2013-2014学年弹性力学与有限元分析复习题讲诉

合集下载

试题及其答案--弹性力学与有限元分析

试题及其答案--弹性力学与有限元分析
7、表示应力分量与面力分量之间关系的方程为平衡微分方程。(×)
8、表示位移分量与应力分量之间关系的方程为物理方程。(×)
9、当物体的形变分量完全确定时,位移分量却不能完全确定。(√)
10、当物体的位移分量完全确定时,形变分量即完全确定。(√)
11、按应力求解平面问题时常采用位移法和应力法。(×)
12、按应力求解平面问题,最后可以归纳为求解一个应力函数。(×)
10、在有限单元法中,为什么要求位移模式必须能反映单元的常量应变
答:每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。而且,当单元的尺寸较小时,单元中各点的应变趋于相等,也就是单元的应变趋于均匀,因而常量应变就成为应变的主要部分。因此,为了正确反映单元的形变状态,位移模式必须能反映该单元的常量应变。
4、简述平面应力问题与平面应变问题的区别。
答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有 , , 。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和v
13、在有限单元法中,结点力是指单元对结点的作用力。(×)
14、在有限单元法中,结点力是指结点对单元的作用力。(√)
15、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ )
三、简答题
1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。
在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。

有限元复习题及答案

有限元复习题及答案

1.弹性力学和材料力学在研究对象上的区别?材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件;弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,研究对象要广泛得多。

2.理想弹性体的五点假设?连续性假设,完全弹性假设,均匀性假设,各向同性假定,小位移和小变形的假定。

3.什么叫轴对称问题,采用什么坐标系分析?为什么?工程实际中,对于一些几何形状、载荷以及约束条件都对称于某一轴线的轴对称体,其体内所有的位移、应变和应力也都对称于此轴线,这类问题称为轴对称问题。

通常采用圆柱坐标系r、θ、z分析。

这是因为,当弹性体的对称轴为z轴时,所有的应力分量、应变分量和位移分量都将只是r和z的函数,而与无θ关。

4.梁单元和杆单元的区别?杆单元只能承受拉压荷载,梁单元那么可以承受拉压弯扭荷载。

具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承当的,通常用于网架、桁架的分析;而梁单元那么根本上适用于各种情况〔除了楼板之类〕,且经过适当的处理〔如释放自由度、耦合等〕,梁单元也可以当作杆单元使用。

5.薄板弯曲问题与平面应力问题的区别?平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是垂直于板面的力的作用,板将变成有弯有扭的曲面。

平面应力问题有三个独立的应力分量和三个独立的应变分量,薄板弯曲问题每个结点有三个自由度,但是只有一个是独立的其余两个可以被它表示。

6.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。

7.有限单元法的收敛性准那么?完备性要求,协调性要求。

完备性要求:如果出现在泛函中场函数的最高阶导数是m阶,那么有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式,或者说试探函数中必须包括本身和直至m阶导数为常数的项,单元的插值函数满足上述要求时,我们称单元是完备的。

有限元考试精彩试题及问题详解——第一组

有限元考试精彩试题及问题详解——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

弹性力学与有限元分析试题及其答案

弹性力学与有限元分析试题及其答案

如下图所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162 ② II 单元的整体编码为426③ II 单元的整体编码为246 ④ III 单元的整体编码为243⑤ IV 单元的整体编码为564A. ①③B. ②④C. ①④D. ③⑤一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

弹性力学及有限元考试复习简答题

弹性力学及有限元考试复习简答题

1、简述有限单元法常分析的问题。

答:有限单元法是一种用于连续场分析的数值模拟技术,他不仅可以对机械、建筑结构的位移场和应力场进行分析,还可以对电磁学中的电磁场、传热学中的温度场、流体力学中的流体场进行分析。

2、在有限单元法中,位移模式应满足哪些基本条件。

答:1位移函数在单元节点的值应等于节点位移(即单元内部是连续的)2所选位移函数必须保证有限元的解收敛于真实解3、简述有限单元法结构刚度矩阵的特点。

答:对称矩阵奇异矩阵稀疏矩阵具有相对独立性4、简述有限单元法中单元刚度矩阵的性质。

答:1.单元刚度矩阵是对阵矩阵2.单元刚度矩阵的主对角线元素恒为正值3.单元刚度矩阵是奇异矩阵4.单元刚度矩阵仅与本身有关5、简述有限元法中选取单元位移函数(多项式)的一般原则。

答:必须假定一个函数,所假定的位移函数必须满足两个条件:其一,它在单元节点上的值应等于节点位移;其二,由该函数出发得到的有限元解收敛于真实解。

6、要保证有限单元法计算结果的收敛性,位移函数必须满足那些条件?答:1、完备性条件:要求单元的位移函数必须能够满足刚性位移和常量应变状态2、协调性条件:要求单元的位移函数在单元内部必须是连续函数,且必须保证相邻单元间位移协调9、用有限元法分析实际工程问题有哪些基本步骤?需要注意什么问题?1)建立实际工程问题的计算模型2)选择适当的分析工具侧重考虑以下几个方面1)前处理(Preprocessing)2)求解(Solution)3)后处理(Postprocessing10、在弹性力学中根据什么分别推导出平衡微分方程、几何方程、物理方程,这三个方程分别表示什么关系?答:根据静力学、几何学和物理学三方面条件,分别推导出平衡方程、几何方程和物理方程;三组方程分别表示:应力与载荷关系、应变与位移关系、应力与应变关系。

11、什么是平面应力问题?什么是平面应变问题?分别写出平面应力问题和平面应变问题的物理方程。

答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。

弹性力学重点复习题及其答案-知识归纳整理

弹性力学重点复习题及其答案-知识归纳整理

弹性力学重点复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相习惯。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相习惯。

4、物体受外力将来,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也算是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为延续性、彻底弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=xσMPa ,50=yσMPa ,5010=xyτ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=xσMPa ,0=yσMPa ,400-=xyτ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=xσMPa ,1000=yσMPa ,400-=xyτ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要思量静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将延续体变换成为离散化结构,然后再用结构力学位移法举行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移普通总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学与有限元分析试题及参考答案

弹性力学与有限元分析试题及参考答案
将已知应力分量 , , 代入上式,可知满足相容方程。
按应力求解平面应变问题的相容方程:
将已知应力分量 , , 代入上式,可知满足相容方程。
4、试写出平面问题的应变分量存在的必要条件,并考虑下列平面问题的应变分量是否可能存在。
(1) , , ;
(2) , , ;
(3) , , ;
其中,A,B,C,D为常数。
弹性力学与有限元分析试题及参考答案
四、分析计算题
1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1) , , ;
(2) , , ;
其中,A,B,C,D,E,F为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ;(2)在区域内的相容方程 ;(3)在边界上的应力边界条件 ;(4)对于多连体的位移单值条件。
6、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。
解:将应力函数 代入相容方程
可知,所给应力函数 能满足相容方程。
由于不计体力,对应的应力分量为
, ,
对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:
上边, , , , , ;
解:应变分量存在的必要条件是满足形变协调条件,即
将以上应变分量代入上面的形变协调方程,可知:
(1)相容。
(2) (1分);这组应力分量若存在,则须满足:B=0,2A=C。
(3)0=C;这组应力分量若存在,则须满足:C=0,则 , , (1分)。
5、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。

弹性力学与有限元分析试题

弹性力学与有限元分析试题

弹性力学与有限元分析试题
1. 试证明:如果体力虽然不是常量,但却是有势的力,即体力分量可以表示为
,V V X Y x
y
∂∂=-=-
∂∂
其中V 是势函数,则应力分量亦可用应力函数表示为:
2
2
2
2
2
,
,x y xy V V y
x
xy
ϕϕϕσστ∂∂∂=
+=
+=-
∂∂∂
并推导出相应的相容方程。

(20分)
2. 设下图中的简支梁只受重力作用,而粱的密度为ρ,试用应力函数:
()()2
3
2
3
2
5
432
2
10
6
x
A B Ay
By Cy D x Ey Fy Gy y y Hy Ky
ϕ=
++++++-
-
++求解应力分量。

(25分)
3. 在薄板内距边界较远的某一点处,应力分量为
0,x y
xy q
σσ
τ===,如该处有一小圆孔,试求孔边的最大
正应力。

如果应力分量为x y
xy q σσ
τ===,孔边的最大正
应力又是多少?(25分)
4. 试证:三节点三角形单元内的任意一点,有:
1(15i j m i i j j m m i i j j m m N N N N x N x N x x N y N y N y y
++=++=++=分)
5. 说明用有限元求解平面问题的具体步骤,推导出单元刚度矩阵e K 的普遍表达式,并说明其性质。

(15分)。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

--弹性力学与有限元分析试题及参考答案

--弹性力学与有限元分析试题及参考答案

弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。

(1)此组应力分量满足相容方程。

为了满足平衡微分方程,必须A =-F ,D =-E 。

此外还应满足应力边界条件。

(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。

上两式是矛盾的,因此,此组应力分量不可能存在。

2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。

试利用平衡微分方程求系数C 1,C 2,C 3。

解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。

弹性力学及有限元复习题及参考答案

弹性力学及有限元复习题及参考答案

《弹性力学》复习题
1. 用最小势能原理求解图示结构的结点转角,已知各杆抗弯刚度均为EI = 5.4×104 kN·m2。

2.用最小势能原理求解图示结构在均布荷载作用下的结点转角,已知抗弯刚度为EI = 5.6×104 kN·m2。

3.图示为水库大坝示意图,设其长度远大于截面尺寸,求其在静水压力作用下的应力分布。

请采用合适的弹性力学模型对其进行简化,并写出其基本方程。

4.求图示结构在所给坐标系下的整体原始刚度矩阵(各杆件抗压刚度均为EA)。

5.计算抗压刚度为EA的图示结构在引入边界条件之前的原始刚度矩阵。

6. 求图示结构引入边界条件之前的原始整体刚度矩阵和综合结点荷载列阵,设各杆抗弯刚度为EI,不考虑轴向变形和剪切影响。

7. 计算图示常应变三角形单元的单元刚度矩阵。

已知弹性模量E,厚度t,泊松比υ=0。

弹性力学重点复习题及其答案

弹性力学重点复习题及其答案

弹性力学重点复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学及有限元法 复习题

弹性力学及有限元法  复习题
图2矩形单元
3、如图3所示平面问题的四边形单元,材料参数为 , ,试通过编制程序确定单元的刚度矩阵,写出Matlab程序代码。
图3四边形单元
第一章
1、已知某材料为理想弹性体,弹性体内一点的应力状态为 MPa,假设某表面的外法线方向余弦为 ,求该表面的法向和切向应力;该点的应力不变量、主应力、最大剪应力,并绘制摩尔圆。
2、以y轴或z轴为例,推导平衡微分方程(要求写清详细的推导过程)
3、从理想弹性体中取出一微元体,见下图,试以向yOz面投影为例,推导几何方程。
(a)一端固支,一端简支(b)两端固支
4、如图4所示的一个平面梁系统,梁的材料为 Pa,梁的截面见图4,作用力 ,总长度为1.5m,等分为15个轴段。试有限元法求解各节点的挠度,并绘制平面梁变形曲线。
图4一端固支,一端简支的平面梁系统
5、如图4所示,平面应力问题, cm,单元厚度 mm,弹性模量 MPa,泊松比 。 ,且各节点位移、单元应力、单元应变,约束处的支反力。列出Matlab和ANSYS分析程序
7、如下图所示处于平面应力状态的薄板结构,在P点区域作用有面力F,请标示出该结构的应力及位移边界条件
第二章
1、一点处的应力状态由应力矩阵给出,如下
MPa
如果 GPa, ,求单位体积的应变能密度。
2、对于平面应变状态 MPa, MPa, MPa,画出与三个主应力相对应的三个摩尔圆;求最大剪应力的位置和数值;计算等效的von Mises应力值,并与最大剪应力的二倍进行比较。
(要求写出程序代码)
图2平面梁单元受均布力作用
clear
symsx;
symsL;
symsP;
Nvi=1-3*(x/L)^2+2*(x/L)^3;

有限元复习题分析

有限元复习题分析

1.弹性力学平面应力问题有什么几何特征、载荷特征和应力特征?答:(1)几何特征:等厚度的薄板;(2)载荷特征:体力作用于体内,面力和约束作用于板边, 三者均平行于板中面,沿板厚不变;(3)应力特征:由于外力、约束沿z 向不变,应力中只有平面存在且仅为(x ,y )函数。

2.简要叙述平面应力问题有限元位移法分析步骤,并给出主要公式。

答:3.单元刚度矩阵中任意一个元素Krs 的物理意义是什么?答: 为第s 个位移分量为单位1,其余位移为零时需要在施加的第r 个节点力,也即第s 结点的位移对第r 结点力的贡献。

4.有限元解弹性力学问题要保证解答收敛性,单元位移多项式满足什么条件?答:包含刚体平移和转动;包含常应变;可证满足相邻单元公共边界上的连续性条件。

5.试说明三角形单元、四节点四边形单元的解答是收敛的。

答: 三角形单元、四节点四边形单元的位移函数中包含了常数项和一次项,所以包含了刚体位移和 常应变;当考虑相邻单元公共边界时,两种单元类型的相邻单元公共边界共用两个节点,而此时的位移函数一个自变量为常数,位移函数经退化为两个未知系数,即f=Bx+C 或f=By+C 的形式,刚好可以由公共的两个节点位移条件位移确定。

故解答是收敛的。

6.单元刚度方程 反映的物理意义是什么?推导方法有哪些?答:反映了单元节点位移与节点力之间的关系(结点平衡法,虚位移原理,最小势能原理)7.有限元位移法分析弹性力学平面问题时如果采用四边形八结点曲边单元,选取的位移函数多项式包括那些项(用直角坐标x , y 表示)?答:主要包含常数项C ,线性项x , y ,二次项x 2, xy, y 2,三次项x 2y , xy 2。

rs k 12312344565678u a a x a y u x y xyv a a x a yv x y xyαααααααα=++=+++=++=+++三角形单元四边形单元()()()[]{}{}e e e k F δ=8.简要叙述平面刚架有限元分析步骤,给出主要公式。

弹性力学与有限元分析试题及其答案

弹性力学与有限元分析试题及其答案

2021年度弹性力学及有限元分析复习题及其答案(绝密试题)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,及正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,及切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

及物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的根本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,那么主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,那么主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,那么主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量及体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移及约束,或应力及面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化构造,然后再用构造力学位移法进展求解。

其具体步骤分为单元分析和整体分析两局部。

15、每个单元的位移一般总是包含着两局部:一局部是由本单元的形变引起的,另一局部是由于其他单元发生了形变而连带引起的。

11弹性力学试的题目及问题详解

11弹性力学试的题目及问题详解

2012年度弹性力学与有限元分析复习题及其答案(绝密试题)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、我们把剪应力为零的面称为主平面,把该面的法线方向称为主方向,把该面上的正应力称为主应力。

8、弹性力学平面问题的基本方程包括:2个平衡微分方程,3个物理方程和3个几何方程。

9、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

10、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

11、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

12、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

13、表示应力分量与体力分量之间关系的方程为平衡微分方程。

14、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

15、按应力求解平面问题时常采用逆解法和半逆解法。

二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”) 1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

(√) 2、均匀性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

(×)3、把两块不同的金属焊接在一起,就成为一块不连续但均匀的物体。

(×)4、连续性假定是指整个物体是由同一材料组成的。

(×)5、平面应力问题与平面应变问题的物理方程是完全相同的。

(×)6、如果某一问题中,0===zy zx z ττσ,只存在平面应力分量x σ,y σ,xy τ,且它们不沿z 方向变化,仅为x ,y 的函数,此问题是平面应力问题。

(√)7、如果某一问题中,0===zy zx z γγε,只存在平面应变分量x ε,y ε,xy γ,且它们不沿z 方向变化,仅为x ,y 的函数,此问题是平面应变问题。

(√) 8、表示应力分量与面力分量之间关系的方程为平衡微分方程。

(×) 9、表示位移分量与应力分量之间关系的方程为物理方程。

(×) 10、当物体的形变分量完全确定时,位移分量却不能完全确定。

(√) 11、当物体的位移分量完全确定时,形变分量即完全确定。

(√) 12、按应力求解平面问题时常采用位移法和应力法。

(×)13、按应力求解平面问题,最后可以归纳为求解一个应力函数。

(×) 三、简答题1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。

在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。

在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。

弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。

2、简述弹性力学的研究方法。

答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。

此外,在弹性体的边界上还要建立边界条件。

在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。

求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。

3、弹性力学中应力如何表示?正负如何规定?答:弹性力学中正应力用σ表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用τ表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。

并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4、简述平面应力问题与平面应变问题的区别。

答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。

对应的应力分量只有x σ,y σ,xy τ。

而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u 和v 5、简述圣维南原理。

如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。

6、简述按应力求解平面问题时的逆解法。

答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。

四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。

(1)此组应力分量满足相容方程。

为了满足平衡微分方程,必须A =-F ,D =-E 。

此外还应满足应力边界条件。

(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。

上两式是矛盾的,因此,此组应力分量不可能存在。

2、已知应力分量312x C Qxy x +-=σ,2223xyC y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。

试利用平衡微分方程求系数C 1,C 2,C 3。

解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。

解:将已知应力分量q x -=σ,q y -=σ,0=xy τ,代入平衡微分方程⎪⎪⎭⎪⎪⎬⎫=+∂∂+∂∂=+∂∂+∂∂00Y x y X y x xyy yxx τστσ可知,已知应力分量q x -=σ,q y -=σ,0=xy τ一般不满足平衡微分方程,只有体力忽略不计时才满足。

按应力求解平面应力问题的相容方程:y x xy xy x y y x ∂∂∂+=-∂∂+-∂∂τννσσνσσ22222)1(2)()( 将已知应力分量q x -=σ,q y -=σ,0=xy τ代入上式,可知满足相容方程。

按应力求解平面应变问题的相容方程:y x xy xyx y y x ∂∂∂-=--∂∂+--∂∂τνσννσσννσ2222212)1()1(将已知应力分量q x -=σ,q y -=σ,0=xy τ代入上式,可知满足相容方程。

4、试写出平面问题的应变分量存在的必要条件,并考虑下列平面问题的应变分量是否可能存在。

(1)Axy x =ε,3By y =ε,2Dy C xy -=γ; (2)2Ay x =ε,y Bx y 2=ε,Cxy xy =γ; (3)0=x ε,0=y ε,Cxy xy =γ; 其中,A ,B ,C ,D 为常数。

解:应变分量存在的必要条件是满足形变协调条件,即y x xy xyy x ∂∂∂=∂∂+∂∂γεε22222 将以上应变分量代入上面的形变协调方程,可知:(1)相容。

(2)C By A =+22(1分);这组应力分量若存在,则须满足:B =0,2A =C 。

(3)0=C ;这组应力分量若存在,则须满足:C =0,则0=x ε,0=y ε,0=xy γ(1分)。

5、证明应力函数2by =ϕ能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0≠b )。

解:将应力函数2by =ϕ代入相容方程024422444=∂∂+∂∂∂+∂∂yy x x ϕϕϕ 可知,所给应力函数2by =ϕ能满足相容方程。

由于不计体力,对应的应力分量为b yx 222=∂∂=ϕσ,022=∂∂=x y ϕσ,02=∂∂∂-=y x xy ϕτ对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:上边,2hy -=,0=l ,1-=m ,0)(2=-=-=h y xy x f τ,0)(2=-=-=h y y y f σ;下边,2hy =,0=l ,1=m ,0)(2===h y xy x f τ,0)(2===h y y y f σ;左边,2lx -=,1-=l ,0=m ,b f l x x x 2)(2-=-=-=σ,0)(2=-=-=l x xy y f τ;右边,2lx =,1=l ,0=m ,b f l x x x 2)(2===σ,0)(2===l x xy y f τ。

相关文档
最新文档