企业安全生产问题数学建模

企业安全生产问题数学建模
企业安全生产问题数学建模

企业安全生产问题数学

建模

Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

企业的生产安排问题

摘要

在生产中,科学合理的安排生产能够很大提高企业的利润,对企业的发展具有重要的意义。本文针对工厂的产品的生产、库存和设备的维修更新等问题进行了讨论,并建立了相应的模型使企业的利益最大化。

首先,根据企业提供的数据,以7种产品为讨论对象,以每月的最大利润之和为最大总利润,然后将总目标转化为每月的目标,以每月的利润为目标函数,以工厂拥有的设备所能提供的最大生产用时和产品的最大需求量为约束条件,利用LINGO进行求解,得到最优安排计划,见下表。

关键词:最大利润, LINGO,最优安排计划

问题的重述

企业是一个有机的整体,企业管理是一个完整的系统,由许多子系统组成。在企业的管理中,非常关键的一部分是科学地安排生产。对于生产、库存与设备维修更新的合理安排对企业的生存和发展具有重要的意义。

已知某工厂要生产7种产品,以I,II,III,IV,V,VI,VII来表示,但每种产品的单件利润随市场信息有明显波动,现只能给出大约利润如下。

该厂有4台磨床、2台立钻、3台水平钻、1台镗床和1台刨床可以用来生产上述产品。已知生产单位各种产品所需的有关设备台时如下表。

从1月到6月,维修计划如下:1月—1台磨床,2月—2台水平钻,3月—1台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备当月不能安排生产。

又知从1—6月市场对上述7中产品最大需求量如下表所示:

每种产品当月销售不了的每件每月存储费为5元,但规定任何时候每种产品的存储量均不能超过100件。1月初无库存,要求6月末各种产品各储存50件。

若该工厂每月工作24天,每天两班,每班8小时,要求:

(1)该厂如何安排生产,使总利润最大;

(2)若对设备维修只规定每台设备在1—6月份内均需安排1个月用于维修(其中4台磨床只需安排2台在上半年维修),时间可灵活安排。重新为该厂确定

一个最优的设备维修计划。

问题的基本假设与符号说明

基本假设:

①假设产品的单件利润在这个时期内大约利润不变;

②假设在生产过程设备不会出现故障(除在维修中的设备);

③假设每种产品能够在预定的时间内满足生产,不存在其他因素影响;

④假设在该时期内生产单位产品耗的对应设备时间不变;

⑤假设市场的最大需求量在该时期不变;

⑥假设在总利润与单件产品的利润,库存的总费用相关,不考虑员工等其他的费用,同时也不

考虑设备的维修费用;

⑦假设每个月的库存量在该时期内的单件库存费用不变;

符号说明:

Xij: 表示第i月第j种产品的生产量;

Yij: 表示第i月第j种产品的销售量;

Z:表示总利润;

Sij:表示第i月第j种产品的剩余量;

Wj: 表示第j种产品的大约利润;

Tkj: 表示第k种设备生产第j种产品所需的台时;

Bik: 表示在第i个月内第k种需要维修的设备能投入生产的数量;

Rij: 表示第i月第j种产品的最大需求量;

Nij: 表示第i月第j种产品的单间库存费用;

Mik:表示第i个月第k种需要维修的设备进行维修的数目;

Dk:表示第k种设备需要维修的数目;

其中 (k=1 2 3 4 5 ; j=1 2 3 4 5 6 7 ; i=1 2 3 4 5 6).

模型的分析

对于问题一:企业要生产其中产品,以I,II,III,IV,V,VI,VII来表示,每种产品的单件

都有相对应的利润值,并在一定时期内稳定。在问题一中,企业的总利润只与各类产品总销售的产品类别和数量有关以及当月末的储存费有关。各类产品的产量受到每件产品耗不同设备的时间限定;月末的储存费只与当月末的库存量成正比关系,而每月各

类产品的库存量都有相应的范围限定和要求。综合上述各个量之间的联系和对应条件可以建立相应的数学线性优化模型。

对于问题二:如果重新为该厂确定一个最优的设备维修计划,可以运用与0-1整数规划似的思路来确定每个月需要维修哪几种设备,这几种设备又需维修几台.在满足约束条件的情况下使得企业获得的总利润最大。

模型的建立

模型Ⅰ

ⅰ、决策变量Xij :第i 月第j 种产品的生产量;Yij :第i 月第j 种产品的销售量;Z :总利润;Sij 表示第i 月第j 种产品的剩余量;Wj :第j 种产品的大约利润;Tkj :第k 种设备生产第j 产品所需的台时;Bik :第i 月第k 种设备能投入生产的数量;Rij :第i 月第j 种产品的最大需求量;

ⅱ、决策目标 以总利润最大(即每月的利润最大)Max Z ;

∑∑∑∑====?-?=6

17

1

6

17

1

max i j i j Nij Sij wj Yij ;

ⅲ、约束条件

①使总台时满足工厂安排要求 ②使生产的产品量满足最大需求量 物流守恒

Tkj 、Bik 、Rij 的数值如下:

模型Ⅱ

由模型一可知在维修设备中的约束条件Bik 改变了,这里运用10-整数规划的思路对Bik 进行约束。

ⅰ、决策变量 决策变量Xij :第i 月第j 种产品的生产量;Yij :第i 月第j 种产品的销售量;Z :总利润;Sij 表示第i 月第j 种产品的剩余量;Wj :第j 种产品的大约利润;Tkj :第k 种设备生产第j 产品所需的台时;Bik :第i 月第k 种设备能投入生产的数量;Rij :第i 月第j 种产品的最大需求量;

Mik :表示第i 个月第k 种需要维修的设备进行维修的数目;Dk : 表示第k 种设备需要维修的数目;

ⅱ、决策目标 以总利润最大(即每月的利润最大)Max Z ; ① ∑∑∑∑====?-?=6

17

1

6

17

1

max i j i j Nij Sij wj Yij ;

ⅲ、约束条件

①使总台时满足工厂安排要求 ②使生产的产品量满足最大需求量 物流守恒

③控制每月每种设备的维修约束条件

Mik Bik ,的数值如下:

模型的求解

模型Ⅰ

利用LINGO进行求解,程序见附录一,可以得到最大利润MAX=元,在这种情况下按下表安排生产:

想化状态,排除一切不相关的影响。若是单件产品利润在这个时期内波动性较大,则需要另外假设。在此模型假设,首先每个月的销售量与生产量,前月库存量有关,当月库存量满足Yij

=

+

(,既要使产品尽量满足市场的需求,同时库存费用较

-)1

i

Sij

Xij

j

S+

少,每月的库存量又只允许不超过100的情况下,某种设备全部维修,则生产有关的产品停止生产。由表可以看出:当第3月份镗床在维修中时,对应需要经过镗床加工的第I、II、IV、V和VII种产品就不能照常生产,直接导致该月没有此类产品的出产,这严重影响了公司利润;当第3月份市场对III、IV的需求量为0,即我们生产的产品在该月销售不了,这说明对于该产品的相关工作在这个月都要相应的停止,这对企业的安排具有很大的不利性。

模型Ⅱ

利用LINGO进行求解,程序见附录二,可以得到最大利润MAX=元,得到结果如下:各种设备在维修时所剩余在运行的设备绘制成表4如下:

1台镗床和1台刨床,5月—2台磨床和1台立钻,6月—2台水平钻。

在安排相应的设备维修情况下得到最大的利润下企业在各个月的生产量表5如下:

化,与问题一相比较下多出5=151435元。对于重新安排维修计划可以比首次的维修计划中获取的总利润更大。但在4月份时生产量为0,这对于企业来说是一种损失,这样要尽量满足需求量就必在前一个月的库存量增加。市场需求量的限制不得不控制部分产品产量,其使企业生产资源浪费较大。

综合分析:

在问题一中得维修计划使企业的资源利用更充分,在每个月中都有生产,假如考虑其他因素的条件下,可以充分利用资源,以求达到更好的收益。而改变维修计划后,用运行结果显示,在4月停止了生产,对于企业来说是一笔巨大的损失。虽然在其他月份中可以获得更大利润,但同时也使资源,员工劳动时间等因素浪费。企业的最大效益是每个企业最求的最大目标,资源,能力和市场容量的多方面共同限制企业的最大效益。

模型的评价和推广

评价

1、模型的优点:

①该模型给出了企业的生产计划的一般通用算法,也涉及到了逆序推算。

②本模型反应的数据具有很好的参考性.

2、模型的缺点:

①由于每种产品的单件利润随市场信息有明显波动,本模型假设了每种产品的单件利润在这6个月不变。所以,最大总利润不是很准确。

②该模型没有对工序进行优化安排,不适于解决工序复杂,加工时间长的问题。

③机器在运行中不能确保一定不能出故障,微小的故障可能打乱了企业的整个计划,最后影响效益,即可变性较差。

④该模型基于不严格的假设与各项指标,假设和指标对结果的影响往往很大,这就要求对指标和各项指标进行合理的确认,实际上这也是很大的额外工作。

推广

问题一、问题二的运行结果显示,在对镗床、刨床这两种设备进行维修时,导致有关需要该设备生产的相关产品停产。这样的情况浪费了许多的资源,使我们的总利润达不到最大。在这种情况下企业可以考虑向外部租赁或购买该种设备,使生产计划进一步优化,再对增加该种设备后所获得的净增利润进行求解,如果增加该种设备的净增利润比租凭或购买的费用大,则租赁或购买该种设备。

我们还可以对各种设备的利用率进行分析、求解,从中挖掘潜在的价值,从而再重新安排生产计划和设备维修计划,以达到进一步的优化。

由于本模型假设了单位产品的利润在这个时期内不变,而实际情况是波动的。单位产品的利润和这种产品的产量有关,他们之间有一定的函数关系,如果知道两者的函数关系,我们可以在本模型的基础上做进一步的优化,得到的最大总利润更接近实际情

况。

参考文献

[1] 姜启源,谢金星,叶俊:《数学模型(第三版)》,高等教育出版社,2003年版。

[2] 何瑞文等,高等数学,[M]西南交通大学出版社,2003年8月第1版

附录

附录一

程序一代码:

model:

max=100*y11+60*y12+80*y13+40*y14+110*y15+90*y16+30*y17-5*s11-5*s12-5*s13-5*s14-5*s15-5*s16-5*s17;

*x11+*x12+*x15+*x16+*x17<=1152;

*x11+*x12+*x14+*x16<=768;

*x11+*x13+*x17<=1152;

*x11+*x12+*x14+*x15+*x17<=384;

*x13+*x15+*x17<=384;

x11=s11+y11;

x12=s12+y12;

x13=s13+y13;

x14=s14+y14;

x15=s15+y15;

x16=s16+y16;

x17=s17+y17;

s11<=100;

s12<=100;

s13<=100;

s15<=100;

s16<=100;

s17<=100;

y11<=500;

y12<=1000;

y13<=300;

y14<=300;

y15<=800;

y16<=200;

y17<=100;

@gin(x11);@gin(x12);@gin(x13);@gin(x14);

@gin(x15);@gin(x16);@gin(x17);@gin(s11);

@gin(s12);@gin(s13);@gin(s14);@gin(s15);

@gin(s16);@gin(s17);@gin(s1);@gin(y11);

@gin(y12);@gin(y13);@gin(y14);@gin(y15);

@gin(y16);@gin(y17);

程序二代码:

model:

max=100*y21+60*y22+80*y23+40*y24+110*y25+90*y26+30*y27-5*s21-5*s22-5*s23-5*s24-5*s25-5*s26-5*s27;

*x21+*x22+*x25+*x26+*x27<=1536;

*x21+*x22+*x24+*x26<=768;

*x21+*x23+*x27<=384;

*x21+*x22+*x24+*x25+*x27<=384;

*x23+*x25+*x27<=384;

s11+x21=s21+y21;

s12+x22=s22+y22;

s13+x23=s23+y23;

s14+x24=s24+y24;

s15+x25=s25+y25;

s16+x26=s26+y26;

s17+x27=s27+y27;

s21<=100;

s22<=100;

s23<=100;

s24<=100;

s25<=100;

s26<=100;

s27<=100;

y21<=600;

y22<=500;

y23<=200;

y24=0;

y25<=400;

y27<=150;

s11=0;

s12=0;

s13=83;

s14=0;

s15=0;

s16=0;

s17=0;

@gin(x21);@gin(x22);@gin(x23);@gin(x24);

@gin(x25);@gin(x26);@gin(x27);@gin(s21);

@gin(s22);@gin(s23);@gin(s24);@gin(s25);

@gin(s26);@gin(s27);@gin(y21);@gin(y22);

@gin(y23);@gin(y24);@gin(y25);@gin(y26);

@gin(y27);

说明:程序三、程序四、程序五同程序二只需把j分别改为3,4,5且把能投入生产的设备数、各种产品的最大需求量、上月的存储量改为相应的值即可。

程序六代码:

model:

max=100*y61+60*y62+80*y63+40*y64+110*y65+90*y66+30*y67-5*s61-5*s62-5*s63-5*s64-5*s65-5*s66-5*s67;

*x61+*x62+*x65+*x66+*x67<=1536;

*x61+*x62+*x64+*x66<=768;

*x61+*x63+*x67<=768;

*x61+*x62+*x64+*x65+*x67<=384;

*x63+*x65+*x67=0;

s51+x61=s61+y61;

s52+x62=s62+y62;

s53+x63=s63+y63;

s54+x64=s64+y64;

s55+x65=s65+y65;

s56+x66=s66+y66;

s57+x67=s67+y67;

s61=50;

s62=50;

s63=50;

s64=50;

s65=50;

s66=50;

s67=50;

y11<=500;

y12<=500;

y13<=100;

y14<=300;

y15<=1100;

y17=0;

s51=0;

s52=0;

s53=100;

s54=0;

s55=100;

s56=0;

s57=100;

@gin(x61);@gin(x62);@gin(x63);@gin(x64);

@gin(x65);@gin(x66);@gin(x67);@gin(y61);

@gin(y62);@gin(y63);@gin(y64);@gin(y65);

@gin(y66);@gin(y67);

附录二

程序一代码:

model:

max=100*y11+60*y12+80*y13+40*y14+110*y15+90*y16+30*y17-5*s11-5*s12-5*s13-5*s14-5*s15-5*s16-5*s17;

*x11+*x12+*x15+*x16+*x17<=384*(4-m11);

*x11+*x12+*x14+*x16<=384*(2-m12);

*x11+*x13+*x17<=384*(3-m13);

*x11+*x12+*x14+*x15+*x17<=384*(1-m14);

*x13+*x15+*x17<=384*(1-m15);

x11=s11+y11;

x12=s12+y12;

x13=s13+y13;

x14=s14+y14;

x15=s15+y15;

x16=s16+y16;

x17=s17+y17;

s11<=100;

s12<=100;

s13<=100;

s14<=100;

s15<=100;

s16<=100;

s17<=100;

y11<=500;

y12<=1000;

y13<=300;

y14<=300;

y15<=800;

y16<=200;

y17<=100;

m11<=9;

m13<=9;

m14<=9;

m15<=9;

m11=d1;

m12=d2;

m13=d3;

m14=d4;

m15=d5;

@gin(x11);@gin(x12);@gin(x13);@gin(x14);

@gin(x15);@gin(x16);@gin(x17);@gin(s11);

@gin(s12);@gin(s13);@gin(s14);@gin(s15);

@gin(s16);@gin(s17);@gin(y11);@gin(y12);

@gin(y13);@gin(y14);@gin(y15);@gin(y16);

@gin(y17);@gin(m11);@gin(m12);@gin(m13);

@gin(m14);@gin(m15);

说明:程序二、程序三、程序四、程序五、程序六同程序一只需把月份、能投入生产的设备数、各种产品的最大需求量、上月的存储量、需要维修的设备能投入生产的量、需要维修的设备进行维修的数量根据题意改为相应的值即可。

三峡大学数学建模第一题电力生产问题

电力生产问题 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 ( 只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 电力生产问题的数学模型 摘要 本文解决的是电力生产问题,在发电机的发电量能满足每日的电力需求的条件下,为了使每日的总成本达到最低,我们建立了一个最优化模型。 对于问题一:由已知条件可知有固定成本、边际成本、启用成本,据此,我们确定了三个指标:即固定总成本、边际总成本、启动总成本。总成本即为这三项总成本之和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,一共有56个未知数,为减少未知数,并将非线性约束条件转化为线性约束条件,将整数规划转化为非整数规划,我们以每个时段每种型号的几个发电机发出的总功率为变量,并列出相应的约束条件,然后通过LINGO求出个时段各种型号发电机的总功率,再采用分支定界法求出最小总成本为

146.9210万元。再根据总功率利用Matlab软件计算出总功率所对应的该型号发电机的数量(见表一)。 对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与问题一相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大总功率乘以80%后大于用电需求。为锻炼编程技术,故在第二问改用Matlab软件编程来求解,将所要求的7个时段4种型号的发电机的平均功率一共28个未知数用X1,X2,,,,X28表示,将其对应的发电机数量用X29,X30,,,X56表示,并利用矩阵列出约束条件和目标函数,然后编程并运行求解,得到的发电机数量有的不为整数,然后采用分支定界法,得到调整后的结果,最小总成本为157.5426万元。 ! 关键词:线性规划、总功率、使用数量、总成本 1.问题重述 1.1问题背景 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 任何代价。 1.2需要解决的问题 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2.模型假设 假设1:调整发电机功率没有成本 :

数学建模野兔生长问题

野兔生长问题 摘要 根据题目,野兔生长属自然范畴,若在生存条件良好,且无外力干扰的情况下,其种群数量是呈对数型增长的,从著名的斐波纳契数列解决兔子生长问题也可以看出,兔子的生长,呈递增的状态。可由题目条件可知,野兔生长并不是处于理想的情况下的,中间有递减的情况,考虑到自然的各种原因,诸如,天敌的捕杀,自然灾害,疾病,生存地的减少等。 对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型拟和多项式拟合来模。Logistic模型是种群生态学的核心理论之一。它可以用来描述种群生长规律,利用它可以表征种群的数量动态。用多项式拟合可以大致模拟预测未来的兔子数量。 之所以选择该模型来研究野兔生长问题,是因为,该模型考虑并概括了,种群发展所遇到的各种外界条件,也就是说,它模拟了真实情况。通过建立Logistic模型,我们小组得出T=10时,野兔数量为9.84194(十万)只。该结果比较符合客观规律。 利用Logistic模型可以表征种群的数量动态;如鱼类种群的增长,收获与时间关系的确定。描述某一研究对象的增长过程如生态旅游区环境容量的确定,森林资源的管理以及耐用消费品社会拥有量的预测、国民生产总值的预测等;也可作为其它复杂模型的理论基础如Lotka-Volterra两种群竞争模型;以上的大多数的工作都是拿逻辑斯蒂模型来用,但也由此可看出逻辑斯蒂方程不管在自然科学领域还是在社会科学中都具有非常广泛的用途。 关键字:Logistic模型生态学 MATLAB程序 问题重述 野兔生长问题。首先,野兔是生长在自然环境中的。自然很复杂,存在着许多影响种群发展的因素。我们知道,假如给野兔一个理想的环境,野兔数量是呈J型增长的。现实情况中,种群一般是呈S型增长的,从题中表格看出,野兔的数量并不是单一地增长,T=3,6.90568;T=4,6.00512;T=5,5.56495;T=6,5.32807。第四年到第七年,这三年野兔的数量不增反降,说明其间有影响野兔生长的因素存在。我们探讨了其中的因素: (1),兔子内部因素,竞争,雄雌比利失去平衡,老化严重等。 (1),自然灾害,比如说草原火灾,使野兔生长环境遭到破坏;再如气候反常,使野兔的产卵,交配受影响。 (2),天敌的捕食,狼,狐狸等天敌大量地捕食使野兔生存受到威胁。 (3),疾病的侵扰,野兔种群中,蔓延并流行疾病,必然使野兔存活率下降。。(4),人类的影响,城市扩建,使其栖息地面积减少;捕杀。

数学建模生产计划有关问题解析

201数学建模生产计划 摘要 本文主要研究足球生产计划的规划问题。 对于问题一足球总成本包括生产成本与储存成本,又由于足球各月的生产成本、储存成本率及需求量已知,故各月足球的生产量对总成本起决定因素。在此建立总成本与足球生产量之间的关系,运用Matlab求出了总成本的最优解。 对于问题二储存成本率的大小影响了储存成本的高低,要使总成本最低,在储存成本率变化的情况下必须不断调整足球各月生产量,我们在Matlab中运用散点法,取了501个点,进而对图形进行线性拟合,得出储存成本率减小时各月足球生产量的变化情况。 对于问题三考虑到储存容量不能用储存成本率直接由函数表达,因此在Matlab 采用散点法结合表格分析法对501个点进行分析可得到储存成本率为0.39%时,储存容量达到最大。 关键词:最优解散点法线性拟合表格分析法 问题的重述 皮革公司在6个月的规划中根据市场调查预计足球需求量分别是10,000、15,000、30,000、35,000、25,000和10,000,在满足需求量的情况下使总成本最低,其包括生产成本及库存成本。根据预测,今后六个月的足球的生产单位成本分别是$12.50、$12.55、$12.70、$12.80、$12.85和$12.95,而每一个足球在每个月中的持有成本是该月生产成本的5%。目前公司的存货是5,000,每个月足球最大产量为30,000,而公司在扣掉需求后,月底的库存量最多只能储存10,000个足球。 问题一、建立数学模型,并求出按时满足需求量的条件下,使生产总成本和储存成本最小化的生产计划。 问题二、如若储存成本率降低,生产计划会怎样变化? 问题三、储存成本率是多少时?储存容量达到极限。 问题的分析 问题一要求在足球的需求量一定的情况下,使生产总成本和储存成本最小。又足球的生产成本和储存成本率已知,故只需要建立生产总成本和储存成本与各月足球的生产量之间的优化模型,运用Matlab即可求出足球生产总成本和储存成本的最优化组合。

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来, 随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用, 而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。 (2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

数学建模一周试题。

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 试 题 说 明 1.本次数学建模周共有如下十五道题。每支队伍(2-3人/队)必须从以下题中任意选取一题,并完成一篇论文,具体要求参阅《论文格式规范》。 2.指导老师会根据题目的难度对论文最后的评分进行调整。 3.题目标注为“A ”的为有一定难度的题目,选择此题你们将更有可能得到高分。 (一)乒乓球赛问题 (A) A 、 B 两乒乓球队进行一场五局三胜制的乒乓球赛,两队各派3名选手上场,并各有3种选手的出场顺序(分别记为123,,ααα 和123,,βββ)。根据过去的比赛记录,可以预测出如果A 队以i α次 序出场而B 队以 j β次序出场,则打满5局A 队可胜ij a 局。由此得矩阵 () ij R a =如下: (1) 根据矩阵R 能看出哪一队的实力较强吗? (2) 如果两队都采取稳妥的方案,比赛会出现什么结果? (3) 如果你是A 队的教练,你会采取何种出场顺序? (4) 比赛为五战三胜制,但矩阵R 中的元素却是在打满五局的情况下得到的,这样的数据处理和预测方式 有何优缺点? (二)野兔生长问题 时野兔的数量。 (三)停车场的设计问题 在New England 的一个镇上,有一位于街角处面积100?200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。 容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。 (四)奖学金的评定 (A) 背景 A Better Class (ABC)学院的一些院级管理人员被学生成绩的评定问题所困扰。平均来说,ABC 的教员们一向打分较松(现在所给的平均分是A —),这使得无法对好的和中等的学生加以区分.然而,某项十分丰厚的奖学金仅限于资助占总数10%的最优秀学生,因此,需要对学生排定名次. 教务长的想法是在每一课程中将每个学生与其他学生加以比较,运用由此得到的信息构造一个排名顺序.例如,某个学生在一门课程中成绩为A,而在同一课程中所有学生都得A,那么就此课而言这个学生仅仅属于“中等”。反之,如果一个学生得到了课程中唯一的A ,那么,他显然处在“中等至上”水平。综合从几门不同课程所得到的信息,使得可以把所有学院的学生按照以10%划分等级顺序(最优秀的10%,其次的10%,等等)排序。 问题 (1)假设学生成绩是按照(A+,A, A —, B+ ,…)这样的方式给出的,教务长的想法能否实现?

电力生产问题数学模型

电力生产问题数学模型

————————————————————————————————作者:————————————————————————————————日期:

电力生产问题数学模型 摘要 本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。 因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。 解决问题(1)时,我们运用LINGO 工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 2 0 2 0 1 0 0 1750 750 1750 1000 1300 750 … … … … … … … … 型号4 0 3 3 3 3 3 3 0 2166.6 1800 3500 1800 1800 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的j ij j D P m ≤≤改为 8.0?≤≤j ij j D P m 。得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 5 0 8 1 5 0 0 1400 1400 1400 1400 1400 0 … … … … … … … … 型号4 3 3 3 3 3 3 3 1866.6 2466.6 2466.6 2400 2000 1800 1800 关键词:非线性 整体最优化 LIGNO 软件 时 段 型 号 时 段 型 号

数学建模在经济学中的应用

数学建模在经济学中的应用 摘要:高校的经济学教学中经常会融入一些数学模型的思想,实际上数学模型的建立与经济学的教学和研究有着很大的内在联系,两者之间有着必然的关系,文本笔者将会从数学与经济学的关系出发,具体的介绍数学经济模型及其重要性,并对构建数学经济模型以及一些实例进行具体的论述。 关键词:数学模型;经济学;高校教学;应用 现如今的高校教学当中可以说数学建模与经济学之间有着密切的关系,任何一项经济学的研究和计算都离不开数学模型的建立,采用数学模型来辅助经济学的发展可以更加直观的让人们从中看出经济的发展形势。例如在经济学的宏观控制和价格控制中,都有数学建模的融入,利用数学建模可以有助于经济学实验的宏观经济分析,在一些实验和价格控制当中,都经常会涉及到数学问题在微观经济中数理统计的实验设计,这时候就体现出了数学建模对于经济学的促进性作用。下面笔者将会针对数学建模对于经济学的重要作用进行具体的分析。 1.数学经济模型对于经济学研究的重要性: 一般情况下,单独的依靠数学模型是不够解决所有的经济学问题,很多经济领域中的问题是需要从微观角度进行细致的分析才能够总结出其中的规律。要想利用数学知识来

解决经济学中所出现的问题,就一定要建立适当的经济学模型。运用数学建模来解决经济学中的问题并不是没有道理的,很多时候从经济学的角度仅仅能够知道问题的方向和目的,至于其中的过程并不能有着详细的分析,而利用数学模型就可以彻底的解决这一问题。数学建模可以通过自身在数字、图像以及框图等形式来更加真实地反映出现有经济的实际状况。 2.构建经济数学模型的一般步骤: 要想利用数学模型来更好的解决现有的经济学问题,主要分为两个步骤,第一先要分清楚问题发生的背景并且熟悉问题,然后要通过假设的形式来完善现有的经济学问题,通过抽象以及形象化的方式来构建一些合理的数学模型。运用数学知识和技巧来描述问题中变量参数之间的关系。这样可以得出一些有关经济类的数据,进而将建模中得到的数据与实际情况进行对比和分析,最终得出结果。 3.应用实例: 商品提价问题的数学模型: 3.1问题: 现如今经济学在很多的商场中都有所运用,例如同样的商品要想获得最大的经济效益,既要考虑到规定的售价,又要考虑到销售的数量,如果定价过低,则销售数量较多,如果定价较高,利润是大了,但是却影响了销售数量。怎样

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模36套试题

第1题企业评价 选定20个评价者对某一企业的市场营销效果进行评价,将评价等级分为五等,如表一所示,评价等级的数字表示人数,如“资产负债率”一栏表示有6个人认为很好,9个人认为较好等等,采用适当的方法对该企业属于哪一等级作出评价。 表一企业市场营销效果评价情况 第2题强烈的碰撞 美国国家航空和航天局(NASA)从过去某个时间以来一直在考虑一颗大的小行星撞击地球会产生的后果。 作为这种努力的组成部分,要求你们队来考虑这种撞击的后果,加入小行星撞击到了南极洲的话。人们关心的是撞到南极洲比撞到地球的其它地方可能会有很不同的后果。 假设小行星的直径大约为1000米,还假设它正好在南极与南极洲大陆相撞。 要求你们对这样一颗小行星的撞击提供评估。特别是,NASA希望有一个关于这种撞击下可能的人类人员伤亡的数量和所在地区的估计,对南半球海洋的食物生产的破坏的估计,以及由于南极洲极地冰岩的大量融化造成的可能的沿海岸地区的洪水的估计。

第3题灌溉问题 下图是一个农田图,边表示田埂,周围是灌溉渠,问至少要挖开多少个田埂才能使每一块地都能灌上水?给出挖开田埂的一个方案。 第4题路线设计 现在有8个城市,已知两个城市之间的路费如下表,现在有一个人从A城市出发旅行,应该选择怎样的路线才能刚好每个城市都到达一次又回到A城市,其总路费最少? A B C D E F G H A B C D E F G 56 35 21 51 60 43 39 21 57 78 70 64 49 36 68 --- 70 60 51 61 65 26 13 45 62 53 26 50 第5题水质评价 按照《中华人民共和国地下水质量标准》,地下水水质共分六个等级(如表一)。现经过抽样得到三个地区的水质状况(如表二),对照标准,试评价他们各属哪一级。 Ⅰ类Ⅱ类Ⅲ类Ⅳ类Ⅴ类

数学建模之电力的生产问题

数学建模之电力的生产问 题 Prepared on 22 November 2020

电力生产最小成本 摘要 本文是需解决发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启和关闭以及运行时的输出功率,既使得一天内总发电成本最小,又使发电机组在一天中各个时段的总输出功率达到用电需求的问题,为解决这个问题,采用了单目标非线性规划方法,建立了所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本,以此制定发电机组的启停计划。 问题一:为了使发电厂一天总的发电成本最低,同时还要考虑到不同时间段开机数量不同对启动成本的相互影响,将七个时间段的成本统一考虑,其中,启动成本与发电机开启数量有关,要让成本少,应在满足相应约束条件下尽量减少开机数量,尽量让上一阶段的发电机下一阶段依然工作,边际成本与开启发电机台数、输出功率、最小功率、时长有关,固定成本与开启发电机台数、时长有关,选取相应的约束条件对目标函数进行约束,从而给出优化模型,运用非线性规划的方法,利用Lingo编程求解,得到发电厂每天最小发电总成本为:1427179 元。具体的发电机使用方案见附录一中表一、表二。 问题二:根据题目的要求,在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,在建模时将每台发电机的实际输出功率降至80%,所以可以按照问题一建立的模型,将其约束条件中每个时间段的实际输出功率改为功率的80%但同时要满足用电量,同样利用Lingo编程求解,得到发电厂每天最小发电总成本为:1444670元。具体的发电机使用方案见附录一中表三、表四。 在得到上述两个问题的结果后,对结果的正确性性进行检验,并且对所得结果进行分析,给出自己的评价,并且对所建模型的合理性进行判断,以及对模型做了适当的推广。 关键词:单目标非线性规划发电机的合理搭配电力生产最优解

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

数学建模-草原鼠患问题(1)

摘要: 在我国的内蒙古大草原,由于各种人为因素对自然生态系统的破坏(如过度放牧、大量消灭草原上的狼群等),造成草原鼠患问题严重,并由此引发了严重的生态问题。由生物知识知道,鼠患的主要原因是由于人为对自然环境的损坏使得生态失去了平衡,至使老鼠的视线得到了很好的扩充,在加上天敌数量的减少,使得老鼠数目得不到有效控制。为了更好的对其进行有效、合理的控制,并对其各种方案进行有效性分析,本文主要通过对老鼠和天敌数目之间的关系利用微分等数学方法对模型进行了建立,并在最后给出了自己的最好的方案,但本文存在一定的缺点,对数据的要求较高,需要对大量数据进行统计,使得模型过于复杂。 关键字:微分方程、几何型曲线、生态平衡、鼠患 一、问题重述 在我国的内蒙古大草原,由于各种人为因素对自然生态系统的破坏(如过度放牧、大量消灭草原上的狼群等),造成草原鼠患问题严重,并由此引发了严重的生态问题。 老鼠在草原上是家族式掘洞群居。它们食量巨大,繁殖力强。由于挖掘造成的环境损失远远大于单纯的食草所造成的危害。所有鼠害发生的地方水土流失严重。有的甚至形成了大面积寸草不生的“鼠荒地”。 更糟糕的是至今我们尚未找到能有效控制进而消灭草原老鼠的办法。也就是说,至少以目前的技术力量,我们还不能用人工种草的办法永久地恢复自然植被。因为不当的灭治方法,鼠害日益泛滥,而且越灭越多,因而也就不得不继续灭下去了。但是,能否最终将老鼠赶出草原,目前尚难以作出定论。 控制草原鼠患,现在人们通常采用的有下面几种方法: (1) 灭鼠药现在所用的灭鼠药在杀死老鼠的同时,也杀死了老鼠的天敌。因此,实际的情况是,撒灭鼠药后老鼠的数量反而以几何级数增长。改进的方法是,可以研制无公害的灭鼠药,但这需要一定的时间和大量资金的投入。 (2) 引入老鼠的天敌通过人工喂养和驯化老鼠的天敌,如鹰、狐狸、狼等,将一定数量的老鼠的天敌引入鼠患严重的草原,利用它们控制老鼠的数量。这种方法在短期内有效,但也有一定的问题:一是费用比较高,例如,喂养和驯化一只银狐的费用要上千元;二是引入的数量难以确定,数量太小,难以控制鼠患,数量太多就会引起新的生态问题。 (3) 人工种植牧草鼠类是一种需要开阔视野的生物种,只要有茂密的牧草生长,它们就无法生存。它们的视线之内如果毫无遮拦,便会肆意横行。在草场植被密集的地方,老鼠并不容易打洞,而且在这样的环境中,老鼠遇到天敌追捕时也难以及时躲避,所以数量不会激增。但是,据有关资料显示,青藏高原上几乎所有的人工种草都会在一定时间内自行退化。 问题1、建立恰当数学模型,对上述灭鼠方法的效果进行评估分析,要考虑到短期和长期的效果以及资金投入的问题;

数学建模电力安排问题

电力生产问题 摘要 本文解决的是电力生产中发电机的安排问题,在满足每日各时间段电力需求的条件下,安排各型号发电机来供电,以期获得最小的成本。为解决此问题,我们建立了两个最优化模型。 针对问题一:建立了非线性单目标最优化模型。从已知条件、目标函数、约束条件三方面进行综合分析可知,每天的总成本由总固定成本、总边际成本、总启动成本组成,确定总成本为目标函数,各时段各型号发电机工作数量及其总超出功率为主要变量,并列出相应约束条件。最后通过Lingo软件[2]求出最小成本为1540770元,并得出各时段各型号发电机的数量及其功率如下表(具体见表三): 针对问题二:建立了线性单目标最优化模型。引入非负变量,即为各时段新增开的各型号的发电机台数,通过此变量线性表示出启动成本。以总成本为目标函数,在模型一的基础上,只需改变一个约束条件,即发电机组在任意时间段内所能发出的最大总功率的80%要大于等于该时段的用电需求。最后通过lingo软件求出最小成本为1885420元,并得出各时段各型号发电机的数量及其功率。 关键词:非线性最优化模型线性最优化模型最小生产成本

1 问题重述 1.1 问题背景 在电力生产过程中,为满足每日的电力需求并且使生产成本达到最小,因不同发电性能的发电机成本不同,故可以选用不同型号的发电机组合使用。 1.2 题目信息 题中给出了一天中七个时段的用电需求(见表一)及四种发电机的发电性能和相应成本(见表二)。其中,所有发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于其最小输出功率,且所有发电机均存在一个启动成本,以及工作于其最小功率状态时固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。 问题(1):在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2):如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2 模型假设 假设1:不计发电机启动时所需时间; 假设2:各发电机均在24时关闭,即不考虑循环过程; 假设3:各发电机的输出功率在时段初调整好后,保持不变; 假设4:题目所列出的成本以外的成本消耗不计。

数学建模狐狸野兔问题

狐狸野兔问题 摘要:封闭自然环境中的狐狸和野兔存在捕食与被捕食关系,本题旨在通过对自然状态下 两物种数量变化规律的分析,推测加入人类活动(即人工捕获)时两物种数量的变化,进而得出人类活动对自然物种的影响,为人类活动提供参考,使其在自然允许的范围内,促进人与自然和谐相处。 对于问题一,首先建立微分方程,描述两物种数量随时间变化的Volterra 模型 ()0,0,0,021212211>>>>?????? ?+-=-=r r k k xy r y k dt dy xy r x k dt dx 并用解析法求得狐狸与野兔数量的关系 ()()2211k r x k r y x e y e c --= 为直观反映两物种数量随时间的变化规律,选取三组有代表性的初值,利用Matlab 软件绘图。在狐狸和野兔随时间的变化图像中,大致得出其数量呈周期变化,为进一步检验周期性,再用Matlab 绘图做出狐狸与野兔数量的关系图,得到封闭曲线,因此分析结果为:狐狸和野兔的数量都呈现周期性的变化,但不在同一时刻达到峰值。 对于问题二,利用数值解法,令模型中两式皆为0,即求得狐狸和野兔数量的平衡状态。且由问题一中狐狸与野兔数量的关系图知野兔和狐狸的平衡量恰为他们在一个周期内的平均值。 对于问题三,在Volterra 模型基础上引入人工捕获系数。 只捕获野兔时,野兔的自然增长率降低,狐狸自然死亡率增加,改进后模型同问题二处理方式一样,求得平衡状态,得出结论:捕获野兔时,狐狸数量减少,野兔数量反而增加,即Volterra 原理:为了减少强者,只需捕获弱者。 只捕获狐狸时,分析方法与只捕获野兔时相同,并得出野兔狐狸数量皆增加的结论。 问题三为自然界人类捕获生物提供了新的思路,即可以在正常允许范围内,为了达到减少某一种群数量的目的,相应的捕获其食饵,或适度地捕获捕食者使捕食者与被捕食者的数量都有所增加。 关键词:Volterra 模型Matlab 软件解析法周期性

数学建模 生产计划问题

第一题:生产计划安排 2)产品ABC的利润分别在什么范围内变动时,上述最优方案不变 3)如果劳动力数量不增,材料不足时可从市场购买,每单位元,问该厂要不要购进原材料扩大生产,以购多少为宜 4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得生产 答: max3x1+x2+4x3! 利润最大值目标函数x1,x2,x3分别为甲乙丙的生产数量 st!限制条件 6x1+3x2+5x3<45! 劳动力的限制条件 3x1+4x2+5x3<30! 材料的限制条件 End!结束限制条件 得到以下结果 1.生产产品甲5件,丙3件,可以得到最大利润,27元 2.甲利润在—元之间变动,最优生产计划不变 3. max3x1+x2+4x3 st 6x1+3x2+5x3<45 end 可得到生产产品乙9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位 4. max3x1+x2+4x3+3x4 st 6x1+3x2+5x3+8x4<45 3x1+4x2+5x3+2x4<30 end ginx1 ginx2 ginx3 ginx4 利润没有增加,不值得生产 第二题:工程进度问题 某城市在未来的五年内将启动四个城市住房改造工程,每项工程有不同的开始时间,工程周期也不一样,下表提供了这些项目的基本数据。

工程1和工程4必须在规定的周期内全部完成,必要时,其余的二项工程可以在预算的限制内完成部分。然而,每个工程在他的规定时间内必须至少完成25%。每年底,工程完成的部分立刻入住,并且实现一定比例的收入。例如,如果工程1在第一年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收入是*50(第二年)+*50(第三年)+(+)*50(第四年)+(+)*50(第五年)=(4*+2*)*50(单位:万元)。试为工程确定最优的时间进度表,使得五年内的总收入达到最大。 答: 假设某年某工程的完成量为Xij, i表示工程的代号,i=1,2,3,j表示年数,j=1,2,3,如第一年工程1完成X11,工程3完成X31,到第二年工程已完成X12,工程3完成X32。 另有一个投入与完成的关系,即第一年的投入总费用的40%,该工程在年底就完成40%,工程1利润: 50*X11+50*(X11+X12)+50*(X11+X12+X13)+50*(X11+X12+X13) 工程2利润: 70*X22+70*(X22+X23)+70*(X22+X23+X24) 工程3利润: 20*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34) 工程4利润: 20*X43+20*(X43+X44) max(50*X11+50*(x11+x12)+50*(X11+X12+X13)+50*(X11+X12+X13))+(70*X22+70*(X22+X23) )+70*(X22+X23+X24)+(150*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34)) +(20*X43+20*(X43+X44)) st 5000*X11+15000*X31=3000 5000*X12+8000*X22+15000*X32=6000 5000*X13+8000*X23+15000*X33+1200*X43=7000 8000*X24+15000*X34+12000*X44=7000 8000*X25+15000*X35=7000 X11+X12+X13=1 X22+X23+X24+X25≥ X22+X23+X24+X25≤1 X31+X32+X33+X34+X35≥ X31+X32+X33+X34+X35≤1 X43+X44=1 全为大于零的数

数学建模背景

数学建模背景: 数学技术 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。[1] 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机)。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 2建模过程 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

相关文档
最新文档