七年级数学平行线与相交线总复习

合集下载

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

人教版七年级数学下册考点及典型题型总复习

人教版七年级数学下册考点及典型题型总复习

BE D ACF87654321DCB A七年级数学人教版下学期期末总复习资料1、 如果A ∠与B ∠是对顶角,则其关系是:2、 如果C ∠与D ∠是邻补角,则其关系是: 如果α∠与β∠互为余角,则其关系是3、点到直线距离是:__________________两点间的距离是:_________________ 两平行线间的距离是指:_____________________________________________4、在同一平面内,两条直线的位置关系有_____种,它们是_____________5、平行公理是指:_________________________如果两条直线都与第三条直线平行,那么_________________________________ 6、平行线的判定方法有:①、 ②、__________________________________③、___________________________________ 7、平行线的性质有: ①、___________________________________②、___________________________________③、___________________________________8、命题是指____________________________每一个命题都可以写成_______________的形式,“对顶角相等”的题设是_______________________,结论是 ___________ 9、平移:①定义:把一个图形整体沿着某一_____移动_______,图形的这种移动,叫做平移变换,简称平移②图形平移方向不一定是水平的③平移后得到的新图形与原图形的_________和________完全相同④新图形中的每一点与原图形中的对应点的连线段________且_________ 二、练习:1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130° 3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( ) A .相等B .互余C .互补D .互为对顶角图1 图2 图34、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应DBAC1 ab1 2OACDEF21O是( )A .右转80° B.左转80° C.右转100° D .左转100°6、如图6,如果AB ∥CD A .∠3=∠7; B .∠∠4=∠87那么这两个角是( )A . 42138、;B . 都是上都不对8、下列语句:①三条直线垂直;③( )A .①、②是正确的命题;题 ;D .以上结论皆错 9、下列语句错误的是( )A 旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角180 B 270 C _____.16、如图13,已知AB CD //,∠α=____________ 17若②18度数.19交20(((若有21第六章 平面直角坐标系一、知识回顾:1、平面直角坐标系:在平面内画两条___________、____________的数轴,,第二象限( ),第三象限n ,m )在第____象为0,y 轴上的点______为0; =__ __,P 的坐标为( ) P 点坐标为( )P 必定在__ __轴上:一三象限角平分线上的点限角平分线上的点a =_ ____; a =____ _ 如果点P (),a b 在原点,则a =___ __=__ __F 21GE D CBA已知点A (3,29)b b -++在第二象限的角平分线上,则b = ______ ④平行于坐标轴的点的特征:平行于x 所有点的______坐标相同如果点A (),3a -,点B (2,b 如果点A ()2,m ,点B (,n -3、 点P (),x y 到x 的距离为____________4、 点P (),a b -到,x y 5、 点A ()2,3--到x 点B ()7,0-到x 轴的距离为点P ()2,5x y -到x 轴的_点P 到x 轴的距离为24、对称点的特征:①关于x 轴对称点的特点_______不变,______互为相反数 ②关于y 轴对称点的特点_______不变,______互为相反数③关于原点对称点的特点_______、 ______互为相反数点A (1,2)-关于y 轴对称点的坐标是______,关于原点对称的点坐标是)y +关于原点对称,则_____坐标变化,(向右),上下移动点的______坐标变____________)____平移___单位就可得到点右移动____________,向左移动坐标变化(向上移动____________,已知1(3,5)P ,原三角C ()1,1- 问平移后三点坐标分别为1.已知点P(3a-8,a-1).(1) 点P 在x 轴上,则P 点坐标为 ;(2) 点P 在第二象限,并且a 为整数,则P 点坐标为 ; (3) Q 点坐标为(3,-6),并且直线PQ ∥x 轴,则P 点坐标为 . 2.如图的棋盘中,若“帅” 位于点(1,-2)上,“相”位于点(3,-2)上, 则“炮”位于点___ 上3.点)1,2(A 关于x 轴的对称点对称点'B 的坐标是 ;是 .4.已知点P 在第四象限,且到坐标为_____.5.已知点P 到x 轴距离为为 .6. 已知),(111y x P ,,(22x P 轴;7.把点),(b a P 移三个单位,得到点''P 8.在矩形ABCD 中,A (-4,1),B 9.线段AB 的长度为3的坐标为_____.10.线段AB 的两个端点坐标为标为C (2,-4)、D(3,0),则线段AB 与线段CD 的关系是( )A.平行且相等B.平行但不相等且不相等 三、解答题:2,纵坐标加3,所得图形.P 在坐标轴上,且△ABP 与△ABC . 建立适当的直角平移到11B A 的位 置,再将111C B A ∆向右平移3个单位,得到222C B A ∆, 画出222C B A ∆,并求出△ABC 到222C B A ∆的坐标变化.第七章 三角形一、知识回顾:二、练习:1.一个三角形的三个内角中A 、至少有一个钝角 C 、至多有一个锐角 D 、 至少有两个锐角2.下列长度的三条线段,不能组成三角形的是 ( )A 、a+1,a+2,a+3(a>0)B 、 3a,5a,2a+1(a>0)C 、三条线段之比为1:2:3D 、 5cm ,6cm ,10cm( )、不能确定 ACD=( ) )( )C ,则∠1+∠2 等于( )C⎧⎪⎨⎪⎩定义:由不在______三条线段______所组三角形三角形多边形⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩多边形n ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎩从n 定义平面镶嵌⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪A、90°B、135°C、270°D、315°第(9)题第(10)题10. 如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=500 ,则∠BPC等于()A、90°B、130°C、270°D、315°11.用正三角形和正方形能够铺满地面,每个顶点周围有______个正三角形和_____个正方形。

(完整版)相交线与平行线复习知识点总结

(完整版)相交线与平行线复习知识点总结

第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。

初中数学专题讲义-相交线、平行线

初中数学专题讲义-相交线、平行线

初中数学专题讲义-相交线、平行线一、课标下复习指南1.直线、射线和线段(1)表示直线AB(BA)或直线l,如图9-1.图9-1射线OA或射线l,如图9-2.图9-2线段AB(BA)或线段a,如图9-3.图9-3(2)性质经过两点有一条直线,并且只有一条直线,简称两点确定一条直线.在所有连接两个点的线中,线段最短,简称两点之间,线段最短.(3)线段的中点把一条线段分成两条相等线段的点叫做线段的中点.2.角(1)角的概念有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看做由一条射线绕着它的端点旋转而形成的图形.(2)角的度量以度、分、秒为单位的角的度量制,叫做角度制.把周角分成360等份,每一份叫1°的角.1°=60′,1′=60″.1周角=360°,1平角=180°,1直角=90°.(3)角的计算①度、分、秒的换算.②计算角度的和、差、积、商.(4)角的比较可以用量角器量出角的度数,然后比较它们的大小;也可以把它们叠合在一起比较大小.如图9-4(a)中∠AOB<∠A′O′B′,图9-4(b)中∠AOB=∠A′O′B′,图9-4(c)中,∠AOB>∠A′O′B′.图9-4(a) 图9-4(b) 图9-4(c)(5)角的分类:锐角:大于0°而小于90°的角.直角:等于90°的角.钝角:大于90°而小于180°的角.(6)角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.(7)有关的角及其性质余角:如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角.补角:如果两个角的和等于180°,就说这两个角互为补角,即其中一个角是另一个角的补角.同角或等角的余角相等.同角或等角的补角相等.邻补角:有一条公共边,并且另一边互为反向延长线的两个角互为邻补角.对顶角:若一个角的两边分别是另一个角两边的反向延长线,则这两个角互为对顶角.对顶角相等.3.垂线(1)垂直的定义若两条直线相交所成的四个角中,有一个角是直角时,则这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂直是相交的一种特殊情形.(2)垂线性质①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短,简称垂线段最短.4.平行线在同一平面内,不相交的两条直线叫做平行线.经过直线外一点,有且只有一条直线与这条直线平行.(1)直线平行的条件如果两条直线都与第三条直线平行,那么这两条直线也互相平行.同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.(2)平行线的性质两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.5.同一平面内两条直线的位置关系相交、平行.6.距离(1)两点的距离:连接两点的线段的长度,叫做这两点的距离.(2)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离.(3)两条平行线的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离.7.基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)按指令语言画角及角的和、差;(4)作已知角的平分线;(5)作线段的垂直平分线;(6)用三角尺或量角器过一点画一条直线的垂线;(7)过直线外一点画这条直线的平行线.二、例题分析例1 解答下列问题:(1)过一个已知点可以画多少条直线?(2)同时过两个已知点可以画多少条直线?(3)过三个已知点可以画出直线吗?(4)经过平面上三点A,B,C中的每两个点可以画出多少条直线?(5)借鉴(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线会有什么样的结果?如果不能画,请简要说明理由;如果能画,画出图形.分析画图的依据是直线性质,(3)、(4)、(5)中没有明确平面上三点、四点是否在同一直线上,解答时要分各种可能情况解答,这种解答方法叫分类讨论.运用这种方法时,要考虑到可能出现的所有情形,不能丢掉一种.解(1)过一点可以画无数条直线.(2)过两点可以画唯一的一条直线.(3)过三个已知点不一定能画出直线,当三点不共线时,不能作出直线;当三点共线时,能画一条直线.(4)当A,B,C三点不共线时,过其中的每两个点可以画一条直线,所以共有3条直线;当A,B,C三点共线时,上面画的3条直线就重合了,因而只能画1条直线.即经过平面上三点A,B,C中的每两点可以画1条或3条直线.(5)经过平面内四个点中的任意两点画直线有三种情况:①当A,B,C,D四点在同一直线上时,只可以画出1条直线,如图9-5(a)所示.②当A、B、C、D四个点中有三个点在同一直线上时,可画出4条直线,如图9-5(b)所示.③当A,B,C,D四个点中任意三个点都不在同一直线上时,可画出6条直线,如图9-5(c)所示.图9-5说明这个例题用到分类思想,这种分类能力对于今后学习也是很有用的.分类要注意不重不漏.例2 把一段弯曲的公路改为直道,可以缩短路程,其理由是( ).A.两点之间,线段最短B.两点确定一直线C.线段有两个端点D .线段可以比较大小分析 此题是应用几何知识解释生活中现象的问题,由于这是两点之间距离的比较,符合“两点之间线段最短.”解 选A .例3 如图9-6,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.图9-6(1)如果∠AOB =130°,那么∠COE 是多少度?(2)若∠COE =65°,∠COD =20°,求∠BOE 的度数. 解 (1)∵OC 平分∠AOD ,OE 平分∠BOD ,,21AOD COD ∠=∠∴ .21BOD DOE ∠=∠ ∴∠COE =∠COD +DOE+∠=∠+∠=AOD BOD AOD (212121.21)AOB BOD ∠=∠∵∠AOB =130°,.6513021οο=⨯=∠∴COE(2)∵∠COE =65°,∠COD =20°,∴∠DOE =∠COE -∠COD =65°-20°=45°. ∵OE 平分∠BOD , ∴∠BOE =∠DOE . ∴∠BOE =45°.说明 角的平分线的性质是进行角度计算常用的重要依据,必须熟练掌握角平分线及其相关的各种几何表达式.例4 (1)已知:如图9-7(a),点C 在线段AB 上,线段AC =6,BC =4,点M ,N 分别是AC ,BC 的中点,求线段MN 的长度;图9-7(a)(2)根据(1)的计算过程和结果,设AC +BC =a ,其他条件不变,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.(3)当点C 在线段AB 的延长线上或点C 在线段AB 所在的直线外时,(2)中的结论是否仍然成立?画出图形并说明理由.解 (1)∵AC =6,BC =4, ∴AB =AC +BC =1 0.又∵M 是AC 的中点,N 是BC 的中点,.21,21BC CN AC MC ==∴ BC AC CN MC MN 2121+=+=∴ .521)(21==+=AB BC AC (2)根据(1)中已知AB =10,求出MN =5.由(1)的推算过程可知,AB MN 21=,故当AB =a 时,a MN 21=,从而可得到:线段上任一点把线段分成的两部分中点间的距离等于原线段长度的一半.(3)答:(2)中的结论仍然成立. 理由如下:①当点C 在AB 的延长线上时,如图9-7(b)所示,图9-7(b)⋅==-=-=221)(21a AB BC AC CN CM MN ②当点C 在AB 所在的直线外时,如图9-7(c)所示,M ,N 分别是AC ,BC 的中点,由三角形中位线定理可得.2121a AB MN ==图9-7(c)说明 本题向我们提示了从特殊事例中观察、猜测、发现一般规律的过程.总结出规律,以后遇到同类问题就容易解了.本题还启示我们,一般规律包含在特殊事例之中.这就要求同学们在解题时,不要停留在表面上,要运用运动变化的观点多思考,就会发现新问题,得到新收获.例5 填空:(1)已知∠1和∠2互余,∠2和∠3互补,若∠1=63°,则∠3=______度;若∠1=α,则∠3=______度.(2)已知∠1与∠2互为余角,∠1的补角等于∠2的余角的2倍,则∠1=______度,∠2=______度.分析 (1)由∠1和∠2互余,∠1已知,可求出∠2的度数,再由∠2和∠3互补,即求出∠3的度数.解 (1)∵∠1和∠2互余,∠1=63°, ∴∠2=90°-∠1=90°-63°=27°. ∵∠2和∠3互补,∴∠3=180°-∠2=180°-27°=153°.当∠1=α时,∠3=180°-∠2=180°-(90°-∠1)=90°+α.说明 正确理解余角和补角的概念是本章的重点之一,也是一个重要的考点,它们与角的大小有关而与两角的位置无关.分析 (2)题目所给条件可以理解为关于∠1,∠2两个未知量的两个等量关系,列方程(组)是解决这类问题的有效办法.解 (2)设∠1的度数为x ,∠2的度数为y ,则⎩⎨⎧-=-=+).90(2180,90y x y x 解得⎩⎨⎧==.30,60y x答:∠1的度数为60,∠2的度数为30.说明 有关余角和补角数量关系的这类问题,通常考虑用列方程和方程组的方法来解决.例6 如图9-8,小华参加运动会的跳远比赛,他从地面的A 处起跳,落到沙坑点B 处,怎样测量他的跳远成绩?图9-8分析 这是点到直线的距离的实际应用.解 作BC ⊥l 于点C ,则线段BC 的长即为小华的跳远成绩.例7 如图9-9所示,已知∠1=∠2,再添加什么条件可使AB ∥CD 成立?图9-9分析 解题前先回忆平行线的判定,再添条件时要用上原来题目已给条件,否则不合要求.解 可分别添加以下条件: (1)∠MBE =∠MDF ; (2)∠EBN =∠FDN ;(3)∠EBD +∠BDF =180°; (4)BE ∥DF ;(5)BE ⊥MN ,DF ⊥MN 等等. 三、课标下新题展示例8 (安徽)如图9-10,若直线l 1∥l 2,则∠α等于( ).图9-10A .150°B .140°C .130°D .120° 解 选D .例9 (长春)如图9-11,l ∥m ,矩形AB -CD 的顶点B 在直线m 上,则α=______°.图9-11解 25.四、课标考试达标题 (一)选择题1.如图9-12,O 是直线AB 上一点,OC ,OD ,OE 是3条射线,OC ⊥AB ,OD ⊥OE ,则图中互余的角有( ).图9-12A .2对B .3对C .4对D .5对 2.如图9-13所示,若OD 平分∠BOC ,则( ).图9-13A .∠COD =∠AOB -∠BOC B .)(21BOC AOB COD ∠-∠=∠ C .AOB BOC AOD ∠-∠=∠21D .)(21AOC AOB AOD ∠+∠=∠ 3.两条直线被第三条直线所截,下列条件中,不能判定这两条直线平行的是( ). A .同位角相等 B .内错角相等 C .同旁内角互补 D .同旁内角互余4.如图9-14,l 1∥l 2,若∠1=105°,∠2=140°,则∠α等于( ).图9-14A.55°B.60°C.65°D.70°(二)填空题5.用度、分、秒表示:56.625°=______.6.已知∠α=31°,若∠β的两边分别与∠α的两边平行,则∠β=______;若∠γ的两边分别与∠α的两边垂直,则∠γ=______.7.如图9-15,已知AB∥EF,BC⊥CD于C,若∠ABC=30°,∠DEF=45°,则∠CDE =______.图9-15(三)解答题8.一个角的补角的一半比这个角的余角的二倍小3°,求这个角.9.求证:两条平行线被第三条直线所截,一对同旁内角的角平分线互相垂直.10.点C,D在直线AB上,线段AC,CB,AD,DB的长满足AC∶CB=5∶4,AD∶DB=2∶1,且CD=2cm,求线段AB的长.参考答案相交线、平行线1.C . 2.D . 3.D . 4.C . 5.56°37′30″. 6.31°或149°,31°或149°. 7.105. 8.58°. 9.略.10.解:由AC ∶CB =5∶4,设AC =5k ,CB =4k ,可知点C 只能在线段AB 上或线段AB的延长线上.答图9-1(1)当点C 在线段AB 上时,D 点的位置只有两种可能性:①点D 1在线段AB 上,此时AD 1=6k ,D 1B =3k ,CD 1=k =2,则AB =9k =18; ②点D 2在线段AB 的延长线上,此时BD 2=AB =9k ,CD 2=13k =2,则132=k ,AB =9k 1318=; (2)当点C 在线段AB 的延长线上时,D 点的位置也只有两种可能性:答图9-2①点D 3在线段AB 上,此时33,32BD k AD =2313,33===k CD k ,则k AB k ==,136;136=②点D 4在线段AB 的延长线上,此时AD 4=2k ,BD 4=AB =k ,CD 4=CB -BD 4=3k =2,则⋅==32k AB。

(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

一、选择题1.下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a∥b,b⊥c,那么a⊥c,其中真命题的个数是()A.4个B.3个C.2个D.以上都不对B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题;④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.3.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒D解析:D【分析】 如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】如图,过点C 作//CF AB ,//AB DE ,////AB DE CF ∴,,180BCF B DCF D ∴∠=∠∠+∠=︒,50,110B D ∠=︒∠=︒,50,18070BCF DCF D ∴∠=︒∠=︒-∠=︒,120BCD BCF DCF ∴∠=∠+∠=︒,故选:D .【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键. 4.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.5.在同一平面内,有3条直线a,b,c,其中直线a与直线b相交,直线a与直线c平行,那么b与c的位置关系是()A.平行B.相交C.平行或相交D.不能确定B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.6.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.7.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B 、若∠1=∠2,则a ∥c ,利用了内错角相等,两直线平行,正确;C 、∠3=∠2,不能判断b ∥c ,错误;D 、若∠3+∠5=180°,则a ∥c ,利用同旁内角互补,两直线平行,正确;故选C .考点:平行线的判定.8.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

人教七年级数学平行线与相交线总复习知识点归纳和例题精讲

人教七年级数学平行线与相交线总复习知识点归纳和例题精讲

平行线与相交线期末考试总复习考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是,那么称这两个角互为余角.2.补角:如果两个角的和是,那么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A+∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A 处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是______10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1-2-3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。

初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一相交线与平行线知识点1.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线,性质是对顶角相等。

2.三线八角:对顶角(相等);邻补角(互补);同位角,内错角,同旁内角。

3.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧);内错角Z(在两条直线内部,位于第三条直线两侧);同旁内角U(在两条直线内部,位于第三条直线同侧)。

4.两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5.垂直三要素:垂直关系、垂直记号、垂足。

6.垂直公理:过一点有且只有一条直线与已知直线垂直。

7.垂线段最短。

8.点到直线的距离:直线外一点到这条直线的垂线段的长度。

9.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c。

10.平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。

11.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12.平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13.平面上不相重合的两条直线之间的位置关系为相交或平行。

14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移后前:①两个图形形状大小不变,位置改变;②对应点的连线相等且平行(或在一条直线上)。

15.命题:判断一件事情的语句叫命题。

命题分为题设和结论两部分;题设是“如果”后面的,结论是“那么”后面的。

平行线与相交线知识点整理总复习

平行线与相交线知识点整理总复习

1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表: 图形 顶点 边的关系大小关系对顶角∠1的两边与∠2的两边邻补角∠3与∠4有一条边公共,另一边注意点:⑴两直线相交形成的4个角的位置关系有:(2)∠α与∠β是对顶角,那么一定有 ;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角 ⑶如果∠α与∠β互为邻补角,则一定有 ;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有 个,而对顶角只有 个。

(4) 两直线相交形成的四个角中,共有 组邻补角, 组对顶角。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:记作: 垂足为⑵垂线性质1:⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:3、垂线的画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;4、点到直线的距离直线外一点到这条直线的 ,叫做点到直线的距离。

5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念 分析它们的联系与区别⑴垂线与垂线段 区别: 联系:具有垂直于已知直线的共同特征。

⑵两点间距离与点到直线的距离 区别: 联系:都是线段的长度;1 2 4 3 A B C DO⑶线段与距离 区别6、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。

7、两条直线的位置关系,两条直线的位置关系只有两种:8、平行公理――平行线的存在性与惟一性经过 一点, 一条直线与这条直线平行9、平行公理的推论:如果 那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥a ∴b ∥c注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。

平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳一、平行线的定义平行线是在同一个平面上,永远也不会相交的两条直线。

平行线的特点是它们的斜率相等,且不相交。

若两条直线平行,则可表示为l,m。

平行线的性质:1.平行线具有等于90°的斜角。

2.平行线与同一条直线垂直的直线也是平行线。

这一性质被称为垂直平行线定理。

3.如果一条直线与两条平行线相交,则它与另一条平行线的交角与第一条直线与第二条直线的交角相等。

4.平行线的反身性质:如果l,m,则m,l。

二、平行线的判定方法1.高度差法:通过计算两线间的垂直距离和斜率判断是否平行。

2.点斜式法:通过两点确定的直线斜率相等来判定。

3.斜率法:两直线斜率相等,则平行。

4.三角形内角和法:若两直线被一条直线所截,则截线两侧内角和相等,则平行。

三、相交线的定义相交线是指在同一个平面上,会相交的两条或更多条直线。

相交线两两相交于一点,称之为交点。

相交线的性质:1.相交线之间的交角之和等于180°,即交角互补。

2.两条相交线总有一对互为垂直的直线。

3.相交线的交点称为顶点,可以通过顶点来判断直线相交的情况,包括内角和外角。

四、平行线与相交线的关系1.平行线切割相交线定理:当一条直线与两条平行线相交时,它切割的两条平行线与该直线所夹的两对内角互补。

2.内错角定理:当两条平行线被一条截线相交时,直线截线所夹的内错角相等。

3.同位角定理:同位角为同侧的内角,当两直线被另一直线切割时,同位角相等。

4.外错角定理:当两条平行线被一条截线相交时,直线截线所夹的外错角互补。

五、应用举例1.在平行四边形中,对角线互相平分。

2.平行线截割三角形:当一条线段与两条平行线相交时,它将三角形切割成两个面积相等的三角形。

3.测量高度:通过测量两个平行线之间的垂直距离来确定垂直高度。

4.道路设计:在公路设计中,平行线可以将车道分隔开,并引导交通流向。

在几何学中,平行线与相交线是解决问题和证明定理中经常用到的概念。

《常考题》初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

《常考题》初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

一、选择题1.下列命题中,假命题是()A.对顶角相等B.同角的余角相等C.面积相等的两个三角形全等D.平行于同一条直线的两直线平行C解析:C【分析】根据对顶角的性质对A进行判断;根据余角的性质对B进行判断;根据三角形全等的判断对C进行判断;根据平行线的传递性对D进行判断.【详解】解:A、对顶角相等,所以A选项为真命题;B、同角的余角相等,所以B选项为真命题;C、面积相等的两个三角形不一定全等,所以C选项为假命题;D、平行于同一条直线的两条直线平行,所以D选项为真命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.3.下列命题:①同位角相等;②过一点有且只有一条直线与已知直线平行; ③过一点有且只有一条直线与已知直线垂直; ④如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行.其中假命题的个数是( )A .1个B .2个C .3个D .4个A 解析:A【分析】根据平行线的性质、八个基本事实、平行线的判定等知识分别判断即可.【详解】解:同位角不一定相等,①是假命题;过直线外一点有且只有一条直线与已知直线平行,②是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,③是假命题;如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行,④是真命题,故选:A .【点睛】本题考查了命题与定理、平行线的判定与性质、八个基本事实,熟记八个基本事实,会判断命题的真假是解答的关键.4.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.5.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质6.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A.75︒B.120︒C.135︒D.无法确定A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.7.如图所示,已知 AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.如图,下列条件中,不能判断AD∥BC的是()A.∠FBC=∠DAB B.∠ADC+∠BCD=180°C.∠BAC=∠ACE D.∠DAC=∠BCA C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】解:A.∵∠FBC=∠DAB,∴AD∥BC,故A正确,本选项不符合题意;B.∵∠ADC+∠BCD=180°,∴AD∥BC,故B正确,本选项不符合题意;C.∵∠BAC=∠ACE,∴AB∥CD,故C不正确,本选项符合题意;D.∵∠DAC=∠BCA,∴AD∥BC,故D正确,本选项不符合题意;故选:C.【点睛】本题考查平行线的判定,解题的关键是准确识图,运用判定得出正确的平行关系.9.下列各命题中,原命题成立,而它逆命题不成立的是()A.平行四边形的两组对边分别平行B.矩形的对角线相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.10.如图,直线AB,CD被直线EF所截,与AB,CD分别交于点E,F,下列描述:①∠1和∠2互为同位角②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是()A.①③B.②④C.②③D.③④C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB 不平行于CD ,∴∠4+∠5≠180°故错误,故选:C .【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.二、填空题11.如图,斜边长12cm ,∠A=30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至''A B C 的位置,再沿CB 向左平移使点B'落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为_____.(结果保留根号)cm 【分析】作B′D//BC 与AB 交于点D 故三角板向左平移的距离为B′D 的长利用直角三角形的性质求出BC=B′C=6cmAC=cm 进而根据相似三角形对应线段成比例的性质即可求解【详解】如图作B′D/ 解析:(623-cm【分析】作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长,利用直角三角形的性质求出BC=B′C=6cm ,AC=63,进而根据相似三角形对应线段成比例的性质即可求解.【详解】如图,作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长.∵AB=12cm ,∠A=30°,∴BC=B′C=6cm ,AC=3cm ,∵B′D//BC , ∴AC D BC B AB ='',即(6636(623)63BC C B A AB D ⨯=='-'=cm , 故三角板向左平移的距离为(623-cm .【点睛】本题考查直角三角形的性质、相似三角形的性质,旋转和平移的性质,解题的关键是作辅助线构造相似三角形.12.把命题“两直线平行,同位角相等”改写成“若…,则…”__.若两直线平行则同位角相等【分析】命题写成如果…那么…的形式如果后面接的部分是题设那么后面解的部分是结论【详解】解:命题两直线平行同位角相等可以改写成若两直线平行则同位角相等故答案为:若两直线平行则同解析:若两直线平行,则同位角相等【分析】命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【详解】解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”,故答案为:“若两直线平行,则同位角相等”.【点睛】本题考查了命题的概念,掌握命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论是解题的关键.13.如图,在甲,乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东55 ,若同时开工,则在乙地公路按南偏西___度的走向施工,才能使公路准确接通.55【分析】先求出∠COD然后根据方向角的知识即可得出答案【详解】解:如图:即在乙地公路应按南偏西55度的走向施工才能使公路准确接通故答案为:55【点睛】此题考查了方向角平行线的知识解答本题的关键是解析:55【分析】先求出∠COD,然后根据方向角的知识即可得出答案.【详解】解:如图://AD OC ,55COD ADO ∴∠=∠=︒,即在乙地公路应按南偏西55度的走向施工,才能使公路准确接通.故答案为:55.【点睛】此题考查了方向角、平行线的知识,解答本题的关键是求出∠COD 的度数,另外要熟练方向角的表示方法.14.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.55或20【分析】根据平行线性质得出∠A+∠B =180°①∠A =∠B②求出∠A =3∠B ﹣40°③把③分别代入①②求出即可【详解】解:∵∠A 与∠B 的两边分别平行∴∠A+∠B =180°①∠A =∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B =180°①,∠A =∠B②,求出∠A =3∠B ﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B =180°①,∠A =∠B②,∵∠A 比∠B 的3倍少40°,∴∠A =3∠B ﹣40°③,把③代入①得:3∠B ﹣40°+∠B =180°,∠B =55°,把③代入②得:3∠B ﹣40°=∠B ,∠B =20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A 和∠B 的两边分别平行,即可得∠A =∠B 或∠A +∠B =180° ,注意分类讨论思想的应用.15.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .(1)3555;(2)与【分析】(1)由可得所以所以已知的度数即可得出与的度数;(2)由(1)可得的余角是与要求的补角即要求的补角的补角是【详解】(1);(2)由(1)可得的余角是与的补角是的补角是解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键. 16.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S 四边形ODFC=S 梯形ABEO 根据梯形的面积公式即可求解【详解】解:由平移的性质知BE =6DE =AB =10∴OE =DE ﹣解析:【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S 四边形ODFC =S 梯形ABEO ,根据梯形的面积公式即可求解.【详解】解:由平移的性质知,BE =6,DE =AB =10,∴OE =DE ﹣DO =10﹣4=6,∴S 四边形ODFC =S 梯形ABEO 12=(AB+OE )•BE 12=×(10+6)×6=48. 故答案为48.【点睛】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键.17.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____.假若a >b 则a2>b2【分析】a2大于b2则a 不一定大于b 所以该命题是假命题它的逆命题是若a >b 则a2>b2【详解】①当a =-2b =1时满足a2>b2但不满足a >b 所以是假命题;②命题若a2>b2则解析:假 若a >b 则a 2>b 2【分析】a 2大于b 2则a 不一定大于b ,所以该命题是假命题,它的逆命题是“若a >b 则a 2>b 2”.【详解】①当a =-2,b =1时,满足a 2>b 2,但不满足a >b ,所以是假命题;②命题“若a 2>b 2则a >b ”的逆命题是若“a >b 则a 2>b 2”;故答案为:假;若a >b 则a 2>b 2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF=__________________°.【分析】根据两直线平行同位角相等求出∠EFD再根据角平分线的定义求出∠GFD然后根据两直线平行内错角相等解答【详解】解:∵AB∥CD∠1=64°∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.20.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为_____时,可以使∠OEB=∠OCA.60°【分析】设∠OCA=a ∠AOC=x 利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a ∠AOC=x 已知CB ∥OA ∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB ∥OA ,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA ,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.三、解答题21.如图//AB CD ,62B ∠=︒,EG 平分BED ∠,EG EF ⊥,求CEF ∠的度数.解析:59°【分析】由题意,先求出BED ∠,由角平分线定义得到GED ∠,再结合垂直和平角的定义,即可求出答案.【详解】解:根据题意,∵//AB CD ,∴62BED B ∠=∠=︒,∵EG 平分BED ∠, ∴11623122GED BED ∠=∠=⨯︒=︒, ∵EG EF ⊥,∴90FEG ∠=︒,∴180319059CEF ∠=︒-︒-︒=︒;【点睛】本题考查了角平分线的定义,平行线的性质,以及余角、补角的定义,解题的关键是熟练掌握所学的知识,正确求出角的度数.22.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)∠AOC 的对顶角为______,∠AOC 的邻补角为______;(2)若∠EOC =70°,求∠BOD 的度数;(3)若∠EOC :∠EOD =2:3,求∠BOD 的度数.解析:(1)∠BOD ,∠BOC 或∠AOD ;(2)∠BOD =35°;(3)∠BOD =36°.【分析】(1)根据对顶角、邻补角的意义,结合图形即可得出答案;(2)根据角平分线的意义和对顶角的性质,即可得出答案;(3)根据平角、按比例分配,角平分线的意义、对顶角性质可得答案.【详解】(1)根据对顶角、邻补角的意义得:∠AOC 的对顶角为∠BOD , ∠AOC 的邻补角为∠BOC 或∠AOD ,故答案为:∠BOD ,∠BOC 或∠AOD(2)∵OA 平分∠EOC.∠EOC =70°,∴∠AOE =∠AOC 12=∠EOC =35°, ∵∠AOC =∠BOD ,∴∠BOD =35°,(3)∵∠EOC :∠EOD =2:3,∠EOC+∠EOD =180°,∴∠EOC =180°×25=72°,∠EOD =180°×35=108°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC 12=∠EOC =36°, 又∵∠AOC =∠BOD ,∴∠BOD =36°.【点睛】本题考查对顶角、邻补角、角平分线、平角的意义和性质,通过图形具体理解这些角的意义是正确计算的前提.、、、在方格纸中小正方23.在如图所示的方格中,每个小正方形的边长为1,点A B C D形的顶点上.(1)画线段AB;(2)画图并说理:①画出点C到线段AB的最短线路CE,理由是;②画出一点P,使AP DP CP EP+++最短,理由是.解析:(1)图见解析;(2)图见解析,点到直线的距离垂线段最短;(3)图见解析,两点之间线段最短.【分析】(1)根据题意画图即可;(2)①借助网格作CE⊥AB,根据点到直线距离垂线段最短可得符合条件的E点;②连接AD和CE交于P点,根据两点之间线段最短可得+++=+.AP DP CP EP AD CE【详解】(1)连接AB如下图所示;(2)①如图所示CE为最短路径,理由是点到直线的距离垂线段最短,故答案为:点到直线的距离垂线段最短;②如图所示P点为AP DP CP EP+++最短,理由是:两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题考查两点之间的距离,垂线段最短和根据要求画线段.理解点到直线的距离垂线段最短和两点之间线段最短是解题关键.24.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.解析:(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键25.如图,已知BE 平分ABC ∠,点D 在射线BA 上,且ABE BED ∠=∠.判断BC 与DE 的位置关系,并说明理由.解析:BC ∥DE ;理由见解析【分析】根据角平分线的定义和已知条件可得∠CBE =∠BED ,再根据平行线的判定即得结论.【详解】解:BC ∥DE ;理由如下:因为BE 平分ABC ∠,所以∠ABE =∠CBE ,因为ABE BED ∠=∠,所以∠CBE =∠BED ,所以BC ∥DE .【点睛】本题考查了角平分线的定义和平行线的判定,属于基础题目,熟练掌握基本知识是解题的关键.26.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠解析:(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键. 27.如图所示,已知,A F ∠=∠,C D ∠=∠.(1)求证: //BD CE ;(2)已知:2:3ABD DEC ∠∠=,求DEC ∠的度数.解析:(1)见解析;(2)∠D EC =108°【分析】(1)由AC //DE 可得∠D=∠ABD ,根据等量代换得到∠C=∠ABD ,从而可证BD//C E ;(2)设∠ABD=2x,∠D EC=3x,根据两直线平行,同旁内角互补求解即可.【详解】(1)证明∵∠A=∠F,∴AC//DE,∴∠D=∠ABD,∵∠D=∠C,∴∠C=∠ABD,∴BD//C E;(2)∵BD//C E,DF//BC,∴∠ABD =∠C,∠D EC+∠C=180°,∵∠ABD :∠DEC=2:3,∴设∠ABD=2x,∠D EC=3x,则2x+3x=180°,∴x=36°,∴∠D EC =3x=108°.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.28.如图,点A、O、B在同一条直线上,∠AOC比∠BOC大100°,OE平分∠AOC.求(1)直接写出∠AOC、∠BOC的度数;(2)从点O出发画一条射线,使得∠COD=90°,求出∠EOD的度数(可以直接使用第一问的结果)解析:(1)140°;40°;(2)160°或20°【分析】(1)根据∠AOC-∠BOC=100°得到∠AOC=∠BOC+100°,利用∠AOC+∠BOC=180°求出角的度数;(2)分情况讨论,如图2,射线OD在AB下方,∠COD=90°,根据角平分线的性质求出∠AOC =70°,求得∠EOD=∠COE+∠COD=160°;如图1,射线OD在AB上方,∠COE=12∠COD=90°,同理∠COE==70°,得到∠EOD=∠COD﹣∠COE =20°.【详解】解:(1)∵∠AOC-∠BOC=100°,∴∠AOC=∠BOC+100°,∵∠AOC+∠BOC=180°,∴∠BOC+100°+∠BOC=180°,∴∠BOC=40°,∴∠AOC=140°;(2)如图2,射线OD在AB下方,∠COD=90°,因为OE平分∠AOC ,∠AOC=140°,所以∠COE=12∠AOC =70°,所以∠EOD=∠COE+∠COD=160°,如图1,射线OD在AB上方,∠COD=90°,同理∠COE==70°,所以∠EOD=∠COD﹣∠COE =20°,答:∠EOD的度数是160°或20°.【点睛】此题考查邻补角的定义,角度的和差计算,角平分线的性质,垂直的定义,解题中注意分类思想的运用避免漏解.。

七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。

七年级下册数学相交线与平行线知识点归纳

七年级下册数学相交线与平行线知识点归纳

七年级下册数学相交线与平行线知识点归纳相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(成正比),邻补角(优势互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,坐落于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、横向三要素:横向关系,横向记号,像距6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最长。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,存有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的认定:①同位角相等,两直线平行。

②内错角成正比,两直线平行。

③同旁内角互补,两直线平行。

11、推断:在同一平面内,如果两条直线都旋转轴同一条直线,那么这两条直线平行。

(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、正数整数,泛称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

人教版七年级数学下册第五章相交线与平行线复习训练题

人教版七年级数学下册第五章相交线与平行线复习训练题

第五章相交线与平行线类型一邻补角与对顶角巧分辨1.如图1所示的几个图形中,能构成对顶角的是( )图12.如图2,三条直线AB,CD,EF相交于点O,则∠1的邻补角为______________.图23.如图3,直线AB,CD交于点O,射线OM平分∠AOC.若∠BOD=76°,求∠AOM的度数.图3类型二区分同位角、内错角、同旁内角有原则4.如图4,与∠1构成内错角的是( )图4A.∠2 B.∠3 C.∠4 D.∠55.如图5,直线DE经过点C,则∠A的内错角是________,∠A的同旁内角是________________.图56.如图6,E是AB延长线上一点,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.图6类型三掌握相交的特殊情形——垂直7.如图7,已知AB,CD相交于点O,OE⊥CD,垂足为O,∠AOC=30°,则∠BOE等于( )图7A .30°B .60°C .120°D .130°8.如图8所示,在直角三角形ABC 中,∠ACB=90°,CD⊥AB 于点D ,则点A 到BC 的距离为线段______的长度;点A到CD 的距离为线段______的长度;点C 到AB 的距离为线段______的长度.图8类型四 平行线的判定和性质9.如图9,直线a ,b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,一定有a∥bB .当a∥b 时,一定有∠1=∠2C .当a∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180°时,一定有a∥b10.如图10,已知AB∥CD,∠1=60°,则∠2=________°.图9图1011.如图11,不添加辅助线,请你写出一个能判定EB∥AC的条件:________________________.图1112.如图12,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,求∠2的度数.图1213.如图13,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并说明理由.图1314.如图14所示,已知OP∥QR∥ST,连接PR,SR,猜想∠1,∠2,∠3三个角之间的关系,并说明理由.图14类型五命题与定理须细辨15.下列语句不是命题的是( )A.若a<0,b<0,则ab>0B.用三角板画一个60°的角C.对顶角相等D.互为相反数的两个数的和为016.下列命题中,是真命题的是( )A.对顶角相等B.同位角相等C.若a2=b2,则a=bD.若a>b,则-2a>-2b17.将下列命题改写成“如果……那么……”的形式.(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)三角形的内角和是180°.类型六平移平移的特征:图形的平移变换中,图形的形状、大小、方向都不发生改变,只是改变了图形的位置;平移前后图形的对应点的连线平行(或在同一条直线上)且相等.18.下列现象中,不属于平移的是( )A.钟表的指针转动B.电梯的升降C.火车在笔直的铁轨上行驶D.传送带上物品的运动19.如图15,将周长为8的三角形ABC沿BC方向向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为( )图15A.6 B.8 C.10 D.12类型七方程思想在几何中的应用20.如图16,已知a∥b,∠1=(3x+70)°,∠2=(5x+22)°,求∠1的补角的度数.图16类型八开放型问题21.给出下列三个论断:①∠B+∠D=180°;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并说明理由.已知:如图17,________________________.结论:________________________.图17类型九探究型问题22.【阅读材料】在“相交线与平行线”的学习中,有这样一道典型问题:如图18①,AB∥CD,点P在AB与CD之间,可得结论:∠BAP+∠APC+∠PCD=360°.理由如下:过点P作PQ∥AB.∴∠BAP+∠APQ=180°.∵AB∥CD,PQ∥AB,∴PQ∥CD,∴∠PCD+∠CPQ=180°.∴∠BAP+∠APC+∠PCD=∠BAP+∠APQ+∠CPQ+∠PCD=180°+180°=360°.【问题解决】(1)如图②,AB∥CD,点P在AB与CD之间,可得∠BAP,∠APC,∠PCD间的等量关系是________________________________________________________________________;(2)如图③,AB∥CD,点P ,E 在AB 与CD 之间,AE 平分∠BAP,CE 平分∠DCP,写出∠AEC 与∠APC 间的等量关系,并写出理由;(3)如图④,AB∥CD,点P ,E 在AB 与CD 之间,∠BAE=13∠BAP,∠DCE=13∠DCP ,可得∠AEC与∠APC 间的等量关系是________________________.图18答案1.D2.∠BOE 和∠AOF 3.解:∵∠BOD=76°, ∴∠AOC=∠BOD=76°. ∵射线OM 平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°.4.B5.∠ACD ∠ACB,∠ACE 和∠B6.解:(1)∠A 和∠D 是直线AE ,DC 被直线AD 所截而成的同旁内角. (2)∠A 和∠CBA 是直线AD ,BC 被直线AE 所截而成的同旁内角. (3)∠C 和∠CBE 是直线DC ,AE 被直线BC 所截而成的内错角. 7.C 8.AC AD CD 9.D 10.12011.答案不唯一,如∠C=∠EBD 12.解:∵AB∥CD,∴∠2=∠BEG,∠BEF+∠1=180°. ∵∠1=50°,∴∠BEF=130°. ∵EG 平分∠BEF,∴∠BEG=12∠BEF=65°, ∴∠2=65°.13.解:∠ACB=∠DEB.理由:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE,∴AB∥EF,∴∠DEF=∠BDE.∵∠DEF=∠A,∴∠A=∠BDE,∴AC∥DE,∴∠ACB=∠DEB.14.解:∠2+∠3=180°+∠1.理由:∵OP∥QR,∴∠2+∠QRP=180°,∴∠QRP=180°-∠2.∵QR∥ST,∴∠3=∠QRS=∠1+∠QRP=∠1+180°-∠2.∴∠2+∠3=180°+∠1.15.B16. A17.解:(1)如果几个角是直角,那么它们都相等.(2)如果一个整数的末位数字是5,那么它能被5整除.(3)如果一个图形是三角形,那么它的内角和是180°.18.A19. C20.解:如图,因为a∥b,所以∠1=∠3.又因为∠1=(3x+70)°,∠2=(5x+22)°,∠2+∠3=180˚,所以(3x +70)°+(5x+22)°=180°,解得x=11,所以∠1=(3x+70)°=103°.又因为180°-103°=77°,所以∠1的补角的度数为77°.21.解:答案不唯一,符合题意的情况有3种,即①②→③;①③→②;②③→①,任选其中一种即可.已知:如图17,∠B+∠D=180°,AB∥CD.结论:BC∥DE.理由:因为AB∥CD,所以∠B=∠C(两直线平行,内错角相等).又因为∠B+∠D=180°,所以∠C+∠D=180°,所以BC∥DE(同旁内角互补,两直线平行).22.解:(1)如图②,作PE∥AB,得∠APE=∠BAP.∵AB∥CD,AB∥PE,∴CD∥PE,∴∠CPE=∠PCD,∴∠APC=∠APE+∠CPE=∠BAP+∠PCD.故答案为∠APC=∠BAP+∠PCD.(2)∠APC=2∠AE C.理由:设∠EAB=∠EAP=x,∠ECD=∠ECP=y.由(1)可知:∠AEC=x+y,∠APC=2x+2y,∴∠APC=2∠AE C.(3)设∠EAB=a,∠DCE=b,则∠BAP=3a,∠DCP=3b. 由题意得∠AEC=a+b,∠APC+3a+3b=360°,∴∠APC+3∠AEC=360°.故答案为∠APC+3∠AEC=360°.。

华师版七年级数学上册第4章 相交线和平行线小结与复习

华师版七年级数学上册第4章  相交线和平行线小结与复习

知识回顾
4. 同位角、同旁内角、内错角
角的 名称
位置特征
基本 结构 图形 特征
相同点
共同特征
同位 截线:同侧 1 角 被截线:同旁 2
同旁 截线:同侧 内角 被截线:之间
内错 截线:两侧 角 被截线:之间
12
F 都在截 线同侧 都没有公
U 都在 共顶点
被截线 Z 之间
知识回顾
5. 平行线 在同一平面内不相交的两条直线叫做平行线.
第4章 相交线和平行线
华东师大版
知识梳理
两条 直线 相交
相 交 线
邻补角
邻补角互补
对顶角
对顶角相等
基本事实:同一平面内,过一点有且只有一 条直线与已知直线垂直
垂直平分线:垂直并且平分一条线段的直线 垂 线 垂线段的性质:垂线段最短
点到直线的距离:从直线外一点到这 条直线的垂线段的长度
两条直线被第 三条直线所截
∴ ∠DOG=∠DOF-∠FOG=90°-35°=55°.
能力提升
2.如图,AD 为三角形 ABC 的高,能表示点到直线
(线段)的距离的线段B有( A )到 BC 的距离 A
A. 2条
B. 3条
C. 4条
D. 5条
B
B 到 AD 的距离
DC
C 到 AD 的距离
能力提升
3. 如图,直线 AB,CD 被两条直线所截,若∠1=64°,
2. 如图,已知∠DAC=∠ACB,∠D+∠DFE=180°,
求证:EF//BC.
DF C
证明:∵∠DAC= ∠ACB (已知),
∴ AD//BC(内错角相等,两直线平行). ∵ ∠D+∠DFE=180°(已知),

人教版七年级数学下册第五章相交线与平行线知识整理复习(含答案)

人教版七年级数学下册第五章相交线与平行线知识整理复习(含答案)

⼈教版七年级数学下册第五章相交线与平⾏线知识整理复习(含答案)七年级数学下册第五章知识整理知识梳理1.两个⾓有⼀条公共边,它们的另⼀条边互为反向延长线,具有这样位置关系的两个⾓,互为___________.2.两个⾓有⼀个公共顶点,并且⼀个⾓的两边分别是另⼀个⾓两边的反向延长线,具有这种位置关系的⾓,互为___________.对顶⾓的性质:___________.3.垂直是相交的⼀种特殊情形,两条直线互相垂直,其中的⼀条直线叫做另⼀条直线的___________,它们的交点叫做___________。

4.在同⼀平⾯内,过⼀点有且只有___________直线与已知直线垂直。

5.连接直线外⼀点与直线上各点的所有线段中,___________最短,简单说成:___________。

6.直线外⼀点到这条直线的垂线段的长度,叫做___________。

7.如图,∠1和∠4,这两个⾓分别在直线AB,CD的同⼀⽅(上⽅),并且都在直线EF的同侧(右侧),具有这种位置关系的⼀对⾓叫做_______;∠2和∠4,这两个⾓都在直线AB,CD之间,并且分别在直线EF两侧,具有这种位置关系的⼀对⾓叫做_______;∠2和∠3也都在直线AB,CD之间,但它们在直线EF的同⼀旁,具有这种位置关系的⼀对⾓叫做_______;8.在同⼀平⾯内不相交的两条直线(a与b)互相_______,记作_______.9.平⾏线的基本事实(平⾏公理):经过直线外⼀点,有且只有_______直线与这条直线平⾏.10.如果两条直线都与第三条直线平⾏,那么这两条直线也_______.11.平⾏线的判定⽅法:(1)_______相等,两直线平⾏;(2)_______相等,两直线平⾏;(3)_______互补,两直线平⾏。

12.平⾏线的性质:(1)两直线平⾏,同位⾓_______;(2)两直线平⾏,内错⾓_______;(3)两直线平⾏,同旁内⾓_______.13.判断⼀件事情的语句,叫做_______.经过推理证实的真命题叫做_______.14.在很多情况下,⼀个命题的正确性需要经过推理才能作出判断,这个推理过程叫做_______.15.平移得到的新图形与原图形的形状和⼤⼩_______.知识反馈★知识点1;邻补⾓与对顶⾓1.下列说法正确的是( )A.和为180°的⾓为邻补⾓B和为180°的两个⾓为邻补⾓C,有公共顶点,和为90°的⾓为邻补⾓D.有公共顶点和⼀条公共边,它们的另⼀边互为反向廷长线的两个⾓为邻补⾓2.如图,∠1和∠2是对顶⾓的是( )3.如图,直线AB、CD相交于点O,若∠AOC=(3x+10°),∠BOC=(2x-10°),求∠AOD的度数.★知识点2:垂线与垂线段4.过直线AB外⼀点P画直线AB的垂线,则( )A.能画⽆数条B只能画2条 C.只能画1条 D.不能画成5.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有⼀部分同学画出下列四种图形,请你数⼀数,错误的个数为( )A.1个B.2个C.3个D.4个6.如图,在体育测试中,裁判员测量某同学的跳远成绩,在直线l上的A、B、C三点中,点________到沙坑中脚印点P的距离为该同学的成绩.7.如图,在三⾓形ABC中,∠BCA=90°,CD⊥AB,垂⾜为点D.线段AB,BC,CD的⼤⼩关系如何?并说明理由.★知识点3:同位⾓、内错⾓、同旁内⾓8.如图,下⾯说法中正确的是( )A.∠2和∠3是同位⾓B.∠3和∠4是同旁内⾓C,∠1和∠2是内错⾓ D.∠1和∠3是同旁内⾓9.如图所⽰,直线DE、BC被直线AB所截,∠1与∠4是_________,∠2与∠4是_________,∠1与∠2是_________,∠3与∠4是_________.★知识点4:平⾏线的定义及画法10.下列⽣活中的线是平⾏线的有( )①铁路上并排的两条铁轨;②上体育课时,双杠的两个横杠;③滑雪时两只雪撬滑动轨迹;④操场上的升旗杆与教室屋梁。

(完整版)初一数学下册《相交线与平行线》知识点归纳

(完整版)初一数学下册《相交线与平行线》知识点归纳

相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。

三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。

四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

10.平行线:在同一平面内,不相交的两条直线叫做平行线。

11.命题:判断一件事情的语句叫命题。

12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

13.假命题:条件和结果相矛盾的命题是假命题。

华东师大初中七年级上册数学《相交线与平行线》全章复习与巩固(提高)知识讲解[精选]

华东师大初中七年级上册数学《相交线与平行线》全章复习与巩固(提高)知识讲解[精选]

《相交线与平行线》全章复习与巩固(提高)知识讲解【学习目标】1.熟练掌握对顶角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2. 区别平行线的判定与性质,并能灵活运用;3. 了解平移的概念及性质.【知识网络】【要点梳理】要点一、相交线1.对顶角、邻补角两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:(1)对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线.(2)如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角.(3)如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.(4)两直线相交形成的四个角中,每一个角的邻补角有两个,对顶角有一个.2.垂线及性质、距离(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作: AB ⊥CD,垂足为O.要点诠释:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(2)垂线的性质:垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记).垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P 到直线AB的距离是垂线段PO的长.要点诠释:垂线段PO是点P到直线AB所有线段中最短的一条.要点二、平行线1.平行线判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB 与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、图形的平移1.命题:判断一件事情的语句,叫做命题.每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.2.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:平移的性质:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、相交线1.(2015•凉山州一模)我们知道两直线交于一点,对顶角有2对,三条直线交于一点,对顶角有6对,四条直线交于一点,对顶角有12对,…(1)10条直线交于一点,对顶角有对.(2)n(n≥2)条直线交于一点,对顶角有对.【答案与解析】解:(1)如图①两条直线交于一点,图中共有=2对对顶角;如图②三条直线交于一点,图中共有=6对对顶角;如图③四条直线交于一点,图中共有=12对对顶角;…;按这样的规律,10条直线交于一点,那么对顶角共有:=90,故答案为:90;(2)由(1)得:n(n≥2)条直线交于一点,对顶角有:=n(n﹣1).故答案为:n(n﹣1).【总结升华】此题主要考查了对顶角以及图形变化规律,本题是一个探索规律型的题目,解决时注意观察每对数之间的关系.这是中考中经常出现的问题.2.直线AB、CD相交于点O,OE⊥AB于点O,∠COE=40°,求∠BOD的度数. 【答案与解析】解:分两种情况.第一种:如图1,直线AB,CD相交后,∠BOD是锐角,∵OE⊥AB, ∴∠AOE=90°,即∠AOC+∠COE=90°.∵∠COE=40°, ∴∠AOC=50°.∵∠BOD=∠AOC ∴∠BOD=50°第二种:如图2,直线AB、CD相交后,∠BOD是钝角,∵OE⊥AB, ∴∠AOE=90°.∵∠COE=40°,∴∠AOC=90°+40°=130°,∴∠BOD=∠AOC=130°.【总计升华】本题属于无图题,首先应根据题意,画出图形,画图时要考虑两种情况:一种情况为∠BOD是锐角,第二种情况是∠BOD是钝角.此外关于两条直线相交,应想到邻补角、对顶角的定义及性质.举一反三:【变式】(2015•河北模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°【答案】C.解:∵∠1=145°,∴∠2=180°﹣145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°.类型二、平行线的性质与判定3.如图所示,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.【思路点拨】这是初学几何时较为复杂的题目,通常是过“拐点”(拐角处的顶点)作平行线为辅助线,把一个大角分成两个角,分别与两个已知角建立起了联系.【答案与解析】解:过E点作EF∥AB,因为AB∥CD(已知),所以EF∥CD.所以∠4=∠D(两直线平行,内错角相等).又因为∠D=∠2(已知),所以∠4=∠2(等量代换).同理,由EF∥AB,∠1=∠B,可得∠3=∠1.因为∠1+∠2+∠3+∠4=180°(平角定义),所以∠1+∠2=∠3+∠4=90°,即∠BED=90°.故BE⊥DE.【总结升华】解此题的关键是如何构造平行关系,即过哪一点作哪条直线的平行线,只有通过适当的练习才能逐步达到熟练解题的目的.举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是(). A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【答案】C (提示:过点E作EF∥AB)【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=.【答案】900°4.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.【答案与解析】证明:如图,过点C做CK∥FG,并延长GF、CD交于点H,∵ CD∥EF (已知),∴∠CHG=∠1(两直线平行,同位角相等).又∵ CK∥FG,∴∠CHG+∠2+∠BCK=180°((两直线平行,同旁内角互补).∴∠1+∠2+∠BCK=180°(等量代换).∵∠1+∠2=∠ABC(已知),∴∠ABC+∠BCK=180°(等量代换).∴ CK∥AB(同旁内角互补,两直线平行).∴ AB∥GF(平行的传递性).【总结升华】反复应用平行线的判定与性质,见到角相等或互补,就应该想到判断直线是否平行,见到直线平行就应联想到角相等或互补.类型三、图形的平移5.(吉林)如图所示,把边长为2的正方形的局部进行图①~④的变换,组成图⑤,则图⑤的面积是()A.18 B.16 C.12 D.8【思路点拨】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.【答案】B【解析】图①到图②是将一个等腰三角形由下方平移到上方.图③到图④是将右边的小长方形平移到左侧,所以图④中阴影部分的面积与边长为2的正方形的面积是相等的,图⑤是由4个图④组成的,所以图⑤的面积是4×4=16.【总结升华】平移是由平移的方向和距离决定的.平移的性质是平移前后,图形的形状、大小不变.类型四、实际应用6.手工制作课上,老师先将一张长方形纸片折叠成如图所示的那样,若折痕与一条边BC的夹角∠EFB=30°,你能说出∠EGF的度数吗?【思路点拨】长方形的对边是平行的,所以AD∥BC,可得∠DEF=∠EFG=30°,又因为折后重合部分相等,所以∠GEF=∠DEF=30°,所以∠DEG=2∠DEF=60°,又因为两直线平行,同旁内角互补,所以∠EGF=180°-∠DEG,问题可解.【答案与解析】解:因为AD∥BC(已知),所以∠DEF=∠EFG=30°(两直线平行,内错角相等).因为∠GEF=∠DEF=30°(对折后重合部分相等),所以∠DEG=2∠DEF=60°.所以∠EGF=180°-∠DEG=180°-60°=120°(两直线平行,同旁内角互补). 【总结升华】本题利用了:(1)折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;(2)平行线的性质.举一反三:【变式】(山东滨州)如图,把—个长方形纸片对折两次,然后剪下—个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为().A.60° B.30° C.45° D.90°【答案】C。

相交线与平行线知识点大全

相交线与平行线知识点大全

相交线与平行线知识点大全一、基础概念1.相交线:当两条线在空间中有一个交点时,我们称它们为相交线。

2.平行线:当两条线在空间中没有任何交点时,我们称它们为平行线。

3.直线:无限延伸的一维物体。

二、相交线的性质1.两条相交线的交点只有一个。

2.相交线的交点与每条线上的点都是共线的。

3.直线与平面的交点是一个点或直线。

三、平行线的性质1.平行线的斜率相等。

2.平行线之间的距离是始终相等的。

3.平行线在任意一点上的两个角相等。

4.如果两条线与一条平行线的交点的两个内角相等,则这两条线平行。

四、判断相交线与平行线的方法1.观察交线的边长关系:如果两条线段相等,则这两条线段平行。

2.观察角度关系:如果两个角的对角线相等且一个角是直角,则这两条线段平行。

3.观察线段的斜率关系:如果两条线段的斜率相等,则这两条线段平行。

4.观察线段的方程:如果两条线段的方程满足平行线的定义,则这两条线段平行。

五、平行线的判定定理1.垂直平行线定理:如果一条线段与两条平行线相交,且这两条交线是垂直的,则这两条平行线是垂直平行线。

2.异面直线平行定理:如果两条异面直线有一条平行于每条还是的直线,则这两条直线平行。

3.平行线的等价定理:如果两条直线与一条平行线平行,则这两条直线平行。

六、平行线的性质定理1.平行线的平移定理:平行线的平移仍为平行线。

2.平行线的垂直定理:平行线与同一平面内的垂直线垂直。

七、平行线与角的关系1.平行线对应角定理:如果一条直线与两条平行线相交,那么对应的内角和对应的外角是互补的。

2.平行线夹角定理:如果两条平行线被一条截断,那么所截断的两条线上的对应角相等。

3.平行线内角定理:如果一条直线与两条平行线相交,那么内角的和是180度。

以上是关于相交线与平行线的知识点的详细介绍,相交线与平行线是基础几何概念,掌握这些知识点,可以帮助我们更好地理解和应用直线之间的关系。

相交线与平行线(常考考点专题)(巩固篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

相交线与平行线(常考考点专题)(巩固篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

专题5.20 相交线与平行线(常考考点专题)(巩固篇)(专项练习)一、单选题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角1.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .2.下列说法中,正确的是( )A .相等的两个角是对顶角B .有一条公共边的两个角是邻补角C .有公共顶点的两个角是对顶角D .一条直线与端点在这条直线上的一条射线组成的两个角是邻补角【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段3.如图,直线AB ,CD 相交于点O ,OE AB ⊥于点O ,OF 平分AOE ∠,12530'∠=︒,则下列结论中不正确的是( )A .13∠=∠B .245∠=︒C .AOD ∠与1∠互为补角D .1∠的余角等于6530'︒ 4.下列说法中,正确的是( )A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B.平面内,互相垂直的两条直线不一定相交C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD.过一点有且只有一条直线垂直于已知直线【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角5.如图,下列判断中正确的个数是()(1)∠A与∠1是同位角;(2)∠A和∠B是同旁内角;(3)∠4和∠1是内错角;(4)∠3和∠1是同位角.A.1个B.2个C.3个D.4个6.如图,同位角共有()对.A.6B.5C.8D.7【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离7.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4,b与c 的距离为1,则a与c的距离为()A.3或4B.5C.3或5D.4或58.如图所示,∠BAC=90°,AD∠BC,则下列结论中,正确的个数为()∠AB∠AC;∠AD与AC互相垂直;∠点C到AB的垂线段是线段AB;∠点A到BC的距离是线段AD的长度;∠线段AB的长度是点B到AC的距离;∠AD+BD>AB.A.2个B.3个C.4个D.5个【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法9.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,正确的是()A.B.C.D.10.如图,P是直线l外一点,A,B,C三点在直线l上,且PB l⊥于点B,90∠=︒,APC则下列结论:∠线段AP是点A到直线PC的距离;∠线段BP的长是点P到直线l的距离;∠PA,PB,PC三条线段中,PB最短;∠线段PC的长是点P到直线l的距离.其中正确的是()A.∠∠B.∠∠∠C.∠∠D.∠∠∠∠【考点六】相交线与平行线➽➼➵作图➻➼平移11.下面所说的“平移”,是指只沿方格的格线(即左右或上下)运动,并将图中的任一条线段平移一格称为“1步”.通过平移,使得图中的3条线段首尾相接组成一个三角形,最少需要移动的步数是()A.7步B.8步C.9步D.10步12.如图所示,下列关于∠ABC与∠A′B′C′的说法不正确的是()A.将∠ABC先向右平移4格,再向上平移1格后可得到∠A′B′C′B.将∠ABC先向上平移1格,再向右平移4格后可得到∠A′B′C′C.将∠A′B′C′先向下平移1格,再向左平移4格后可得到∠ABCD.将∠A′B′C′向左平移6格后就可得到∠ABC【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理13.如图,l是一条水平线,把一头系着小球的线一端固定在点A,小球从B到C从左向右摆动,在这一过程中,系小球的线在水平线下方部分的线段长度的变化是()A.从大变小B.从小变大C.从小变大再变小D.从大变小再变大14.下列说法中是真命题正确的个数有()个(1)若a∥b,b∥d,则a∥d;(2)过一点有且只有一条直线与已知直线平行;(3)两条直线不相交就平行;(4)过一点有且只有一条直线与已知直线垂直.A.1个B.2个C.3个D.4个15.在下列说法中,正确的有( )个.∠过一点有且只有一条直线与已知直线平行;∠已知α∠、∠β的两边分别平行,那么αβ∠=∠;∠垂直于同一条直线的两条直线平行;∠从直线外一点到这条直线的垂线段,叫做这点到直线的距离.A .3B .2C .1D .016.如图,有下列条件:∠12∠=∠;∠34180∠+∠=︒;∠56180∠+∠=︒;∠23∠∠=.其中,能判断直线a b ∥的有( )A .4个B .3个C .2个D .1个17.如图,在下列给出的条件中,不能判定DE BC ∥的是( )A .12∠=∠B .3=4∠∠C .5C =∠∠D .180B BDE ∠+∠=︒ 18.如图,要得到AB CD ,只需要添加一个条件,这个条件不可以是( )A .180D BAD =∠+∠B .180B BCD ∠+∠=C .24∠∠=D .13∠=∠19.如图,45,AOB CD OB ∠=︒∥交OA 于E ,则AEC ∠的度数为( )A .130︒B .135︒C .140︒D .145︒20.如图,∠BAC =40°,AD 平分∠BAC ,BD ∠AC ,则∠D 的度数为( )A .20°B .30°C .40°D .50°【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系21.如图,AD ∠BC ,DE AB ∥,则∠CDE 与∠BAD 的关系是( )A .互为余角B .互为补角C .相等D .不能确定22.如图,若AB ∠CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小23.一张长方形纸条按如图所示折叠,EF 是折痕,若∠EFB =35°,则:∠∠GEF =35°;∠∠EGB =70°;∠∠AEG =110°;∠CFC '∠=70°.以上结论正确的有( )A .∠ ∠ ∠ ∠B .∠ ∠ ∠C .∠ ∠ ∠D .∠ ∠24.如图,AB //CD ,∠1=13∠ABF ,CE 平分∠DCF ,设∠ABE =∠1,∠E =∠2,∠F =∠3,则∠1、∠2、∠3的数量关系是( )A .∠1+2∠2+∠3=360°B .2∠2+∠3—∠1=360°C .∠1+2∠2—∠3=90°D .3∠1+∠2+∠3=360°【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 25.如图,已知A ADE ∠=∠,若54EDC C ∠=∠,则C ∠=( )A .80︒B .90︒C .100︒D .110︒26.如图,AB //CD ,一副三角尺按如图所示放置,∠AEG =20°,则∠HFD 的度数为( )A .20°B .70°C .45°D .35°【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明 27.如图,下列判断中错误的是( )A .∠A +∠ADC = 180° 所以AB ∥CDB .∠l=∠2,所以AD ∥BC C .AB ∥CD ,所以∠ABC +∠C = 180° D .AD ∥BC ,所以∠3=∠428.如图,AE ∥CF ,∠ACF 的平分线交AE 于点B ,G 是CF 上的一点,∠GBE 的平分线交CF 于点D ,且BD ∠BC ,下列结论:∠BC 平分∠ABG ;∠AC ∥BG ;∠与∠DBE 互余的角有2个;∠若∠A =α,则∠BDF =180°−2α.其中正确的有( )A .∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用29.一辆汽车在笔直的公路上行驶,两次拐弯后,还在原来的方向上平行前进,那么这两次拐弯的角度应是( )A .第一次右拐50︒,第二次左拐130︒B .第一次左拐50︒,第二次右拐50︒C .第一次左拐50︒,第二次左拐50︒D .第一次右拐50︒,第二次右拐50︒ 30.如图a 是长方形纸带,26DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A .102°B .112°C .120°D .128°【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题31.以下命题的逆命题为真命题的是( )A .若a b >,则22a b >B .对顶角相等C .直角三角形两锐角互余D .若a b =,则22a b =32.命题“如果x y =,那么22x y =”的逆命题是( )A .如果x y ≠,那么22x y ≠B .如果x y =,那么22x y ≠C .如果22x y =,那么x y =D .如果22x y ≠,那么x y ≠【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理33.有下列描述:∠过点 A 作直线 AF // BC ;∠连接三角形两边中点的线段叫做三角形的中位线;∠两直线平行,同旁内角互补;∠垂直于同一直线的两条直线互相垂直.其中是定理 的有( )A .0 个B .1 个C .2 个D .3 个34.下列定理中,没有逆定理的是( )A .两直线平行,同旁内角互补;B .两个全等三角形的对应角相等C .直角三角形的两个锐角互余;D .两内角相等的三角形是等腰三角形【考点十七】平移➽➼➵性质35.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,连接CD 、CE ,若△ACD 的面积为6,则△BCE 的面积为( )A .5B .6C .10D .336.如图,在直角三角形ABC 中,90BAC ∠=︒,将三角形ABC 沿直线BC 向右平移2cm 得到三角形DEF ,连接AE ,有以下结论:∠BE AD ∥;∠B ADE ∠=∠;∠DE AC ⊥;∠BE AD =,其中正确的有( )A.1个B.2个C.3个D.4个【考点十八】平移➽➼➵应用37.如图是从一块边长为50cm的正方形材料中裁出的垫片,现测得FG=9cm,则这块垫片的周长为()A.182cm B.191cm C.209cm D.218cm38.如图,是两个有重叠的直角三角形,可以看作是将其中的一个直角三角形ABC沿着BC方向平移5个单位长度就得到了另一直角三角形DEF,其中AB=8,BE=5,DH=3,则下列结论正确的有()∠AC∠DF;∠HE=5;∠CF=5;∠四边形DHCF的面积为32.5.A.1个B.2个C.3个D.4个二、填空题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角39.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=_____.40.如图,直线AB与CD相交于点O,∠1=∠2,若∠AOE=138°,则∠COE的度数为_____度.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段41.如图:∠BAC=90°,AD⊥BC,垂足为D,则点A到直线BC的距离是线段_____的长度.42.已知在同一个平面内,一个角的度数是70°,另一个角的两边分别与它的两边垂直,则另一个角的度数是___________.【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角43.如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a b c+-的值是____________44.如图,∠1和∠3是直线______ 和______ 被直线______ 所截而成的______ 角;图中与∠2是同旁内角的角有______ 个.【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离45.如图所示,已知90ACB ∠=︒,若3cm BC =,4cm AC =,5cm AB =,则点A 到BC 的距离是______,点C 到AB 的距离是______.46.如图,直线AB //CD ,GH 平分∠CGF ,GI 平分∠DGF ,且HG =15cm ,GI =20cm ,HI =25cm ,则直线AB 与直线CD 之间的距离是_____cm .【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法47.已知直线 AB ,CB , l 在同一平面内,若 AB ∠ l ,垂足为 B ,CB ∠ l ,垂足也为 B ,则符合题意的图形可以是如图中的图___(填甲或乙), 你选择的依据是_____(写出你学过的一条公理).48.如图,AD BC ∥,E 是线段AD 上任意一点,BE 与AC 相交于点O ,若ABC ∆的面积是5,EOC ∆的面积是1,则BOC ∆的面积是______.【考点六】相交线与平行线➽➼➵作图➻➼平移49.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______50.如图,如果把∠ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的位置关系是_______________.【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理51.如图,点A、点B是直线l上两点,AB=10,点M在直线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.52.下列说法正确的有(填序号):_____.∠同位角相等;∠在同一平面内,两条不相交的线段是平行线;∠在同一平面内,如果a//b,b//c,则a//c;∠在同一平面内,过直线外一点有且只有一条直线与已知直线平行.【考点八】相交线与平行线➽➼➵平行线的判定53.如图,不添加辅助线,请写出一个能判定AB ∥CD 的条件__54.在同一平面内有2022条直线122022,a a a ,如果12a a ⊥,2a ∥3a ,34a a ⊥,4a ∥5a ……那么1a 与2022a 的位置关系是_____________.55.将一块三角板ABC (∠BAC =90°,∠ABC =30°)按如图方式放置,使A ,B 两点分别落在直线m ,n 上,对于给出的五个条件:∠∠1=25.5°,∠2=55°30';∠∠1+∠2=90°;∠∠2=2∠1;∠∠ACB =∠1+∠3;∠∠ABC =∠2-∠1.能判断直线m ∥n 的有__.(填序号)56.如图,a 、b 、c 三根木棒钉在一起,170,2100∠=︒∠=︒,现将木棒a 、b 同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a ,b 平行.【考点九】相交线与平行线➽➼➵平行线的性质57.如图,把一张长方形纸条ABCD 沿EF 折叠,若150∠=︒,则AEG ∠= ______ .58.如图,已知BC DE ∥,BF 平分∠ABC ,DC 平分∠ADE ,则下列结论中:∠ACB E ∠=∠;∠180FBD CDE ∠+∠=︒;∠BFD BCD ∠=∠;∠ABF BCD ∠=∠.正确的有( )(填序号)【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系59.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的2倍少18°,则∠A 的度数是__________. 60.∠如图1,AB ∥CD ,则∠A +∠E +∠C =180°;∠如图2,AB ∥CD ,则∠E =∠A +∠C ;∠如图3,若AB ∥EF ,则∠x =180°-∠α-∠γ+∠β;∠如图4,AB ∥CD ,则∠A =∠C +∠P .以上结论正确的是_____.【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小61.如图,已知2375AB CD PAQ BAQ PCD QCD P ∠=∠∠=∠∠=︒∥,,,,则AQC ∠=___________.62.有一条长方形纸带,按如图方式折叠,形成的锐角α∠的度数为______.【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小63.如图,已知∠1=72°,∠4=110°,∠3=70°,则∠2=____________.64.如图,直线MN 分别与直线AB ,CD 相交于点E ,F ,EG 平分∠BEF ,交直线CD 于点G ,若∠MFD =∠BEF =56°,射线GP ∠EG 于点G ,则∠PGF =____________________.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明65.一副直角三角板中,60A ∠=︒,30D ∠=︒,45E B ∠=∠=︒,现将直角顶点C 按照如图方式叠放,点E 在直线AC 上方,且0180ACE ︒<∠<︒,能使三角形ADC 有一条边与EB 平行的所有ACE ∠的度数的和为_______.66.如图,AB BC ⊥于点B ,DC BC ⊥于点C ,连接AD ,DE 平分ADC ∠交BC 于点E ,点F 为CD 延长线上一点,连接AF ,BAF EDF ∠=∠,下列结论:∠180BAD ADC ∠+∠=︒;∠AF DE ∥;∠DAF F ∠=∠.正确的有______.(填序号)【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用67.《七彩云南》少数民族传统艺术表演,是七彩云南欢乐世界的王牌演艺节目,它荟萃云南人文之美,深受观众喜爱.在展演中,舞台上的灯光由灯带上位于点A 和点C 的两盏激光灯控制.如图,光线AB 与灯带AC 的夹角40A ∠=︒,当光线CB '与灯带AC 的夹角ACB '∠=______时,CB AB '∥.68.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为_____.【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题69.命题“若33a b ->-,则a b <”的逆命题是________.70.已知:在同一平面内,三条直线a ,b ,c .下列四个命题为真命题的是_____________.(填写所有真命题的序号)∠如果a ∥b ,a c ⊥,那么b c ⊥; ∠如果b a ⊥,c a ⊥,那么b c ⊥;∠如果a ∥b ,c ∥b ,那么a ∥c ; ∠如果b a ⊥,c a ⊥,那么b ∥c .【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理71.用推理的方法判断为正确的命题叫做 .72.请写出一个存在逆定理的定理:______.【考点十七】平移➽➼➵性质73.如图,将ABC ∆沿AC 所在的直线平移到DEF ∆的位置,若图中10AC =,3DC =,则CF =____.74.如图,338∠=︒,直线b 平移后得到直线a ,则12∠+∠=_________︒.【考点十八】平移➽➼➵应用75.在一块长m a ,宽102m 的草坪上修筑宽2m 的小路(如图),则种草地面的面积是______2m .76.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.三、解答题77.如图,已知O为直线AC上一点,过点O向直线AC上引三条射线,,OB OD OE,且OD平分AOB∠.(1)若OE平分BOC∠,求DOE∠的度数;(2)若13BOE EOC∠=∠,50DOE∠=,求EOC∠的度数.78.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1) 求BOF ∠的度数;(2) 试说明AB CD ∥的理由.79.请在括号内完成证明过程和填写上推理依据. 如图,已知12180∠+∠=︒,DEF A ∠=∠,试判断ACB ∠与DEB ∠的大小关系,并说明理由.解:ACB DEB ∠=∠,理由如下:∠12180∠+∠=︒2180BDC ∠+∠=︒( )∠( )BDC =∠( )∠( )EF ∥( ) ∠DEF ∠=( )∠DEF A∠=∠∠()A=∠()∠DE AC∥()∠ACB DEB∠=∠()80.已知AB CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥ GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=32°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数?参考答案1.C【分析】根据对顶角的概念逐一判断即可.解:A 、∠1与∠2的顶点不相同,故不是对顶角,此选项不符合题意;B 、∠1与∠2的一边不是反向延长线,故不是对顶角,此选项不符合题意;C 、∠1与∠2是对顶角,故此选项符合题意;D 、∠1与∠2的一边不是反向延长线,故不是对顶角,此选项不符合题意.故选:C .【点拨】本题考查的是对顶角的判断,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,解题关键是熟练掌握定义,正确判断.2.D解:A 选项,因为对顶角是一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.两条直线相交,构成两对对顶角.互为对顶角的两个角相等.但相等的两个角不一定是对顶角,所以A 选项错误,B 选项, 因为邻补角是有一条公共边,且一个角的一边是另一个角一边的反向延长线组成的2个角, 有一条公共边,但是没有保证另一条边在一条直线上那么就不一定是邻补角,所以B 选项错误,C 选项, ,因为对顶角是一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角,所以C 选项错误,D 选项,一条直线与端点在这条直线上的一条射线组成的两个角是邻补角,所以D 选项正确,故选D.3.D【分析】根据垂线的性质,角平分线的定义及对顶角、邻补角的性质,逐一判断. 解:∠13∠∠、为对顶角,∠13∠=∠,故选项A 正确;∠OE AB ⊥,∠90AOE ∠=︒,∠OF 平分AOE ∠,∠245∠=︒,故选项B 正确;∠1180AOD ∠+∠=︒,∠AOD ∠与1∠互为补角,故选项C 正确;∠12530'∠=︒,9016430'︒-∠=︒,∠1∠的余角等于6430'︒,故选项D 错误;故选:D .【点拨】本题考查对顶角的性质以及邻补角的定义,解题的关键熟练掌握角平分线的定义和垂线的性质.4.C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.解:从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B 错误;直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cm ,即选项C 正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D 错误;故选:C .【点拨】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.5.C【分析】准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解:(1)∠A 与∠1是同位角,正确,符合题意;(2)∠A 与∠B 是同旁内角.正确,符合题意;(3)∠4与∠1是内错角,正确,符合题意;(4)∠1与∠3不是同位角,错误,不符合题意.故选:C .【点拨】此题主要考查了三线八角,在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系.6.A【分析】根据同位角的概念解答即可.解:同位角有6对,∠4与∠7,∠3与∠8,∠1与∠7,∠5与∠6,∠2与∠9,∠1与∠3,故选:A.【点拨】此题考查同位角,关键是根据同位角解答.7.C【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.解:当直线c在a、b之间时,∠a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∠a与c的距离=4−1=3(cm);当直线c不在a、b之间时,∠a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∠a与c的距离=4+1=5(cm),综上所述,a与c的距离为5cm或3cm.故选C.【点拨】此题考查平行线的性质,解题关键在于分类讨论两种情况.8.C【分析】根据点到直线的距离,垂直的定义,三角形三边的关系,可得答案.解:由∠BAC=90°,AD∠BC,得AB∠AC,故∠正确;AD与AC不垂直,故∠错误;点C到AB的垂线段是线段AC的长,故∠错误;点A到BC的距离是线段AD的长度,故∠正确;线段AB的长度是点B到AC的距离,故∠正确;AD+BD>AB,故∠正确;故选:C.【点拨】本题考查了点到直线的距离,利用点到直线的距离,垂直的定义,三角形三边的关系是解题关键.9.A【分析】满足两个条件:∠经过点B.∠垂直AC;由此即可判断.解:根据垂线段的定义可知,图∠线段BE,是点B作线段AC所在直线的垂线段,故选A.【点拨】本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.解:∠线段AP是点A到直线PC的距离,错误;∠线段BP的长是点P到直线l的距离,正确;∠PA,PB,PC三条线段中,PB最短,正确;∠线段PC的长是点P到直线l的距离,错误,故选:A.【点拨】此题主要考查了垂线的两条性质:∠从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∠从直线外一点到这条直线上各点所连的线段中,垂线段最短.11.B【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.解:所画图形如下图所示:其中移动方案为: AB向下移动2格,EF向右1格再向.上2格,CD向左3格,共应8格.共走了8步.故选B.【点拨】本题考查图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.12.D解:根据平移变换的概念及平移的性质进行判断.13.C【分析】根据题意可知:小球在以点A为圆心,以AB长为半径的圆弧上运动,据此即可解答.解:根据题意可知:小球在以点A为圆心,以AB长为半径的圆弧上运动,⊥与点E,交弧BC于点G,如图:过点A作AE l∴,AB=AG=AC,AD AF AE=>BD CF EG,<∴-=--,即=<AB AD AC AF AG AE故系小球的线在水平线下方部分的线段长度的变化是从小变大再变小,故选:C.【点拨】本题考查了垂线段最短,圆的相关概念,理解垂线段的性质是解决本题的关键.14.B【分析】根据平行线的定义与判定、垂线的性质、平行公理对各小题分析判断后即可得解.解:(1)若a b,b d,则a d,故此说法正确;(2)过直线外一点有且只有一条直线与已知直线平行,故此说法错误;(3)在同一平面内,两条直线不相交就平行,故此说法错误;(4)过一点有且只有一条直线与已知直线垂直,故此说法正确.故选:B.【点拨】此题主要考查了平行公理,平行线的性质定义,垂线的性质,关键是熟练掌握课本内容.15.D【分析】利用平行公理,平行线的性质定理,点到直线的距离的定义逐项判断即可.解:同一平面内,过直线外一点有且只有一条直线与已知直线平行,因此∠错误;α∠、∠β的两边分别平行时,αβ∠=∠或180αβ∠+∠=︒,因此∠错误;同一平面内,垂直于同一条直线的两条直线平行,因此∠错误;从直线外一点到这条直线所画的垂线段的长度叫做这点到直线的距离,故∠错误; 故选:D .【点拨】本题考查平行公理,平行线的性质定理,点到直线的距离的定义等,解题的关键是熟练掌握上述基本知识,不要漏掉前置条件.16.B【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法即可得出结论. 解:∠由∠1=∠2,可得a b ;∠由∠3+∠4=180°,可得a b ;∠由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a b ;∠由∠2=∠3,不能得到a b ;故能判断直线a b 的有3个,故选:B .【点拨】本题主要考查平行线的判定,掌握平行线的判定方法是解决问题的关键.17.B【分析】根据平行线的判定定理逐一判断即可.解:因为12∠=∠,所以DE BC ∥,故A 不符合题意;因为3=4∠∠,不能判断DE BC ∥,故B 符合题意;因为5C =∠∠,所以DE BC ∥,故C 不符合题意;因为180B BDE ∠+∠=︒,所以DE BC ∥,故D 不符合题意;故选B .【点拨】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.18.D【分析】根据A 、B 中条件结合“同旁内角互补,两直线平行”可以得出AB //CD ,根据C 中条件结合“内错角相等,两直线平行”可得出AB //CD ,而根据D 中条件结合“内错角相等,两直线平行”可得出AD //BC .由此即可得出结论.解:A 、∠D +∠BAD =180°,∠AB //CD (同旁内角互补,两直线平行),不符合题意;B 、∠∠B +∠BCD =180°,∠AB //CD (同旁内角互补,两直线平行),不符合题意;C 、∠2=∠4,∠AB //CD (内错角相等,两直线平行),不符合题意;D 、∠∠1=∠3,∠AD //BC (内错角相等,两直线平行),符合题意;故选D .【点拨】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.19.B【分析】由∥45,CD OB AOB ∠=︒,根据平行线的性质得到45AED ∠=︒,根据平角的意义即可求出答案.解:∥45,CD OB AOB ∠=︒,45AOB AED ∴∠=∠=︒, 180AEC AED ∠+∠=︒,18045135AEC ∴∠=︒-︒=︒,故选:B .【点拨】本题考查了平行线的性质、邻补角的意义,解题的关键是求出AED ∠的度数.20.A【分析】由角平分线的定义和平行线的性质结合即可求解.解:∠AD 平分∠BAC ,∠BAC =40°,∠∠CAD =12BAC ∠=20°, ∠BD ∠AC ,∠∠D=∠CAD =20°.故选:A【点拨】此题考查角平分线的定义和平行线的性质,掌握相应的性质是解答此题的关键.21.A【分析】先根据垂直的定义可得90CDE ADE ∠+∠=︒,再根据平行线的性质可得BAD ADE ∠=∠,然后根据余角的定义即可得.解:AD BC ⊥,90CDE ADE ADC ∴∠+∠=∠=︒,DE AB ∥,BAD ADE ∴∠=∠,90CDE BAD ∴∠+∠=︒,则CDE ∠与BAD ∠的关系是互为余角,故选:A .【点拨】本题考查了垂直、平行线的性质、余角,熟练掌握平行线的性质是解题关键.22.C【分析】过E 作EF ∥AB ∥CD ,由平行线的质可得∠α+∠AEF =180°,∠ECD =∠γ,由∠β=∠AEF +∠FED 即可得∠α、∠β、∠γ之间的关系.解:过点E 作EF ∥AB ,∠∠α+∠AEF =180°,∠AB ∥CD ,∠EF ∥CD ,∠∠FEC =∠ECD ,∠∠β=∠AEF +∠FED ,又∠γ=∠ECD ,∠∠α+∠β-∠γ=180°.故选:C .【点拨】本题考查了平行线的性质,根据题意正确作出辅助线是解题的关键.23.A【分析】先根据平行线的性质可得DEF ∠的度数,根据折叠的性质可得GEF ∠,进而可得,DEG AEG ∠∠,即可判断∠ ∠ ;再利用平行线的性质可得EGB ∠、EFC ∠的度数,即可判断∠ ;再根据折叠的性质可得EFC '∠的度数,进而可得CFC '∠的度数,即可判断∠解:∠ 四边形ABCD 是长方形∠AD BC ∥35DEF EFB ∴∠=∠=︒由折叠的性质可得35GEF DEF ∠=∠=︒故 ∠ 正确35270DEG ∴∠=︒⨯=︒18070110AEG ∴∠=︒-︒=︒ 故 ∠ 正确AD BC ∥70EGB DEG ∴∠=∠=︒故 ∠ 正确又180********EFC EFB ∠=︒-∠=︒-︒=︒由折叠的性质可得:145EFC EFC '∠=∠=︒360145270CFC '∠=︒-︒⨯=︒故 ∠ 正确故选:A【点拨】本题主要考查平行线的性质和折叠的性质,解题关键是熟练掌握平行线的性质和折叠的性质.24.A。

相交线与平行线最全知识点

相交线与平行线最全知识点

相交线与平行线最全知识点1.平行线的定义:在平面上,如果两条直线在平面内没有交点,那么它们就是平行线。

记作AB,CD。

2.平行线性质:-平行线朝向差:平行线的两个方向向量相等。

-平行线对应角相等:如果两条平行线被截取为若干对应的交线段,那么这些交线段的对应角相等。

-平行线的内错性:如果一条直线与一对平行线相交,那么对这两条平行线上的任意一点A及其在第一条直线上的任意一点B,有AB,CD。

-平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线也平行。

3.相交线的定义:在平面上,如果两条直线的方向向量不相等,那么它们就是相交线。

4.相交线性质:-相交线对应角相等:如果两条相交线被截取为若干对应的交线段,那么这些交线段的对应角相等。

-相交线的交点:两条相交线的交点是它们的唯一交点。

-相交线的截距恒等:如果两条相交线与同一直线相交,那么它们在这条直线上的截距相等。

5.平行线与垂直线:-平行线与垂直线的性质:平行线与同一直线的垂线垂直;平行线的两个垂线方向向量相等。

-平行线的判定:如果两条直线的垂直方向向量相等,那么它们是平行线。

-直线倾斜角度和斜率:平行线的倾斜角度相等,斜率(如果存在)相等;垂直线的倾斜角度之和为90度,其中一个倾斜角度为负倾斜角度的倒数。

6.平行线的判定:-两条直线判定法:如果两条直线的倾斜角度相等,那么它们是平行线。

-点斜式判定法:如果一条直线的斜率k和一点在直线上,那么直线的方程为y-y1=k(x-x1);如果两条直线的斜率相等且截距不相等,那么它们是平行线。

- 截距式判定法:如果一条直线的方程为y = kx + b,那么它与直线y = kx + b1平行当且仅当b = b17.平行线的应用:-常见图形的平行线特性:矩形的对边平行,对角线相等;平行四边形的对边平行且相等,对角线互相平分。

-平行线在解题中的应用:根据平行线的性质,可以解决一些几何问题,如求证两条线段平行、证明一个四边形是平行四边形等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线与相交线考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是,那么称这两个角互为余角.2.补角:如果两个角的和是,那么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A 处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是______10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1-2-3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?12考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行. 2.“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”. 3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行. (3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】如图1―2―4,直线a ∥b ,则∠A CB =________解:78○点拨:过点 C 作CD 平行于a ,因为a ∥b ,所以CD ∥b .则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB =78○.【考题2-2】(2004、开福,6分) 如图1―2―5,AB ∥CD ,直线EF 分别交A B 、CD 于点E 、F ,EG 平分∠B EF ,交CD 于点G ,∠1=5 0○求∠2的度数.解:65○点拨:由AB ∥CD ,得∠ BEF =180○-∠1=130○, ∠ BEG=∠2. 又因为EG 平分∠BEF ,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:1.如图1-2-6,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( )A .l 个B .2个C .3个D .4个2.下列说法中正确的个数是( )(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交; (3)两条直线被第三条直线所截,所得的同位角相等; (4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。

A .4个B .3个C .2个D .1个3.如果两个角的一边在同一条直线上,另一条边互相平行,那么这两个角只能()A .相等B .互补C .相等或互补D .相等且互补 4.如图l -2-7。

AB ∥CD ,若∠ABE=130○,∠CDE=152○,则∠BED=________5.对于同一平面内的三条直线a, b, c ,总结出下列五个论断:①a ∥b ,②b ∥c ,③a ⊥b ,④a ∥c ,⑤a ⊥c ;以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:________________.6.如图 l -2-8,AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个7.两条平行线被第三条直线所截,设一对同旁内角的平分线的夹角为山则下列结论正确的是( ) A 、a >90○. B 。

a <90○.C 、a =90○.D .以上均错8.一个角的两边和另一个角的两边分别平行,而一个角比另一个角的3倍少30○.,则这两个角的大小分别是_____________9.如图 1-2-9,AB ∥CD ∥PN ,若∠ABC =50°,∠CPN =150○,求∠BCP 的度数.10.如图1-2-10,一条公路两次拐弯后和原来的方向相同,即拐弯前后的两条路互相平行,第一次拐的角为∠B=150○,则第二次拐的角∠C 为多少度?为什么?11.如图1-2-11 所示,若以DC、AB为两条直线,这两条直线被第三条直线所截,那么第三条直线有几种可能?都出现什么角?分别写出来.12.如图1-2-12所示,AB∥CD,分别探讨下面四个图形中,∠APC与∠PAB,∠PCD的关系,请你从所得的4个关系中任意选取一个加以证明.13.如图1-2-13,已知直线m∥n,A、B为直线n上两点,C、P为直线m上两点.(1)请写出图1-2-13 中面积相等的各对三角形;_____________________________________.(2)如果A、B、C为三个定点,点P在m上移动,那么无论P 点移动到任何位置,总有______与ΔABC的面积相等.理由是______________.考点3:平行线的判定一、考点讲解:1.平行线的定义:在同一平面内.不相交的两条直线是平行线.2.如果两条直线都与第三条直线平行,那么.这两条直线互相平行.3.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.4.常见的几种两条直线平行的结论:(1)两条平行线被第三条直线所截,一组同位角的角平分线平行.(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.二、经典考题剖析:【考题3-1】一学员在广场上练习驾驶汽车,若其两次拐弯后仍沿原方向前进,则两次拐弯的角度可能是()A.第一次向左拐30○,第二次向右拐30○B.第一次向右拐30○,第二次向左拐130○C.第一次向右拐50○,第二次向右拐130○D.第一次向左拐50○.第二次向左拐130○解:A 点拨:本题创设了一个真实的问题。

要使经过两次拐弯后.汽车行驶的方向与原来的方向相同.就得保证原来,现在的行驶方向是两条平行线且方向一致.本题旨在考查平行线的判定与空间观念。

解题时可根据选项中两次拐弯的角度画出汽车行驶的方向,再判定其是否相同,应选A.【考题3-2】如图l-2-14,已知B D⊥AC,EF⊥AC,D、F 为垂足,G是AB上一点,且∠l=∠2.求证:∠AGD=∠ABC.三、针对性训练:l.已知:如图l-2-15,下列条件中,不能判定是直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3C.∠4=∠5 D.∠2+∠4=180○2.如图l-2-16,直线AD与AB、C D相交于A、D两点,EC、BF与AB、CD交于点E、C、B、F,且∠l=∠2,∠B=∠C,求证:∠A=∠D.343.一个人从A 点出发向北偏东60°方向走了4米到B 点,再从B 点向南偏西15°方向走了3米到C 点,那么∠ABC 等于( ) A .75○B .45○C .105○D .135○4.如图l -2-17,把一张长方形纸条ABCD 沿EF 折叠,若∠EFG=54○,试求∠DEG 和∠BGD ′的大小.5.如图1-2-18,∠B=52○,∠DCG=128○,∠FGK=54°,问直线AB 与EK 及BD 与FH 的关系如何?请证明之.6.已知:如图l -2-19,CD ⊥AB 于D ,E 是BC 上一点,EF⊥AB 于F .∠l=∠2.求证:∠AGD=∠ACB .7.如图l -2-20,直线AB 、CD 是二条河的两岸,并且AB ∥CD .点E 为直线AB 、CD 外一点.现想过点E 作岸CD 的平行线.只需过点E 作岸AB 的平行线即可.其理由是什么?8.如图l -2-21,要判定AB ∥CD ,AD ∥BC ,AE ∥ CF ,各需要哪些条件?根据是什么?★★★(II)自我检测★★★【回顾1】(如图1-2-22,直线a 、b 被直线l 所截,a ∥b ,如果∠1=50○,那么∠2=____.【回顾2】(在图l -2-23的几何体中,上下底面都是平行四边形,各个侧面都是梯形,那么图中和下底面平行的直线有( ) A .1条 B .2条 C .4条 D .8条【回顾3】如图1-2-24,已知 AB ∥CD ,EF 分别交AB 、CD 于点E 、F ,∠l =70°,则∠2的度数是_________【回顾4】“如果两条平行线被第三条直线所截得的八个角中.有一个角的度数已知,则( )” A .只能求出其余三个角的度数 B .只能求出其余五个角的度数 C .只能求出其余六个角的度数 D .可以求出其余七个角的度数【回顾5】如图1-2-25,两条直线a 、b 被第三条直线c 所截,如果a ∥b ,∠1=70○,那么∠2=________.【回顾6】如图1-2-26,已知AB ⊥CD ,直线EF 分别交AB 、CD于点E、F,EG平分∠BEF,若∠l=50○,则∠2的度数为()A.50○B.60○C.65○D.70○【回顾7】如图l-2-27,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A是120○,第二次拐的角∠B是150○第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120○B.130○C.140○D.150○★★★(III)课外作业★★★(一)选择题【备考1】已知两个角的两边分别平行,且其中一个角比另一个角的3倍多36o,则这两个角的度数是()A.20○和96○。

相关文档
最新文档