BA BM =11+k ∴ MN MN==11+k a又 MQ MQ==11+k b,b,且且MQ MQ==MN MN,, 1+k k b =11+k a ,即k =b a .说明:公理4是证明空间两直线平行的基本出发点是证明空间两直线平行的基本出发点. .已知:平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面α=c . 求证:a 、b 、c 相交于同一点,或a ∥b ∥c .证明:∵α∩β=a ,β∩γ=b∴a 、b Ìβ∴a 、b 相交或a ∥b .(1)a 、b 相交时,不妨设a ∩b =P ,即P ∈a ,P ∈b而a 、b Ìβ,a Ìα∴P ∈β,P ∈α,故P 为α和β的公共点的公共点又∵α∩γ=c由公理2知P ∈c∴a 、b 、c 都经过点P ,即a 、b 、c 三线共点三线共点. .(2)(2)当当a ∥b 时∵∩=c且aÌ,aË∴a∥c且a∥b∴a∥b∥c两两平行. .故a、b、c两两平行相交于一点或两两平行. . 由此可知a、b、c相交于一点或两两平行。

立体几何证明四点共面的方法

立体几何证明四点共面的方法

要证明四点共面,可以使用以下几何方法之一:
1. 平面法向量法:
-对于给定的四个点,可以计算出它们所在平面的法向量。

-如果这四个点在同一个平面上,则它们所在平面的法向量应该相等或成比例。

-因此,通过计算并比较这四个点所在平面的法向量,可以确定它们是否共面。

2. 三角形法:
-选择任意三个点,并构建以这三个点为顶点的三角形。

-然后,将第四个点与这个三角形的三个顶点连接起来,形成一个新的三角形。

-如果这个新的三角形是一个平面内的三角形(即没有形成扭曲或重叠),则可以得出结论这四个点共面。

3. 向量法:
-将每个点表示为一个坐标向量。

-选择其中三个点,构建两个向量分别连接这三个点。

-计算这两个向量的叉乘。

-如果这两个向量的叉乘为零向量(长度为零),则可以推断这四个点共面。

以上方法中的任何一个都可以用于证明四个点是否共面。

若要确保结果的准确性,请根据具体情况选择合适的方法并进行计算。

高考真题中四点共面的几种证明方法

高考真题中四点共面的几种证明方法

高考真题中四点共面的几种证明方法
发布时间:2021-04-30T08:04:30.613Z 来源:《当代教育家》2021年6期作者:周少云[导读] 在教材中,给出了四点共面的一个证明方法,若空间P、A、B、C四点,且A、B、C三点不共线,则对于空间的任意一点O,存在实数x、y、z,使得且x+y+z=1,则P、A、B、C四点共面。

这个结论对于解决空间四点共面问题提供了很便捷的方法。

但是我们在解题的过程中也会应用其他的证明方法,现在先来看一下证明四点共面的几种方法,如2020年高考数学(全国三卷)的立体几何题。

周少云
贵州省遵义市第一中学 563000
在教材中,给出了四点共面的一个证明方法,若空间P、A、B、C四点,且A、B、C三点不共线,则对于空间的任意一点O,存在实数x、y、z,使得且x+y+z=1,则P、A、B、C四点共面。

这个结论对于解决空间四点共面问题提供了很便捷的方法。

但是我们在解题的过程中也会应用其他的证明方法,现在先来看一下证明四点共面的几种方法,如2020年高考数学(全国三卷)的立体几何题。

如图,在长方体中,点E,F分别在棱D,B上,且,.(1)证明:点在平面AEF内;
方法三:(根据条件只要证明即可证明)
取EF中点G,连接
在中,
平面AEF,设法向量为,
设法向量为
方法六:由题意得
结论:
这一方法就是我们课本的基本方法,若空间P、A、B、C四点,且A、B、C三点不共线,则对于空间的任意一点O,存在实数x、y、z,使得且x+y+z=1,则P、A、B、C四点共面。

2020版高考数学一轮复习第八章立体几何第3讲空间点、直线、平面之间的位置关系教案理(含解析)新人教A版

2020版高考数学一轮复习第八章立体几何第3讲空间点、直线、平面之间的位置关系教案理(含解析)新人教A版

第3讲 空间点、直线、平面之间的位置关系基础知识整合1.平面的基本性质公理1:如果一条直线上的□01两点在一个平面内,那么这条直线就在此平面内. 公理2:经过□02不在同一直线上的三点,有且只有一个平面. 公理3:如果不重合的两个平面有一个公共点,那么它们有□03且只有一条过□04该点的公共直线.2.用集合语言描述点、线、面间的关系 (1)点与平面的位置关系:点A 在平面α内记作□05A ∈α,点A 不在平面α内记作□06A ∉α. (2)点与线的位置关系点A 在直线l 上记作□07A ∈l ,点A 不在直线l 上,记作□08A ∉l . (3)线面的位置关系:直线l 在平面α内记作□09l ⊂α,直线l 不在平面α内记作□10l ⊄α.(4)平面α与平面β相交于直线a ,记作□11α∩β=a . (5)直线l 与平面α相交于点A ,记作□12l ∩α=A . (6)直线a 与直线b 相交于点A ,记作□13a ∩b =A . 3.直线与直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎨⎧□14平行.□15相交.异面直线:不同在□16任何一个平面内的两条直线.(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的□17锐角或直角叫做异面直线a ,b 所成的角(或夹角). ②范围:□18⎝ ⎛⎦⎥⎤0,π2.1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面. 2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.1.(2019·银川模拟)已知m,n是两条不同的直线,α,β是两个不同的平面,若m ⊥α,n⊥β,且β⊥α,则下列结论一定正确的是( )A.m⊥n B.m∥nC.m与n相交D.m与n异面答案 A解析若β⊥α,m⊥α,则直线m与平面β的位置关系有两种:m⊂β或m∥β.当m⊂β时,又n⊥β,所以m⊥n;当m∥β时,又n⊥β,所以m⊥n.故选A.2.(2019·福州质检)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p 是q的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件,故选A.3.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD⊥BCD.若AB=AC,DB=DC,则AD=BC答案 D解析A,B,C,D构成的四边形可能为平面四边形,也可能为空间四边形,D不成立.4.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( ) A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案 C解析由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾,D错误.故选C.5.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是________(写出所有错误命题的序号).答案②③④解析由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错误.故填②③④.6.(2019·河南南阳模拟)如图,在四棱锥P-ABCD中,O为CD上的动点,V P-OAB恒为定值,且△PDC是正三角形,则直线PD与直线AB所成角的大小是________.答案60°解析因为V P-OAB为定值,所以S△ABO为定值,即O到线AB的距离为定值.因为O为CD上的动点,所以CD∥AB.所以∠PDC即为异面直线PD与AB所成角.因为△PDC为等边三角形,所以∠PDC=60°.所以PD与AB所成角为60°.核心考向突破考向一平面基本性质的应用例1 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图所示,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1.∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.触类旁通共面、共线、共点问题的证明方法(1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.提醒:点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.即时训练 1. 如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E ,F ,G ,H 四点共面; (2)设EG 与FH 交于点P . 求证:P ,A ,C 三点共线.证明 (1)∵E ,F 分别为AB ,AD 的中点, ∴EF ∥BD . 在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH ,∴E ,F ,G ,H 四点共面. (2)由(1)知EF 綊12BD ,GH 綊23BD .∴四边形FEGH 为梯形,∴GE 与HF 交于一点, 设EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC , ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点, 又平面ABC ∩平面ADC =AC , ∴P ∈AC ,∴P ,A ,C 三点共线. 考向二 空间两条直线的位置关系角度1 两条直线位置关系的判定例2 (1)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4即不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 构造如图所示的正方体ABCD -A 1B 1C 1D 1,取l 1为AD ,l 2为AA 1,l 3为A 1B 1,当取l 4为B 1C 1时,l 1∥l 4,当取l 4为BB 1时,l 1⊥l 4,故排除A ,B ,C ,选D.(2)(2019·贵州六盘水模拟)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )A.垂直B.相交C.异面D.平行答案 D解析∵α是一个平面,m,n是两条直线,A是一个点,m⊄α,n⊂α,A∈m,A∈α,∴n在平面α内,m与平面α相交,A是m和平面α的交点,∴m和n异面或相交(垂直是相交的特殊情况),一定不平行.故选D.角度2异面直线的判定例3 (2019·许昌模拟)如下图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.答案②④解析①中HG∥MN;③中GM∥HN且GM≠HN,所以直线HG与MN必相交.触类旁通空间两条直线位置关系的判定方法即时训练 2.(2019·太原期末)已知平面α和直线l,则α内至少有一条直线与l( )A.平行B.相交C.垂直D.异面答案 C解析直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错误;l⊂α时,在平面α内不存在与l异面的直线,∴D错误;l∥α时,在平面α内不存在与l 相交的直线,∴B错误.无论哪种情形在平面α内都有无数条直线与l垂直.故选C.3.如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论序号都填上).答案③④解析 因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.考向三 异面直线所成的角例4 (1)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25 C.35 D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1或其补角即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,则A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.则异面直线A 1B 与AD 1所成角的余弦值为45.故选D.(2)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是________.答案 60°解析 如图所示,连接A 1B ,可知A 1B ∥E 1D ,∴∠A 1BC 1是异面直线E 1D 和BC 1所成的角.连接A 1C 1,可求得A 1C 1=C 1B =BA 1=3, ∴∠A 1BC 1=60°. 触类旁通用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角.二证:证明作出的角是异面直线所成的角.三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.即时训练 4. 如图,在三棱锥D -ABC 中,AC =BD ,且AC ⊥BD ,E ,F 分别是棱DC ,AB 的中点,则EF 和AC 所成的角等于( )A .30°B .45°C .60°D .90°答案 B解析 如图所示,取BC 的中点G ,连接FG ,EG .∵E ,F 分别为CD ,AB 的中点, ∴FG ∥AC ,EG ∥BD , 且FG =12AC ,EG =12BD .∴∠EFG 为EF 与AC 所成的角. ∵AC =BD ,∴FG =EG . ∵AC ⊥BD ,∴FG ⊥EG , ∴∠FGE =90°,∴△EFG 为等腰直角三角形,∴∠EFG =45°,即EF 与AC 所成的角为45°.故选B.5.在三棱锥S -ACB 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则SC 与AB 所成角的余弦值为________.答案1717解析 如图所示,取BC 的中点E ,分别在平面ABC 内作DE ∥AB ,在平面SBC 内作EF ∥SC ,则异面直线SC 与AB 所成的角为∠FED ,过F 作FG ⊥AB ,连接DG ,则△DFG 为直角三角形.由题知AC =2,BC =13,SB =29可得DE =172,EF =2,DF =52,在△DEF 中,由余弦定理可得cos ∠FED =DE 2+EF 2-DF 22DE ·EF =1717.(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.33答案 C解析 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos60°=3,所以BD =3,所以B 1D 1= 3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C. 答题启示(1)当异面直线所成的角不易作出或难于计算时,可考虑使用补形法.(2)补形法的目的是平移某一条直线,使之与另一条相交,常见的补形方法是对称补形. 对点训练(2019·银川模拟)如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =12,BC =3,AA 1=4,N 在A 1B 1上,且B 1N =4,则异面直线BD 1与C 1N 所成角的余弦值为( )A.25 B.35 C.45 D .-35答案 B解析 补一个与原长方体相同的,并与原长方体有公共面BC 1的长方体B 1F , 如图所示.连接C 1E ,NE ,则C 1E ∥BD 1,于是∠NC 1E 即为异面直线BD 1与C 1N 所成角(或其补角).在△NC 1E 中,根据已知条件可求C 1N =5,C 1E =13,EN =E 1N 2+EE 21=417.由余弦定理,得cos ∠NC 1E =C 1N 2+C 1E 2-EN 22C 1N ×C 1E =-35.所以BD 1与C 1N 所成角的余弦值为35.。

立体几何常见结论

立体几何常见结论

立体几何常见结论1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上.(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3)。

证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2。

空间直线。

(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点。

⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等。

(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线。

(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图)。

(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内。

立体几何证明题专题(教师版)

立体几何证明题专题(教师版)

立体几何证明题考点1:点线面的位置关系及平面的性质例1.下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________.【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示.在正方体ABCD—A′B′C′D′中,直线BB′⊥AB,BB′⊥CB,但AB与CB不平行,∴⑥错.AB∥CD,BB′∩AB=B,但BB′与CD不相交,∴⑦错.如图(2)所示,AB=CD,BC=AD,四边形ABCD不是平行四边形,故⑧也错.【答案】④2.若P是两条异面直线l、m外的任意一点,则()A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面答案B解析对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾.对于选项B,过点P与l、m都垂直的直线,即过P且与l、m的公垂线段平行的那一条直线.对于选项C,过点P与l、m都相交的直线有一条或零条.对于选项D,过点P与l、m都异面的直线可能有无数条.3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案C解析若c与a,b都不相交,则c与a,b都平行,根据公理4,则a∥b,与a,b异面矛盾.考点2:共点、共线、共面问题例1.下列各图是正方体和正四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的图形是【解析】①在A中易证PS∥QR,∴P、Q、R、S四点共面.②在C中易证PQ∥SR,∴P、Q、R、S四点共面.③在D中,∵QR⊂平面ABC,PS∩面ABC=P且P∉QR,∴直线PS与QR为异面直线.∴P、Q、R、S四点不共面.④在B中P、Q、R、S四点共面,证明如下:取BC中点N,可证PS、NR交于直线B1C1上一点,∴P、N、R、S四点共面,设为α.可证PS∥QN,∴P、Q、N、S四点共面,设为β.∵α、β都经过P、N、S三点,∴α与β重合,∴P、Q、R、S四点共面.【答案】D2.空间四点中,三点共线是这四点共面的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A3.下面三条直线一定共面的是()A .a 、b 、c 两两平行B .a 、b 、c 两两相交C .a ∥b ,c 与a 、b 均相交D .a 、b 、c 两两垂直 答案 C4.已知三个平面两两相交且有三条交线,试证三条交线互相平行或者相交于一点. 【解析】 设α∩β=a ,β∩γ=b ,γ∩α=c ,由a ⊂β,b ⊂β,则a ∩b =O ,如图(1), 或a ∥b ,如图(2),若a ∩b =O ,O ∈a ,a ⊂α,则O ∈α,O ∈b ,b ⊂γ,则O ∈γ, 又γ∩α=c ,因此O ∈c ;若a ∥b ,a ⊄γ,b ⊂γ,则a ∥γ,又a ⊂α,α∩γ=c ,则a ∥c . 因此三条交线相交于一点或互相平行.5.如图所示,已知空间四边形ABCD 中,E 、H 分别是边AB ,AD 的中点,F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23.(1)求证:三条直线EF ,GH ,AC 交于一点.(2)若在本题中,AE EB =CF FB =2,AH HD =CGGD =3,其他条件不变.求证:EH 、FG 、BD 三线共点.【解析】 (1)∵E ,H 分别是AB ,AD 的中点, ∴由中位线定理可知,EH 綊12BD . 又∵CF CB =CG CD =23,∴在△CBD 中,FG ∥BD ,且FG =23BD . ∴由公理4知,EH ∥FG ,且EH <FG .∴四边形EFGH 是梯形,EH 、FG 为上、下两底. ∴两腰EF 、GH 所在直线必相交于一点P . ∵P ∈直线EF ,EF ⊂平面ABC , ∴P ∈平面ABC .同理可得P ∈平面ADC . ∴P 在平面ABC 和平面ADC 的交线上.又∵面ABC ∩面ADC =AC , ∴P ∈直线AC .故EF 、GH 、AC 三直线交于一点. (2)∵AE EB =CFFB =2, ∴EF ∥AC .又AH HD =CGGD =3,∴HG ∥AC ,∴EF ∥HG ,且EF >HG . ∴四边形EFGH 为梯形. 设EH 与FG 交于点P , 则P ∈平面ABD ,P ∈平面BCD . ∴P 在两平面的交线BD 上. ∴EH 、FG 、BD 三线共点.考点3:异面直线的夹角1.在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点.求BD 1与CE 所成角的余弦值.【解析】 连接AD 1,A 1D 交点为M ,连接ME ,MC ,则∠MEC (或其补角)即为异面直线BD 1与CE 所成的角,设AB =1,CE =52,ME =12BD 1=32,CM 2=CD 2+DM 2=32.在△MEC 中,cos ∠MEC=CE 2+ME 2-CM 22CE ·ME=1515,因此异面直线BD 1与CE 所成角的余弦值为1515.2.如图,若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的正切值是______.答案 53.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所成角的余弦值为()答案C解析连接BA1,则CD1∥BA1,于是∠A1BE就是异面直线BE与CD1所成的角(或补角),设AB=1,则BE=2,BA1=5,A1E=1,在△A1BE中,cos∠A1BE=5+2-125·2=31010,选C.4.已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为________.【解析】取A1B1的中点F,连接EF,FA,则有EF∥B1C1∥BC,∠AEF即是直线AE与BC所成的角或其补角.设正方体ABCD—A1B1C1D1的棱长为2a,则有EF=2a,AF=2a2+a2=5a,AE=2a2+2a2+a2=3a.在△AEF中,cos∠AEF=AE2+EF2-AF22AE·EF=9a2+4a2-5a22×3a×2a=23.因此,异面直线AE与BC所成的角的余弦值是23.【答案】2 3考点4:直线与平面平行的判定与性质1.下列命题中正确的是________.①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行;⑤若l与平面α平行,则l与α内任何一条直线都没有公共点;⑥平行于同一平面的两直线可以相交.答案⑤⑥解析a∩α=A时,a不在α内,∴①错;直线l与α相交时,l上有无数个点不在α内,故②错;l ∥α时,α内的直线与l平行或异面,故③错;a∥b,b∥α时,a∥α或a⊂α,故④错;l∥α,则l与α无公共点,∴l与α内任何一条直线都无公共点,⑤正确;如图,长方体中,A1C1与B1D1都与平面ABCD 平行,∴⑥正确.2.给出下列四个命题:①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行. 其中正确命题的个数是________个. 答案 1解析 命题①错,需说明这条直线在平面外. 命题②错,需说明这条直线在平面外. 命题③正确,由线面平行的判定定理可知. 命题④错,需说明另一条直线在平面外. 3.已知不重合的直线a ,b 和平面α, ①若a ∥α,b ⊂α,则a ∥b ; ②若a ∥α,b ∥α,则a ∥b ; ③若a ∥b ,b ⊂α,则a ∥α; ④若a ∥b ,a ⊂α,则b ∥α或b ⊂α, 上面命题中正确的是________(填序号). 答案 ④解析 ①若a ∥α,b ⊂α,则a ,b 平行或异面;②若a ∥α,b ∥α,则a ,b平行、相交、异面都有可能;③若a ∥b ,b ⊂α,a ∥α或a ⊂α.4.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ .求证:PQ ∥平面BCE .【证明】 方法一 如图所示. 作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N , 连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD . 又AP =DQ ,∴PE =QB .又PM ∥AB ∥QN ,∴PM AB =PE AE =QB BD ,QN DC =BQ BD . ∴PM AB =QN DC .∴PM 綊QN ,即四边形PMNQ 为平行四边形. ∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE .方法二 如图,连接AQ ,并延长交BC 延长线于K ,连接EK . ∵AE =BD ,AP =DQ , ∴PE =BQ ,∴AP PE =DQBQ .又AD ∥BK ,∴DQ BQ =AQ QK ,∴AP PE =AQQK ,∴PQ ∥EK . 又PQ ⊄平面BCE ,EK ⊂平面BCE , ∴PQ ∥平面BCE .方法三 如图,在平面ABEF 内,过点P 作PM ∥BE ,交AB 于点M ,连接QM .∴PM ∥平面BCE .又∵平面ABEF ∩平面BCE =BE , ∴PM ∥BE ,∴AP PE =AMMB .又AE =BD ,AP =DQ ,∴PE =BQ . ∴AP PE =DQ BQ ,∴AM MB =DQ QB . ∴MQ ∥AD .又AD ∥BC ,∴MQ ∥BC ,∴MQ ∥平面BCE .又PM ∩MQ =M , ∴平面PMQ ∥平面BCE .又PQ ⊂平面PMQ , ∴PQ ∥平面BCE .5.一个多面体的直观图和三视图如图所示(其中M ,N 分别是AF ,BC 中点).<1>求证:MN ∥平面CDEF ; <2>求多面体A —CDEF 的体积.解析 (1)证明 由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2, DE =CF =22,∴∠CBF =90°.取BF 中点G ,连接MG ,NG ,由M ,N 分别是AF ,BC 中点,可知:NG ∥CF ,MG ∥EF .又MG ∩NG =G ,CF ∩EF =F ,∴平面MNG ∥平面CDEF ,∴MN ∥平面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE —BCF 为直三棱柱,∴AH ⊥平面CDEF ,且AH =2.∴V A -CDEF =13S 四边形CDEF ·AH =13×2×22×2=83.6.若P 为异面直线a ,b 外一点,则过P 且与a ,b 均平行的平面A.不存在B.有且只有一个C.可以有两个D.有无数多个答案B7.如图,在正方体ABCD—A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.【证明】方法一如右图,作ME∥BC,交BB1于E;作NF∥AD,交AB于F,连接EF,则EF⊂平面AA1B1B.∵BD=B1C,DN=CM,∴B1M=BN.∵MEBC=B1MB1C,NFAD=BNBD,∴MEBC=BNBD=NFAD,∴ME=NF.又ME∥BC∥AD∥NF,∴MEFN为平行四边形.∴NM∥EF.又∵MN⊄面AA1B1B,∴MN∥平面AA1B1B.方法二如图,连接CN并延长交BA的延长线于点P,连接B1P,则B1P⊂平面AA1B1B.∵△NDC∽△NBP,∴DNNB=CNNP.又CM=DN,B1C=BD,CMMB1=DNNB=CNNP,∴MN∥B1P.∵B1P⊂平面AA1B1B,∴MN∥平面AA1B1B.方法三如右图,作MP∥BB1,交BC于点P,连接NP.∵MP∥BB1,∴CMMB1=CPPB.∵BD=B1C,DN=CM,∴B1M=BN.∵CMMB1=DNNB,∴CPPB=DNNB,∴NP∥DC∥AB.∴平面MNP∥平面AA1B1B.∴MN∥平面AA1B1B.8.如图所示,四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(1)求证:PA∥平面EFG;(2)求三棱锥P—EFG的体积.解析(1)证明如图,取AD的中点H,连接GH,FH.∵E,F分别为PC,PD的中点,∴EF∥CD.∵G,H分别是BC,AD的中点,∴GH∥CD.∴EF∥GH,∴E,F,H,G四点共面.∵F,H分别为DP,DA的中点,∴PA∥FH.∵PA⊄平面EFG,FH⊂平面EFG,∴PA∥平面EFG.(2)∵PD⊥平面ABCD,CG⊂平面ABCD,∴PD⊥CG.又∵CG⊥CD,CD∩PD=D,∴GC⊥平面PCD.∵PF =12PD =1,EF =12CD =1,∴S △PEF =12EF ·PF =12. 又GC =12BC =1,∴V P —EFG =V G —PEF =13×12×1=16.9.如图所示,a ,b 是异面直线,A 、C 与B 、D 分别是a ,b 上的两点,直线a ∥平面α,直线b ∥平面α,AB ∩α=M ,CD ∩α=N ,求证:若AM =BM ,则CN =DN .【证明】 连接AD 交平面α于E 点,并连接ME ,NE . ∵b ∥α,ME ⊂平面ABD ,平面α∩面ABD =ME , ∴ME ∥BD .又在△ABD 中AM =MB , ∴AE =ED .即E 是AD 的中点.又a ∥α,EN ⊂平面ACD ,平面α∩面ADC =EN , ∴EN ∥AC ,而E 是AD 的中点. ∴N 必是CD 的中点,∴CN =DN .10.如图,在三棱柱ABC -A 1B 1C 1中,E 为AC 上一点,若AB 1∥平面C 1EB ,求:AE ∶EC .【解析】 连接B 1C 交BC 1于点F , 则F 为B 1C 中点. ∵AB 1∥平面C 1EB ,AB 1⊂平面AB 1C ,且平面C 1EB ∩平面AB 1C =EF . ∴AB 1∥EF ,∴E 为AC 中点. ∴AE ∶EC =1∶1. 【答案】 1∶1考点5:面面平行的判定及性质1.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥β 答案 B解析 因m ⊂α,l 1⊂β,若α∥β,则有m ∥β且l 1∥α,故α∥β的一个必要条件是m ∥β且l 1∥α,排除A.因m ,n ⊂α,l 1,l 2⊂β且l 1与l 2相交,若m ∥l 1且n ∥l 2,因l 1与l 2相交,故m 与n 也相交,∴α∥β;若α∥β,则直线m 与直线l 1可能为异面直线,故α∥β的一个充分而不必要条件是m ∥l 1且n ∥l 2,应选B.2.棱长为1的正方体ABCD —A 1B 1C 1D 1中,点P ,Q ,R 分别是面A 1B 1C 1D 1,BCC 1B 1,ABB 1A 1的中心,给出下列结论:①PR 与BQ 是异面直线;②RQ ⊥平面BCC 1B 1;③平面PQR ∥平面D 1AC ;④过P ,Q ,R 的平面截该正方体所得截面是边长为2的等边三角形. 以上结论正确的是________.(写出所有正确结论的序号)答案 ③④解析 由于PR 是△A 1BC 1的中位线,所以PR ∥BQ ,故①不正确;由于RQ ∥A 1C 1,而A 1C 1不垂直于面BCC 1B 1,所以②不正确;由于PR ∥BC 1∥D 1A ,PQ ∥A 1B ∥D 1C ,所以③正确;由于△A 1BC 1是边长为2的正三角形,所以④正确.故填③④.3.已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC的重心.<1>求证:平面G 1G 2G 3∥平面ABC ;<2>求S △G 1G 2G 3∶S △ABC .【解析】 (1)如图,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F .连接DE 、EF 、FD .则有PG 1∶PD =2∶3,PG 2∶PE =2∶3.∴G 1G 2∥DE .又G 1G 2不在平面ABC 内,∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC .又因为G 1G 2∩G 2G 3=G 2,∴平面G 1G 2G 3∥平面ABC .(2)由(1)知PG 1PD =PG 2PE =23,∴G 1G 2=23DE .又DE =12AC ,∴G 1G 2=13AC .同理G 2G 3=13AB ,G 1G 3=13BC .∴△G 1G 2G 3∽△CAB ,其相似比为1∶3.∴S △G 1G 2G 3∶S △ABC =1∶9.4.给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题为________.答案 ③解析 ①中当α与β不平行时,也能存在符合题意的l 、m .②中l 与m 也可能异面.③中⎭⎪⎬⎪⎫l ∥γl ⊂ββ∩γ=m ⇒l ∥m , 同理l ∥n ,则m ∥n ,正确.5.如图所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点.求证:平面AMN ∥平面EFDB .【证明】 连接MF ,∵M 、F 是A 1B 1、C 1D 1的中点,四边形A 1B 1C 1D 1为正方形,∴MF A 1D 1.又A 1D 1 AD ,∴MF AD .∴四边形AMFD 是平行四边形.∴AM ∥DF .∵DF ⊂平面EFDB ,AM ⊄平面EFDB ,∴AM ∥平面EFDB ,同理AN ∥平面EFDB .又AM 、AN ⊂平面ANM ,AM ∩AN =A ,∴平面AMN ∥平面EFDB .6.在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1C ,B 1C 1,C 1D 1的中点,求证:平面MNP ∥平面A 1BD . 证明 方法一如图(1)所示,连接B 1D 1.∵P ,N 分别是D 1C 1,B 1C 1的中点,∴PN ∥B 1D 1.又B1D1∥BD,∴PN∥BD.又PN⊄平面A1BD,∴PN∥平面A1BD.同理:MN∥平面A1BD.又PN∩MN=N,∴平面PMN∥平面A1BD.方法二如图(2)所示,连接AC1,AC,∵ABCD-A1B1C1D1为正方体,∴AC⊥BD.又CC1⊥平面ABCD,∴AC为AC1在平面ABCD上的射影,∴AC1⊥BD.同理可证AC1⊥A1B,∴AC1⊥平面A1BD.同理可证AC1⊥平面PMN.∴平面PMN∥平面A1BD.7.如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E、F分别在线段AB,CD上,且AE∶EB=CF∶FD.求证:EF∥β.【证明】①当AB,CD在同一平面内时,由α∥β,α∩平面ABDC=AC,β∩平面ABDC=BD,∴AC∥BD.∵AE∶EB=CF∶FD,∴EF∥BD.又EF⊄β,BD⊂β,∴EF∥β.②当AB与CD异面时,设平面ACD∩β=DH,且DH=AC,∵α∥β,α∩平面ACDH=AC,∴AC∥DH.∴四边形ACDH是平行四边形.在AH上取一点G,使AG∶GH=CF∶FD,又∵AE∶EB=CF∶FD,∴GF∥HD,EG∥BH.又EG ∩GF =G ,∴平面EFG ∥平面β.∵EF ⊂平面EFG ,∴EF ∥β.综上,EF ∥β.8.已知:如图,斜三棱柱ABC —A 1B 1C 1中,点D 、D 1分别为AC 、A 1C 1上的点.(1)当A 1D 1D 1C 1的值等于何值时,BC 1∥平面AB 1D 1; (2)若平面BC 1D ∥平面AB 1D 1,求AD DC 的值.【解析】 (1)如图,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1,连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A 1ABB 1为平行四边形,所以点O 为A 1B的中点.在△A 1BC 1中,点O 、D 1分别为A 1B 、A 1C 1的中点,∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1,∴BC 1∥平面AB 1D 1.∴A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由已知,平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BDC 1=BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,因此BC 1∥D 1O ,同理AD 1∥DC 1.∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD . 又∵A 1O OB =1,∴DC AD =1,即AD DC =1.考点6:线线、线面垂直1.设α、β是两个不同的平面,a 、b 是两条不同的直线,给出下列四个命题,其中真命题是A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,b ∥β,a ∥b ,则α∥βC .若a ⊥α,b ⊥β,a ⊥b ,则α⊥βD .若a 、b 在平面α内的射影互相垂直,则a ⊥b答案 C解析 与同一平面平行的两条直线不一定平行,所以A 错误;与两条平行直线分别平行的两个平面未必平行,所以B 错误;如图(1),设OA ∥a ,OB ∥b ,直线OA 、OB 确定的平面分别交α、β于AC 、BC ,则OA ⊥AC ,OB ⊥BC ,所以四边形OACB 为矩形,∠ACB 为二面角α-l -β的平面角,所以α⊥β,C 正确;如图(2),直线a 、b 在平面α内的射影分别为m 、n ,显然m ⊥n ,但a 、b 不垂直,所以D 错误,故选C.2.“直线l 垂直于平面α内的无数条直线”是“l ⊥α”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 B3.若m ,n 表示直线,α表示平面,则下列命题中,正确命题的个数为① ⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α ② ⎭⎪⎬⎪⎫n ⊥αm ⊥α⇒m ∥n③ ⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n ④ ⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥αA .1B .2C .3D .4答案 C解析 ①②③正确,④错误.4.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC=60°,PA =AB =BC ,E 是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【证明】 (1)∵PA ⊥底面ABCD ,∴CD ⊥PA .又CD ⊥AC ,PA ∩AC =A ,故CD ⊥平面PAC ,AE ⊂平面PAC .故CD ⊥AE .(2)∵PA =AB =BC ,∠ABC =60°,故PA =AC .∵E 是PC 的中点,故AE ⊥PC .由(1)知CD ⊥AE ,从而AE ⊥平面PCD ,故AE ⊥PD .易知BA ⊥PD ,故PD ⊥平面ABE .5.设l 是直线,α,β是两个不同的平面( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若l⊥α,α⊥β,则l⊥βD.若α⊥β,l∥α,则l⊥β答案B解析A项中由l∥α,l∥β不能确定α与β的位置关系,C项中由α⊥β,l⊥α可推出l∥β或l⊂β,D项由α⊥β,l∥α不能确定l与β的位置关系.6.设b,c表示两条直线,α,β表示两个平面,下列命题中真命题是A.若b⊂α,c∥α,则b∥cB.若b⊂α,b∥c,则c∥αC.若c∥α,c⊥β,则α⊥βD.若c∥α,α⊥β,则c⊥β答案C解析如果一条直线平行于一个平面,它不是与平面内的所有直线平行,只有部分平行,故A错;若一条直线与平面内的直线平行,该直线不一定与该平面平行,该直线可能是该平面内的直线,故B 错;如果一个平面与另一个平面的一条垂线平行,那么这两个平面垂直,这是一个真命题,故C对;对D来讲若c∥α,α⊥β,则c与β的位置关系不定,故选C.7. 在三棱柱ABC—A1B1C1中,AA1⊥平面ABC,AC=BC=AA1=2,∠ACB=90°,E为BB1的中点,∠A1DE=90°,求证:CD⊥平面A1ABB1.证明连接A1E,EC,∵AC=BC=2,∠ACB=90°,∴AB=2 2.设AD=x,则BD=22-x.∴A1D2=4+x2,DE2=1+(22-x)2,A1E2=(22)2+1.∵∠A1DE=90°,∴A1D2+DE2=A1E2.∴x= 2.∴D为AB的中点.∴CD⊥AB.又AA1⊥CD,且AA1∩AB=A,∴CD⊥平面A1ABB1.8.如图,长方体ABCD—A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.<1>证明:BD⊥EC1;<2>如果AB=2,AE=2,OE⊥EC1,求AA1的长.【解析】 (1)如图,连接AC ,A 1C 1,AC 与BD 相交于点O .由底面是正方形知,BD ⊥AC .因为AA 1⊥平面ABCD ,BD ⊂平面ABCD ,所以AA 1⊥BD .又由AA 1∩AC =A ,所以BD ⊥平面AA 1C 1C .再由EC 1⊂平面AA 1C 1C 知,BD ⊥EC 1.(2)设AA 1的长为h ,连接OC 1.在Rt △OAE 中,AE =2,AO =2, 故OE 2=(2)2+(2)2=4.在Rt △EA 1C 1中,A 1E =h -2,A 1C 1=2 2.故EC 21=(h -2)2+(22)2.在Rt △OCC 1中,OC =2,CC 1=h ,OC 21=h 2+(2)2.因为OE ⊥EC 1,所以OE 2+EC 21=OC 21.即4+(h -2)2+(22)2=h 2+(2)2,解得h =3 2.所以AA 1的长为3 2.考点7:面面垂直1.△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD ,M 是EA 的中点,求证: ①DE =DA ;②平面BDM ⊥平面ECA ;③平面DEA ⊥平面ECA .【证明】 ①取EC 的中点F ,连接DF .∵BD ∥CE ,∴DB ⊥BA .又EC ⊥BC ,在Rt △EFD 和Rt △DBA 中,∵EF =12EC =BD ,FD =BC =AB ,∴Rt △EFD ≌Rt △DBA ,∴DE =DA .②取CA 的中点N ,连接MN 、BN ,则MN 綊12EC .∴MN ∥BD ,∴N 点在平面BDM 内.∵EC ⊥平面ABC ,∴EC ⊥BN .又CA ⊥BN ,∴BN ⊥平面ECA .∵BN ⊂平面BDM ,∴平面BDM ⊥平面ECA .③∵DM ∥BN ,BN ⊥平面ECA ,∴DM ⊥平面ECA ,又DM ⊂平面DEA ,∴平面DEA ⊥平面ECA .2.已知平面PAB ⊥平面ABC ,平面PAC ⊥平面⊥平面PBC ,E 为垂足.①求证:PA ⊥平面ABC ;②当E 为△PBC 的垂心时,求证:△ABC 是直角三角形.【证明】 ①在平面ABC 内取一点D ,作DF ⊥AC 于F .平面PAC ⊥平面ABC ,且交线为AC ,∴DF ⊥平面PAC .又PA ⊂平面PAC ,∴DF ⊥PA .作DG ⊥AB 于G ,同理可证:DG ⊥PA .DG 、DF 都在平面ABC 内,∴PA ⊥平面ABC .②连接BE 并延长交PC 于H ,∵E 是△PBC 的垂心,∴PC ⊥BH .又已知AE 是平面PBC 的垂线,PC ⊂平面PBC ,∴PC ⊥AE .又BH ∩AE =E ,∴PC ⊥平面ABE .又AB ⊂平面ABE ,∴PC ⊥AB .∵PA ⊥平面ABC ,∴PA ⊥AB .又PC ∩PA =P ,∴AB ⊥平面PAC .又AC ⊂平面PAC ,∴AB ⊥AC .即△ABC 是直角三角形.3.如图所示,在斜三棱柱A 1B 1C 1-ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .(1)若D 是BC 的中点,求证:AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求证:截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥侧面BB 1C 1C 的充要条件吗请你叙述判断理由.【证明】 (1)∵AB =AC ,D 是BC 的中点,∴AD ⊥BC .∵底面ABC ⊥侧面BB 1C 1C ,且交线为BC ,∴由面面垂直的性质定理可知AD ⊥侧面BB 1C 1C .又∵CC 1⊂侧面BB 1C 1C ,∴AD ⊥CC 1.(2)方法一 取BC 1的中点E ,连接DE 、ME .在△BCC 1中,D 、E 分别是BC 、BC 1的中点.∴DE 綊12CC 1.又AA 1綊CC 1,∴DE 綊12AA 1.∵M 是AA 1的中点(由AM =MA 1知),∴DE 綊AM .∴AMED 是平行四边形,∴AD 綊ME .由(1)知AD ⊥面BB 1C 1C ,∴ME ⊥侧面BB 1C 1C .又∵ME ⊂面BMC 1,∴面BMC 1⊥侧面BB 1C 1C .方法二 延长B 1A 1与BM 交于N (在侧面AA 1B 1B 中),连接C 1N .∵AM =MA 1,∴NA 1=A 1B 1.又∵AB =AC ,由棱柱定义知△ABC ≌△A 1B 1C 1.∴AB =A 1B 1,AC =A 1C 1.∴A 1C 1=A 1N =A 1B 1.在△B 1C 1N 中,由平面几何定理知:∠NC 1B 1=90°,即C 1N ⊥B 1C 1.又∵侧面BB 1C 1C ⊥底面A 1B 1C 1,交线为B 1C 1,∴NC 1⊥侧面BB 1C 1C .又∵NC 1⊂面BNC 1,∴截面C 1NB ⊥侧面BB 1C 1C ,即截面MBC 1⊥侧面BB 1C 1C .(3)结论是肯定的,充分性已由(2)证明.下面仅证明必要性(即由截面BMC 1⊥侧面BB 1C 1C 推出AM =MA 1,实质是证明M 是AA 1的中点), 过M 作ME 1⊥BC 1于E 1.∵截面MBC 1⊥侧面BB 1C 1C ,交线为BC 1.∴ME 1⊥面BB 1C 1C .又由(1)知AD ⊥侧面BB 1C 1C ,∵垂直于同一个平面的两条直线平行,∴AD ∥ME 1,∴M 、E 1、D 、A 四点共面.又∵AM ∥侧面BB 1C 1C ,面AME 1D ∩面BB 1C 1C =DE 1,∴由线面平行的性质定理可知AM ∥DE 1.又AD ∥ME 1,∴四边形AME 1D 是平行四边形.∴AD =ME 1,DE 1綊AM .又∵AM ∥CC 1,∴DE 1∥CC 1.又∵D 是BC 的中点,∴E 1是BC 1的中点.∴DE 1=12CC 1=12AA 1.∴AM =12AA 1,∴MA =MA 1.∴AM =MA 1是截面MBC 1⊥侧面BB 1CC 1的充要条件.考点8:平行与垂直的综合问题1.如图所示,在直角梯形ABEF 中,将DCEF 沿CD 折起使∠FDA =60°,得到一个空间几何体.(1)求证:BE ∥平面ADF ;(2)求证:AF ⊥平面ABCD ;(3)求三棱锥E —BCD 的体积.【解析】 (1)由已知条件,可知BC ∥AD ,CE ∥DF ,折叠之后平行关系不变.又因为BC ⊄平面ADF ,AD ⊂平面ADF ,所以BC ∥平面ADF .同理CE ∥平面ADF .又因为BC ∩CE =C ,BC ,CE ⊂平面BCE ,所以平面BCE ∥平面ADF .所以BE ∥平面ADF .(2)由于∠FDA =60°,FD =2,AD =1,所以AF 2=FD 2+AD 2-2×FD ×AD ×cos FDA =4+1-2×2×1×12=3.即AF = 3.所以AF 2+AD 2=FD 2.所以AF ⊥AD .又因为DC ⊥FD ,DC ⊥AD ,AD ∩FD =D ,所以DC ⊥平面ADF .又因为AF ⊂平面ADF ,所以DC ⊥AF .因为AD ∩DC =D ,AD ,DC ⊂平面ABCD ,所以AF ⊥平面ABCD .(3)因为DC ⊥EC ,DC ⊥BC ,EC ,BC ⊂平面EBC ,EC ∩BC =C ,所以DC ⊥平面EBC .又因为DF ∥EC ,AD ∥BC ,∠FDA =60°,所以∠ECB =60°.又因为EC =1,BC =1,所以S △ECB =12×1×1×32=34.所以V E -BCD =V D -EBC =13×DC ×S △ECB =13×1×34=312.2.如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2.<1>求证:DE ∥平面A 1CB ;<2>求证:A 1F ⊥BE ;<3>线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ 说明理由.【解析】 (1)因为D ,E 分别为AC ,AB 的中点,所以DE ∥BC .又因为DE ⊄平面A 1CB ,所以DE ∥平面A 1CB .(2)由已知得AC ⊥BC 且DE ∥BC ,所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC .而A 1F ⊂平面A 1DC ,所以DE ⊥A 1F .又因为A 1F ⊥CD ,所以A 1F ⊥平面BCDE .所以A 1F ⊥BE .(3)线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下:如图,分别取A 1C ,A 1B 的中点P ,Q ,连接PQ ,QE ,PD ,则PQ ∥BC .因为DE ∥BC ,所以DE ∥PQ .所以平面DEQ 即为平面DEP .由(2)知,DE ⊥平面A 1DC ,所以DE ⊥A 1C .又因为P 是等腰三角形DA 1C 底边A 1C 的中点,所以A 1C ⊥DP .所以A 1C ⊥平面DEP .从而A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ .3.如图,四棱锥P -ABCD 中,四边形ABCD 为矩形,△PAD 为等腰三角形,∠APD =90°,平面PAD ⊥平面ABCD ,且AB =1,AD =2,E 、F 分别为PC 、BD 的中点.<1>证明:EF ∥平面PAD ;<2>证明:平面PDC ⊥平面PAD ;<3>求四棱锥P —ABCD 的体积.解析 (1)证明:如图,连接AC .∵四边形ABCD 为矩形且F 是BD 的中点,∴F 也是AC 的中点.又E 是PC 的中点,EF ∥AP ,∵EF ⊄平面PAD ,PA ⊂平面PAD ,∴EF ∥平面PAD .(2)证明:∵面PAD ⊥平面ABCD ,CD ⊥AD ,平面PAD ∩平面ABCD =AD ,∴CD ⊥平面PAD .∵CD ⊂平面PDC ,∴平面PDC ⊥平面PAD .(3)取AD 的中点为O .连接PO .∵平面PAD ⊥平面ABCD ,△PAD 为等腰直角三角形,∴PO ⊥平面ABCD ,即PO 为四棱锥P —ABCD 的高.∵AD =2,∴PO =1.又AB =1,∴四棱锥P —ABCD 的体积V =13PO ·AB ·AD =23.。

3.1.3空间向量的共线与共面问题

3.1.3空间向量的共线与共面问题
1 1 1 OA OB OC 6 3 3
M
A
G
B
4.下列命题中a yb p与 a 、 b 共面 ; (2) p 与 a 、 b 共面 p xa yb ;
补充练习:已知空间四边形OABC,对角线OB、 AC,M和N分别是OA、BC的中点 , G 在 MN 点 上,且使MG=2GN,试用基底 OA, OB, OC 表示向量 OG


O
解:在△OMG中,
C N
1 2 OG OM MG OA MN 2 3 1 2 OA (ON OM ) 2 3
它们一定是:
A.共面向量
C.不共面向量
B.共线向量
D.既不共线又不共面向量
6.已知A、B、C三点不共线,对平面外一点 O,在下列条件下,点P是否与A、B、C共面?
(2) OP 2OA 2OB OC ;
2 1 2 (1) OP OA OB OC ; 5 5 5
规定: o 与任一向量 a 是共线向量.
b( b ≠ 0 ) 2.共线向量定理: 空间任意两个向量 a 、 , a // b 的充要条件是存在实数 ,使 a b .
练习.已知A、B、P三点共线,O为直线外
一点,且 OP OA OB,求 的值. 解:∵ A 、 B、 P 三点共线,∴ t R ,使 OP OA t AB ∴ OP (1 t )OA tOB
思考:如图, l 为经过已知点 A 且平行非零向量 a 的直线,
如何表示直线 l 上的任一点 P ?

立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结一、知识归纳1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.2. 空间直线(1)空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2)平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相PO A a交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.4. 平面平行与平面垂直(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面内的任一直线平行于另一平面.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 b.最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.5. 棱柱. 棱锥(1)棱柱a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱PαβθM A B O柱}⊃{正方体}.{直四棱柱}I {平行六面体}={直平行六面体}.c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各.个侧面都是矩形.......;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. (2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==. a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别求多个三角形面积和的方法). b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面l abc多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3)球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥体体积:Sh V 31=(S 为底面积,h 为高)(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=-. ②外接球:球外接于正四面体,可如图建立关系式.6. 空间向量(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.b.共线向量定理:对空间任意两个向量)0(≠a , ∥的充要条件是存在实数λ(具有唯一性),使b a λ=.c.共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.d.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件. (简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). O BDO R注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心, 则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r , 则四点P 、A 、B 、C 是共面⇔1x y z ++=(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标). ①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a .222321a a a ++==(向量模与向量之间的转化:a a =⇒•=空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅•>=<ρρρρρρ(a =123(,,)a a a ,b =123(,,)b b b ). ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.b.法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.c.向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n . ②异面直线间的距离d = (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③直线AB 与平面所成角的正弦值sin ||||AB m AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n 反方,则为其夹角).d.证直线和平面平行定理:已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB二、经典例题考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++u u u r u u u r u u u r u u u r , 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP xAB y AC =+u u u r u u u r u u u r 或对空间任一点O ,有OP OA x AB y AC =++u u u r u u u r u u u r u u u r .答案:由题意:522OP OA OB OC =++u u u r u u u r u u u r u u u r ,∴()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r ,∴22AP PB PC =+u u u r u u u r u u u r ,即22PA PB PC =--u u u r u u u r u u u r ,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE .解析:要证明//MN 平面CDE ,只要证明向量NM u u u u r 可以用平面CDE 内的两个不共线的向量DE u u u r 和DC u u u r 线性表示. 答案:证明:如图,因为M 在BD 上,且13BM BD =, 所以111333MB DB DA AB ==+u u u r u u u r u u u r u u u r .同理1133AN AD DE =+u u u r u u u r u u u r , 又CD BA AB ==-u u u r u u u r u u u r ,所以MN MB BA AN =++u u u u r u u u r u u u r u u u r 1111()()3333DA AB BA AD DE =++++u u u r u u u r u u u r u u u r u u u r 2133BA DE =+u u u r u u u r 2133CD DE =+u u u r u u u r . 又CD uuu r 与DE u u u r 不共线,根据共面向量定理,可知MN u u u u r ,CD uuu r ,DE u u u r 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.A B C A B C E x yz4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦.解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)ΘM 是PC 的中点,取PD 的中点E ,则 ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄,PAD EA 平面⊂∴BM ∥PAD 平面(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E在平面PAD 内设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PB MN ∴0221=+--=⋅→--→--z PB MN ∴21=z由→--→--⊥DB MN ∴0221=+--=⋅→--→--y DB MN ∴21=y∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥(3)设直线PC 与平面PBD 所成的角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MN PC ,为α 3226322cos -=⋅-=⋅=→--→--→--→--MN PC MNPC α 32cos sin =-=αθ 故直线PC 与平面PBD 所成角的正弦为32解法二: (1)ΘM 是PC 的中点,取PD 的中点E ,则ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面(2)由(1)知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴A E A B ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE∴32=MF ,22=NE N 为AE 的中点 ∴当点N 为AE 的中点时,BD MN P 平面⊥(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成的角,设为θ,32sin ==MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为32点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这三种角的大小.5. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点.(Ⅰ)求PA 与底面ABCD 所成角的大小;(Ⅱ)求证:PA ⊥平面CDM ;(Ⅲ)求二面角D MC B --的余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平 移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC . 又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP =3∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°.(II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图, 则(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C .由M 为PB 中点,∴33(1,M . ∴33((3,0,3),DM PA ==u u u u r u u u r (0,2,0)DC =u u u r . ∴333203)0PA DM ⋅=⨯-=u u u r u u u u r ,03200(3)0PA DC ⋅=⨯+⨯-=u u u r u u u r .∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .(III)33(),(3,1,0)CM CB ==u u u u r u u u r .令平面BMC 的法向量(,,)n x y z =r , 则0n CM ⋅=u u u u r r ,从而x +z =0; ……①, 0n CB ⋅=u u u r r 30x y +=. ……②由①、②,取x =−1,则3,1y z =. ∴可取(3,1)n=-r . 由(II)知平面CDM 的法向量可取(3,0,3)PA =u u u r , ∴2310cos ,||||56n PA n PA n PA ⋅-<>=⋅u u u r r u u u r r u u u r r 10法二:(Ⅰ)方法同上(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=o ,则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥,又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,则//MN CO , 则四边形OCMN 为Y ,所以//MC ON ,在APO ∆中,AO PO =,则ON AP ⊥,故AP MC ⊥而MC CD C =I ,则PA MCD ⊥平面(Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角, 在Rt PAB ∆中,易得PA=PB ===,cos AB PBA PB ∠===,cos cos()5NMB PBA π∠=-∠=-故,所求二面角的余弦值为5-点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. 如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上. (Ⅰ)求异面直线1D E 与1A D 所成的角;(Ⅱ)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利1D A B CD E 1A 1B 1C于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:(Ⅰ)连结1AD .由已知,11AA D D 是正方形,有11AD A D ⊥.∵AB ⊥平面11AA D D ,∴1AD 是1D E 在平面11AA D D 内的射影.根据三垂线定理,11AD D E ⊥得,则异面直线1D E 与1A D 所成的角为90︒. 作DF CE ⊥,垂足为F ,连结1D F ,则1CE D F ⊥所以1DFD ∠为二面角1D EC D --的平面角,145DFD ∠=︒.于是111,DF DD D F ==易得Rt Rt BCE CDF ∆≅∆,所以2CE CD ==,又1BC =,所以BE =. 设点B 到平面1D EC 的距离为h .∵1,B CED D BCE V V --=即1111113232CE D F h BE BC DD ⋅⋅⋅=⋅⋅⋅,∴11CE D F h BE BC DD ⋅⋅=⋅⋅,即=,∴4h =.故点B 到平面1D EC 解法二:分别以1,,DA DB DD 为x 轴、y 轴、z 轴,建立空间直角坐标系.(Ⅰ)由1(1,0,1)A ,得1(1,0,1)DA =u u u u r设(1,,0)E a ,又1(0,0,1)D ,则1(1,,1)D E a =-u u u u r .∵111010DA D E ⋅=+-=u u u u r u u u u r ∴11DA D E ⊥u u u u r u u u u r则异面直线1D E 与1A D 所成的角为90︒.(Ⅱ)(0,0,1)=m 为面DEC 的法向量,设(,,)x y z =n 为面1CED 的法向量,则(,,)x y z =n|||cos ,|cos 45||||2⋅<>===︒=m n m n m n ∴222z x y =+. ①由(0,2,0)C ,得1(0,2,1)DC =-u u u u r ,则1D C ⊥u u u u r n ,即10DC ⋅=u u u u r n ∴20y z -= ② 由①、②,可取(3,1,2)=n 又(1,0,0)CB =u u u r ,所以点B 到平面1D EC 的距离||36422CB d ⋅===u u u r n |n |. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°.(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB设平面BEF 的法向量x z y x n -=则),,,(0,02==++y z y ,则可取)0,1,2(=n ,∴向量)1,0,2(=n DB 和所成角的余弦为1010)2(21220222222=-++-+⋅. 即BD 和面BEF 所成的角的余弦1010. (2)假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,则P 点坐标为),12,121,121(m m m m m +++++ 则向量=),12,121,121(m m m m m +++++,向量=CP ),12,11,121(mm m m ++-++ 所以21,012)2(12101212==+-++++++m m m m m m 所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求.8. 如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点,CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin 62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,022a a CD ⎛⎫= ⎪⎝⎭u u u r ,,,(0)AB a a =-u u u r ,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.同理2211(0)tan 02222a a AB VD a a a a θ⎛⎫=-=-++ ⎪ ⎪⎝⎭u u u r u u u r ,,,,··即AB VD ⊥.又CD VD D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==u u u r,··nn .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-u u u r,,,于是πsin 62BC BC θ===u u u r u u u r n n ··,即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,002DC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(00)AB =u u u r ,.从而(00)AB DC =u u u r u u u r ,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 0AB DV θ⎛⎫== ⎪ ⎪⎝⎭u u u r u u u r ,,·,即AB DV ⊥. 又DC DV D =I , AB ⊥∴平面VCD . 又AB ⊂平面VAB , ∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==u u u r u u u r ,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又220BC a a ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,, 于是22tan π22sin sin 61tan a BC BC a θθθ===+u u u r u u u r n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故角π4θ=时, 即直线BC 与平面VAB 所成角为π6.点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9.已知正方形ABCD E 、F 分别是AB 、CD 的中点,将ADE V 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)若ACD V 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF 分别为正方形ABCD 得边AB 、CD 的中点,ADBCVxyAEB CF DG∴EB//FD,且EB=FD,∴四边形EBFD 为平行四边形∴BF//ED.,EF AED BF AED ⊂⊄Q 平面而平面,∴//BF 平面ADE(II)如右图,点A 在平面BCDE 内的射影G 在直线EF 上,过点A 作AG 垂直于平面BCDE,垂足为G,连结GC,GDQ ∆ACD 为正三角形,∴AC=AD. ∴CG=GD. Q G在CD 的垂直平分线上, ∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH 垂直于ED 于H,连结AH,则AH DE ⊥,所以AHD ∠为二面角A-DE-C 的平面角 即G AH θ∠=.设原正方体的边长为2a,连结AF,在折后图的∆AEF中,EF=2AE=2a,即∆AEF 为直角三角形, AG EF AE AF ⋅=⋅.2AG a ∴=在Rt ∆ADE 中, AH DE AE AD ⋅=⋅AH ∴=.GH ∴=,1cos 4GH AH θ== 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线.关键要抓不变的量.考点六 球体与多面体的组合问题10.设棱锥M-ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,如果ΔAMD 的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径. 解: ∵AB ⊥AD ,AB ⊥MA , ∴AB ⊥平面MAD ,由此,面MAD ⊥面AC.记E 是AD 的中点,从而ME ⊥AD. ∴ME ⊥平面AC ,ME ⊥EF.设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是ΔMEF 的内心. 设球O 的半径为r ,则r =MFEM EF S MEF++△2设AD =EF =a,∵S ΔAMD =1. ∴ME =a 2.MF =22)2(aa +, r =22)2(22aa a a +++≤2222+=2-1. 当且仅当a =a2,即a =2时,等号成立.∴当AD =ME =2时,满足条件的球最大半径为2-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系. 三、方法总结1.位置关系:(1)两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直.(2)直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直.(3)直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行.(4)平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外一个平面;○3证明两个平面的法向量相互垂直.2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离.(1)两条异面直线的距离。

新教材高中数学第一章空间向量与立体几何1-1共线向量与共面向量练习含解析新人教A版选择性必修第一册

新教材高中数学第一章空间向量与立体几何1-1共线向量与共面向量练习含解析新人教A版选择性必修第一册

第2课时 共线向量与共面向量学习目标 1.理解向量共线、向量共面的定义.2.掌握共线向量定理和共面向量定理,会证明空间三点共线、四点共面.知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线 l 的方向向量. 思考1 对于空间向量a ,b ,c ,若a ∥b 且b ∥c ,是否可以得到a ∥c ? 答案 不能.若b =0,则对任意向量a ,c 都有a ∥b 且b ∥c . 思考2 怎样利用向量共线证明A ,B ,C 三点共线? 答案 只需证明向量AB →,BC →(不唯一)共线即可. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA →所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .思考 已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系OP →=OA →+xAB →+yAC →,则点P 与点A ,B ,C 是否共面?答案 共面. 由OP →=OA →+xAB →+yAC →,可得AP →=xAB →+yAC →,所以向量AP →与向量AB →,AC →共面,故点P 与点A ,B ,C 共面.1.向量AB →与向量CD →是共线向量,则点A ,B ,C ,D 必在同一条直线上.( × ) 2.若向量a ,b ,c 共面,则表示这三个向量的有向线段所在的直线共面.( × ) 3.空间中任意三个向量一定是共面向量.( × )4.若P ,M ,A ,B 共面,则存在唯一的有序实数对(x ,y ),使MP →=xMA →+yMB →.( × )一、向量共线的判定及应用例1 如图所示,已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF →=23CB →,CG →=23CD →.求证:四边形EFGH 是梯形.证明 ∵E ,H 分别是AB ,AD 的中点, ∴AE →=12AB →,AH →=12AD →,则EH →=AH →-AE →=12AD →-12AB →=12BD →=12(CD →-CB →)=12⎝ ⎛⎭⎪⎫32CG →-32CF →=34(CG →-CF →)=34FG →,∴EH →∥FG →且|EH →|=34|FG →|≠|FG →|.又F 不在直线EH 上, ∴四边形EFGH 是梯形.反思感悟 向量共线的判定及应用(1)本题利用向量的共线证明了线线平行,解题时应注意向量共线与两直线平行的区别. (2)判断或证明两向量a ,b (b ≠0)共线,就是寻找实数λ,使a =λb 成立,为此常结合题目图形,运用空间向量的线性运算法则将目标向量化简或用同一组向量表达.(3)判断或证明空间中的三点(如P ,A ,B )共线的方法:是否存在实数λ,使PA →=λPB →; 跟踪训练1 (1)已知A ,B ,C 三点共线,O 为直线外空间任意一点,若OC →=mOA →+nOB →,则m +n =________. 答案 1解析 由于A ,B ,C 三点共线,所以存在实数λ,使得AC →=λAB →,即OC →-OA →=λ(OB →-OA →), 所以OC →=(1-λ)OA →+λOB →,所以m =1-λ,n =λ, 所以m +n =1.(2)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E —→=2ED 1—→,F 在对角线A 1C 上,且A 1F —→=23FC →. 求证:E ,F ,B 三点共线.证明 设AB →=a ,AD →=b ,AA 1—→=c , 因为A 1E —→=2ED 1—→,A 1F —→=23FC →,所以A 1E —→=23A 1D 1—→,A 1F —→=25A 1C —→,所以A 1E —→=23AD →=23b ,A 1F —→=25(AC →-AA 1→)=25(AB →+AD →-AA 1—→)=25a +25b -25c ,所以EF →=A 1F —→-A 1E —→=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c .又EB →=EA 1—→+A 1A —→+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.二、向量共面的判定例2 已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内. 解 (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →),∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知,向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线, ∴M ,A ,B ,C 共面,即M 在平面ABC 内. 反思感悟 解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.跟踪训练2 (1)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:向量MN →,CD →,DE →共面.证明 因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →.所以MN →=MB →+BA →+AN →=⎝ ⎛⎭⎪⎫13DA →+13AB →+BA →+⎝ ⎛⎭⎪⎫13AD →+13DE →=23BA →+13DE →=23CD →+13DE →. 又CD →与DE →不共线,根据向量共面的充要条件可知MN →,CD →,DE →共面.(2)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证: ①E ,F ,G ,H 四点共面. ②BD ∥平面EFGH . 证明 如图,连接EG ,BG .①因为EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知向量EG →,EF →,EH →共面,即E ,F ,G ,H 四点共面.②因为EH →=AH →-AE →=12AD →-12AB →=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .空间共线向量定理的应用典例 如图所示,已知四边形ABCD ,ABEF 都是平行四边形,且它们所在的平面不共面,M ,N 分别是AC ,BF 的中点,求证:CE ∥MN .证明 ∵M ,N 分别是AC ,BF 的中点, 又四边形ABCD ,ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →,又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →, ∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →), ∴CE →=2MN →,∴CE →∥MN →. ∵点C 不在MN 上,∴CE ∥MN .[素养提升] 证明空间图形中的两直线平行,可以转化为证明两直线的方向向量共线问题.这里关键是利用向量的线性运算,从而确定CE →=λMN →中的λ的值.1.满足下列条件,能说明空间不重合的A ,B ,C 三点共线的是( ) A.AB →+BC →=AC → B.AB →-BC →=AC →C.AB →=BC → D .|AB →|=|BC →|答案 C2.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( ) A .P ∈直线AB B .P ∉直线ABC .点P 可能在直线AB 上,也可能不在直线AB 上D .以上都不对 答案 A解析 因为m +n =1,所以m =1-n ,所以OP →=(1-n )·OA →+nOB →,即OP →-OA →=n (OB →-OA →),即AP →=nAB →,所以AP →与AB →共线.又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈直线AB . 3.下列条件中,使M 与A ,B ,C 一定共面的是( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=0 答案 C解析 C 选项中,MA →=-MB →-MC →, ∴点M ,A ,B ,C 共面.4.已知点M 在平面ABC 内,并且对空间任意一点O ,有OM →=xOA →+13OB →+13OC →,则x 的值为( )A .1B .0C .3 D.13答案 D解析 ∵OM →=xOA →+13OB →+13OC →,且M ,A ,B ,C 四点共面, ∴x +13+13=1,∴x =13,故选D.5.已知非零向量e 1,e 2不共线,则使k e 1+e 2与e 1+k e 2共线的k 的值是________. 答案 ±1解析 若k e 1+e 2与e 1+k e 2共线, 则k e 1+e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧k =λ,λk =1.所以k =±1.1.知识清单:(1)空间向量共线的充要条件,直线的方向向量. (2)空间向量共面的充要条件. 2.方法归纳 :转化化归. 3.常见误区:混淆向量共线与线段共线、点共线.1.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D答案 A解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,故AD →∥AB →,又AD →与AB →有公共点A , 所以A ,B ,D 三点共线.2.对于空间的任意三个向量a ,b ,2a -b ,它们一定是( ) A .共面向量 B .共线向量C .不共面向量D .既不共线也不共面的向量 答案 A3.在平行六面体ABCD -A 1B 1C 1D 1中,向量D 1A —→,D 1C —→,A 1C 1—→是( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 答案 C解析 因为D 1C —→-D 1A —→=AC →,且AC →=A 1C 1—→, 所以D 1C —→-D 1A —→=A 1C 1—→, 即D 1C —→=D 1A —→+A 1C 1—→. 又D 1A —→与A 1C 1—→不共线,所以D 1C —→,D 1A —→,A 1C 1—→三个向量共面.4.已知P 为空间中任意一点,A ,B ,C ,D 四点满足任意三点均不共线,但四点共面,且PA →=43PB →-xPC →+16DB →,则实数x 的值为( )A.13 B .-13 C.12 D .-12 答案 A解析 PA →=43PB →-xPC →+16DB →=43PB →-xPC →+16(PB →-PD →)=32PB →-xPC →-16PD →.又∵P 是空间任意一点,A ,B ,C ,D 四点满足任意三点均不共线,但四点共面, ∴32-x -16=1,解得x =13. 5.(多选)下列命题中错误的是( )A .若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0 B .|a |-|b |=|a +b |是a ,b 共线的充要条件 C .若AB →,CD →共线,则AB ∥CDD .对空间任意一点O 与不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面答案 BCD 解析 显然A 正确;若a ,b 共线,则|a |+|b |=|a +b |或|a +b |=||a | -|b ||,故B 错误; 若AB →,CD →共线,则直线AB ,CD 可能重合,故C 错误; 只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故D 错误.6.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.答案 23解析 CD →=CB →-DB →=CB →-13AB →=CB →-13(CB →-CA →)=23CB →+13CA →,又CD →=13CA →+λCB →,所以λ=23.7.设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,则实数k =________. 答案 1解析 ∵AD →=AB →+BC →+CD →=7e 1+(k +6)e 2, 且AB →与AD →共线,故AD →=xAB →, 即7e 1+(k +6)e 2=x e 1+xk e 2, 故(7-x )e 1+(k +6-xk )e 2=0, 又∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧7-x =0,k +6-kx =0,解得⎩⎪⎨⎪⎧x =7,k =1,故k 的值为1.8.已知O 为空间任一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z =________. 答案 -1解析 由题意知A ,B ,C ,D 共面的充要条件是:对空间任意一点O ,存在实数x 1,y 1,z 1,使得OA →=x 1OB →+y 1OC →+z 1OD →,且x 1+y 1+z 1=1,因此,2x +3y +4z =-1.9.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1D 1,AB 的中点,E 在AA 1上且AE =2EA 1,F 在CC 1上且CF =12FC 1,判断ME →与NF →是否共线.解 由题意,得ME →=MD 1—→+D 1A 1—→+A 1E —→=12BA →+CB →+13A 1A —→=BN →+CB →+13C 1C —→ =CN →+FC →=FN →=-NF →. 即ME →=-NF →,∴ME →与NF →共线.10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N —→与A 1B —→,A 1M —→共面.证明 ∵A 1B —→=AB →-AA 1—→,A 1M —→=A 1D 1—→+D 1M —→=AD →-12AA 1—→,AN →=23AC →=23(AB →+AD →),∴A 1N —→=AN →-AA 1—→=23(AB →+AD →)-AA 1—→=23(AB →-AA 1—→)+23⎝ ⎛⎭⎪⎫AD →-12AA 1—→=23A 1B —→+23A 1M —→, ∴A 1N —→与A 1B —→,A 1M —→共面.11.若P ,A ,B ,C 为空间四点,且有PA →=αPB →+βPC →,则α+β=1是A ,B ,C 三点共线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 C解析 若α+β=1,则PA →-PB →=β(PC →-PB →),即BA →=βBC →,显然,A ,B ,C 三点共线;若A ,B ,C 三点共线,则有AB →=λBC →,故PB →-PA →=λ(PC →-PB →),整理得PA →=(1+λ)PB →-λPC →,令α=1+λ,β=-λ,则α+β=1,故选C.12.平面α内有五点A ,B ,C ,D ,E ,其中无三点共线,O 为空间一点,满足OA →=12OB →+xOC →+yOD →,OB→=2xOC →+13OD →+yOE →,则x +3y 等于( )A.56B.76C.53D.73 答案 B解析 由点A ,B ,C ,D 共面得x +y =12,又由点B ,C ,D ,E 共面得2x +y =23,联立方程组解得x =16,y =13,所以x +3y =76.13.已知正方体ABCD -A 1B 1C 1D 1中,P ,M 为空间任意两点,如果有PM →=PB 1—→+7BA →+6AA 1—→-4A 1D 1—→,那么M 必( ) A .在平面BAD 1内 B .在平面BA 1D 内 C .在平面BA 1D 1内 D .在平面AB 1C 1内答案 C解析 PM →=PB 1—→+7BA →+6AA 1—→-4A 1D 1—→=PB 1—→+BA →+6BA 1—→-4A 1D 1—→=PB 1—→+B 1A 1—→+6BA 1—→-4A 1D 1—→=PA 1—→+6(PA 1—→-PB →)-4(PD 1—→-PA 1—→)=11PA 1—→-6PB →-4PD 1—→,于是M ,B ,A 1,D 1四点共面.14.有下列命题:①若AB →∥CD →,则A ,B ,C ,D 四点共线;②若AB →∥AC →,则A ,B ,C 三点共线;③若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b ; ④若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0. 其中是真命题的序号是________(把所有真命题的序号都填上).答案 ②③④解析 根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故①错;因为AB →∥AC →且AB →,AC →有公共点A ,所以②正确;由于a =4e 1-25e 2=-4b ,所以a ∥b .故③正确;易知④也正确.15.已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若由OP →=15OA →+23OB →+λOC →确定的一点P 与A ,B ,C 三点共面,则λ=________.答案 215解析 根据P ,A ,B ,C 四点共面的条件,知存在实数x ,y ,z ,使得OP →=xOA →+yOB →+zOC →成立,其中x+y +z =1,于是15+23+λ=1,所以λ=215. 16.如图,已知M ,N 分别为四面体A -BCD 的面BCD 与面ACD 的重心,G 为AM 上一点,且GM ∶GA =1∶3.求证:B ,G ,N 三点共线.证明 设AB →=a ,AC →=b ,AD →=c , 则AM →=AB →+23×12(BC →+BD →)=AB →+13(BC →+BD →)=AB →+13(AC →-AB →+AD →-AB →)=13(AB →+AC →+AD →)=13(a +b +c ),BG →=BA →+AG →=BA →+34AM →=-a +14(a +b +c )=-34a +14b +14c ,BN →=BA →+AN →=BA →+13(AC →+AD →)=-a +13b +13c =43BG →,∴BN →∥BG →.又BN ∩BG =B ,∴B ,G ,N 三点共线.。

立体几何中的共面轨迹问题

立体几何中的共面轨迹问题

方形 A B CD 的面积 , 又 C1 G = B E , O G 在面
A B CD 上 的 射 影 与 EF 的 交 点 为 M , 问 在 面 A B CD 内是否存在两个定点 , 使 M 到这两个
A 2 B 2 C2 D 2 中 , B 1 D 1 与 A 2 C2 成 60° 角 , 侧棱 A1A2 = 2 , M 、 N 分别在 B 1 D 1 与 A 2 C2 所在直
线上运动 , 若 M N = 4 , 求 M N 的中点 P 的轨 迹.
定点的距离的和为定值 ?若存在 , 求出这两个 定点 ; 若不存在 , 请说明理由 .
分析 过 G 作 GP ⊥ CD , 垂足为 P , 则
GP ⊥面 A B CD , ∴O G 在面 A B CD 内的射影
分析 设正方体中心为 O , 上下两底面 中心为 O 1 、 O 2 . 过 O 作平面α ⊥ O 1 O 2 , 无论
高中数学教与学 2004 年
立体几何中的共面轨迹问题
吴明德
( 江苏省泰兴市第一高级中学 ,225400) 高中阶段虽然没有学习系统的空间解析 几何知识 , 但并不妨碍我们用平面解析几何 的方法处理一些简单的立体几何轨迹问题. 两种几何知识的交汇融合与综合应用 , 对培 养学生的空间想象能力和数学实践能力大有 益处 . 现略举几例供参考 . 例 1 如 图 1 , 在 单 位 正 方 体 A B CD A 1 B 1 C1 D 1 中 , E 、 F 分 别 为 A 1 D1 、 B 1 C1 的 中
B D 为 ⊙O 2 的直径 , B C ⊥ CD , 由三垂线定 t1 = x + y,

t2 =
3
x

- y,

高考数学一轮复习立体几何知识点

高考数学一轮复习立体几何知识点

高考数学一轮复习立体几何知识点数学上,立体几何是3维欧氏空间的几何的传统名称,查字典数学网小编整理了2021年高考数学一轮复习立体几何知识点,期望对考生复习有关心。

1.平面的差不多性质:把握三个公理及推论,会说明共点、共线、共面问题。

能够用斜二测法作图。

2.空间两条直线的位置关系:平行、相交、异面的概念;会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一样用反证法。

3.直线与平面①位置关系:平行、直线在平面内、直线与平面相交。

②直线与平面平行的判定方法及性质,判定定理是证明平行问题的依据。

③直线与平面垂直的证明方法有哪些?④直线与平面所成的角:关键是找它在平面内的射影,范畴是⑤三垂线定理及其逆定理:每年高考试题都要考查那个定理. 三垂线定理及其逆定理要紧用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.4.平面与平面(1)位置关系:平行、相交,(垂直是相交的一种专门情形)(2)把握平面与平面平行的证明方法和性质。

(3)把握平面与平面垂直的证明方法和性质定理。

专门是已知两平面垂直,一样是依据性质定理,能够证明线面垂直。

(4)两平面间的距离问题点到面的距离问题(5)二面角。

二面角的平面交的作法及求法:①定义法,一样要利用图形的对称性;一样在运算时要解斜三角形;要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

②垂线、斜线、射影法,一样要求平面的垂线好找,一样在运算时要解一个直角三角形。

那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

高中数学立体几何点线面位置关系精选题目(附答案)

高中数学立体几何点线面位置关系精选题目(附答案)
(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.
2.下列说法正确的是()
A.用一平面去截圆台,截面一定是圆面
B.在圆台的上、下底面圆周上各取一点,则两点的连线就是圆台的母线
C.圆台的任意两条母线延长后相交于同一点
A.36πB.64π
C.100πD.144π
解析:选A三棱锥ABCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它和三棱锥ABCD的外接球是同一个,且体对角线的长为球的直径,若设球的半径为R,则2R= =6,故R=3,∴外接球的表面积S=4πR2=36π,故选A.
三、空间点、线、面位置关系的判断与证明
(3)(2017·山东高考)由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为________.
[解析]
(1)如图所示,该几何体的表面积S=1×1+ ×1×1×2+2× ×(1+2)×1+ × × =5+ ,故选A.
(2)①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCDA1B1C1D1中的四面体ACB1D1;②错误,因为球的直径必过球心;③错误,必须是相邻的两个侧面.
4.一个几何体的三视图如图所示,则该几何体的表面积S为________.
解析:根据三视图,可知题中的几何体是由一个长方体挖去一个圆柱得到的,所以S=2×(4×1+3×1+4×3)+2π-2π=38.
答案:38
二、与球有关的问题
球的表面积与体积
(1)球的表面积公式S球=4πR2.
(2)球的体积公式V球= πR3.
(2)旋转体的表面积:
①S圆柱=2πrl+2πr2;
②S圆锥=πrl+πr2;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的共点、共线、共面问题
一、共线问题
例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直线AA1、BB1、CC1相交于一点O,求证:
(1)AB和A1B1、BC和B1C1、AC和A1C1分别在同一平面内;
(2)如果AB和A1B1、BC和B1C1、AC和A1C1分别相交,那么交点在同一直线上(如图).
例2.点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR ∩BD=Y.求证:X、Y、Z三点共线.
例3.已知△ABC三边所在直线分别与平面α交于P、Q、R三点,求证:P、Q、R三点共线。

二、共面问题
例4.直线m、n分别和平行直线a、b、c都相交,交点为A、B、C、D、E、F,如图,求证:直线a、b、c、m、n共面.
例5. 证明两两相交而不共点的四条直线在同一平面内.
已知:如图,直线l 1,l 2,l 3,l 4两两相交,且不共点.
求证:直线l 1,l 2,l 3,l 4在同一平面内
例6. 已知:A 1、B 1、C 1和A 2、B 2、C 2分别是两条异面直线l 1和l 2上的任意三点,M 、N 、R 、T 分别是A 1A 2、B 1A 2、B 1B 2、C 1C 2的中点.求证:M 、N 、R 、T 四点共面.
例7. 在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足MB AM =NB CN =QD AQ =PD
CP =k. (1)求证:M 、N 、P 、Q 共面.
(2)当对角线AC =a,BD =b ,且MNPQ 是正方形时,求AC 、BD 所成的角及k 的值(用a,b 表示)
三、共点问题
例8. 三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行.
1、(1)证明:∵AA 1∩BB 1=O,
∴AA 1、BB 1确定平面BAO ,
∵A 、A 1、B 、B 1都在平面ABO 内,
∴AB ⊂平面ABO ;A 1B 1⊂平面ABO.
同理可证,BC 和B 1C 1、AC 和A 1C 1分别在同一平面内.
(2)分析:欲证两直线的交点在一条直线上,可根据公理2,证明这两条直线分别在两个相交平面内,那么,它们的交点就在这两个平面的交线上.
2证明:如图,设AB ∩A 1B 1=P ;
AC ∩A 1C 1=R ;
∴ 面ABC ∩面A 1B 1C 1=PR.
∵ BC ⊂面ABC ;B 1C 1⊂面A 1B 1C 1,
且 BC ∩B 1C 1=Q ∴ Q ∈PR,
即 P 、R 、Q 在同一直线上.
3解析:∵A 、B 、C 是不在同一直线上的三点
∴过A 、B 、C 有一个平面β
又βα⊂=⋂AB P AB 且,Θ
.,,l p l P ∈=⋂∴则设内内又在既在点βααβ .
,,,:三点共线同理可证R Q P l R l Q ∴∈∈ 4解析: 证明若干条直线共面的方法有两类:一是先确定一个平面,证明其余的直线在这个平面里;二是分别确定几个平面,然后证明这些平面重合.
证明 ∵a ∥b,∴过a 、b 可以确定一个平面α.
∵A ∈a,a ⊂α,∴A ∈α,同理B ∈a.
又∵A ∈m ,B ∈m,∴m ⊂α.同理可证n ⊂α.
∵b ∥c,∴过b,c 可以确定平面β,同理可证m ⊂β.
∵平面α、β都经过相交直线b 、m,
∴平面α和平面β重合,即直线a 、b 、c 、m 、n 共面.
5、解析:证明几条直线共面的依据是公理3及推论和公理1.先证某两线确定平面α,然后证其它直线也在α内.
证明:图①中,l 1∩l 2=P ,
∴ l 1,l 2确定平面α.
又 l 1∩l 3=A,l 2∩l 3=C, ∴ C,A ∈α.
故 l 3⊂α.
同理 l 4⊂α.
∴ l 1,l 2,l 3,l 4共面.
图②中,l 1,l 2,l 3,l 4的位置关系,同理可证l 1,l 2,l 3,l 4共面.
所以结论成立.
6、证明 如图,连结MN 、NR ,则MN ∥l 1,NR ∥l 2,且M 、N 、R 不在同一直线上(否则,根据三线平行公理,知l 1∥l 2与条件矛盾).∴ MN 、NR 可确定平面β,连结B 1C 2,取其中点S.连RS 、ST ,则RS ∥l 2,又RN ∥l 2,∴ N 、R 、S 三点共线.即有S ∈β,又ST ∥l 1,MN ∥l 1,∴MN ∥ST ,又S ∈β,∴ ST ⊂β.
∴ M 、N 、R 、T 四点共面.
7解析:(1)∵ MB AM =QD
AQ =k ∴ MQ ∥BD ,且MB AM AM +=1
+k k ∴ BD
MQ =AB AM =1+k k ∴ MQ =
1+k k BD 又 NB CN =PD
CP =k ∴ PN ∥BD ,且
NB CN CN +=1+k k ∴ BD NP =CB CN =1+k k 从而NP =1
+k k BD ∴ MQ ∥NP ,MQ ,NP 共面,从而M 、N 、P 、Q 四点共面.
(2)∵ MA BM =k 1,NC BN =k
1 ∴ MA BM =NC BN =k 1,MA BM BM +=1
1+k ∴ MN ∥AC ,又NP ∥BD.
∴ MN 与NP 所成的角等于AC 与BD 所成的角.
∵ MNPQ 是正方形,∴ ∠MNP =90°
∴ AC 与BD 所成的角为90°,
又AC =a ,BD =b ,AC MN =BA BM =1
1+k ∴ MN =1
1+k a 又 MQ =
11+k b,且MQ =MN , 1+k k b =11+k a ,即k =b
a . 说明:公理4是证明空间两直线平行的基本出发点.
已知:平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面α=c . 求证:a 、b 、c 相交于同一点,或a ∥b ∥c .
证明:∵α∩β=a ,β∩γ=b
∴a 、b ⊂β
∴a 、b 相交或a ∥b .
(1)a 、b 相交时,不妨设a ∩b =P ,即P ∈a ,P ∈b
而a 、b ⊂β,a ⊂α
∴P ∈β,P ∈α,故P 为α和β的公共点
又∵α∩γ=c
由公理2知P ∈c
∴a 、b 、c 都经过点P ,即a 、b 、c 三线共点.
(2)当a ∥b 时
∵α∩γ=c且a⊂α,a⊄γ
∴a∥c且a∥b
∴a∥b∥c
故a、b、c两两平行.
由此可知a、b、c相交于一点或两两平行.。

相关文档
最新文档