西大期末考试高数试题及答案

合集下载

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C)(0)0f '= (D )()f x 不可导。

2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B)()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小。

3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C)函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D)函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B)222x+(C )1x - (D)2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(l i m .6.,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ .8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。

高等数学期末试题(含答案)

高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。

选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。

3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。

4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。

5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。

二。

填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。

2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。

3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。

4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221L n n nnn n ππππ .8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()lim x f x A x ,A 为常数. 求'()g x并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰q f x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x yey xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du du u u u u -==-++⎰⎰原式1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:10330()x f x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

大一第二学期高数期末考试题含答案

大一第二学期高数期末考试题含答案

大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x并讨论'()g x 在=0x 处的连续性.13.求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰q f x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x yey xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:1033()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

西安工业大学高数期末考试题及答案试题

西安工业大学高数期末考试题及答案试题

高等数学(Ⅱ)期末参考答案一、填空题(每小题3分,共36分) 1.=⎪⎪⎭⎫ ⎝⎛+∞→∞→xy x xy 11lim ==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛+∞→∞→∞→∞→⋅∞→∞→01lim111lim 11lim e xy xy yxyy x yxy y x y x 1 .2.函数),(y x z z =由方程0sin=+xy e xz 确定,则=-=-=∂∂xzzy xex y xF F yz cos 1xzex x y2cos -.3.设函数222ln zy x u ++=,则它在点)1,1,1(0-M 处的方向导数的最大值为33.4.设函数y xy ax x y x f 22),(22+++=在点)1,1(-处取得极值,则常数=a 5-.5.空间曲线x zx y-==1,222在点)22,1,21(处的切线方程为212211121--=-=-z y x .6.改变积分次序:==⎰⎰-dy y x f dx I x x 22020),(dx y x f dy yy⎰⎰-+--2211111),( .7.设平面曲线L 为下半圆周21x y --=,则=⋅=⋅=+⎰⎰π2221211)(LLds ds y x π .8.设∑为曲面22y x z +=在10≤≤z 的部分,则⎰⎰∑=xdS 0 .9.设,0,10,)(⎩⎨⎧<≤<≤-=-ππx x e x f x 则其以π2为周期的傅里叶级数在π=x 处收敛于)1(21πe + .10.设321,,y y y 是微分方程)()()(x f y x q y x p y =+'+''的三个不同的解,且≠--3221y y y y 常数,则微分方程的通解为 1322211)()(y y y C y y C +-+- .11.函数x x f -=21)(展开为x 的幂级数的形式为)2,2(2101-∈∑∞=+x x nn n .12.微分方程xxe y xy =-'1的通解为 xxe Cx + .二、计算下列各题(每小题6分,共18分) 1.设),(xyex y f z =,)(x y ϕ=,其中ϕ,f 均为一阶可微函数,求dxdz .解:)(221y x y e f xyx y f dxdz xy'+⋅'+-'⋅'=))()(()()(221x x x e f xx x x f xyϕϕϕϕ'+⋅'+-'⋅'=2.求曲面)(21422y x z +-=与平面2=z 所围立体的体积.解:所围立体在xoy 面的投影域4:22≤+y x D ,所围立体的体积d x d y y x d x d y d x d y y x V DDD⎰⎰⎰⎰⎰⎰+-=⎭⎬⎫⎩⎨⎧-+-=)(2122)](214[2222πππθππ448212222202=-=-⨯=⎰⎰r d r r d3.在曲面6632222=++z y x 上第一卦限部分求一点,使该点的切平面与已知平面1=++z y x 平行.解:设曲面在第一卦限的切点的坐标为),,(z y x M ,令=),,(z y x F 6632222-++z y x ,则切平面的法向量)6,4,2(),,(z y x F F F n M z y x ==, 已知平面1=++z y x 的法向量)1,1,1(1=n依题意1//n n,即令t z y x ===161412代入曲面方程中解的2,3,6===z y x ,即切点坐标为)2,3,6(M . 三、计算下列各题(每小题6分,共18分) 1.设Ω是由锥面22yx z +=与半球面221yx z --=围成的空间区域,∑是Ω的整个边界的外侧,求曲面积分⎰⎰∑++zdxdy ydzdx xdydz .解:已知x z y x P =),,(,y z y x Q =),,(,z z y x R =),,(,由高斯公式有dv zR yQ xP zdxdy ydzdx xdydz ⎰⎰⎰⎰⎰Ω∑∂∂+∂∂+∂∂=++)(dr r d d dv ϕϕθππsin 3312204⎰⎰⎰⎰⎰⎰==Ωππ)22(31)221(23-=⨯-⨯⨯=2.写出级数 ++++43227252321的通项,判别该级数的敛散性.若级数收敛时,试求其和.解:该数项级数的通项为nn n u 212-=;级数为正项级数,由于21121221limlim1=-+⋅=∞→+∞→n n u u n nn n , 由比值审敛法知该级数收敛.令)1,1()()(22)12()(211111-∈-=-=-=∑∑∑∞=∞=-∞=x x s x xs xxn x xn x s n nn n nn ,则xx xdt ntdt t s n xn nn x-===∑⎰∑⎰∞=∞=-1)(1111,于是2011)1(1)()(x dt t s dx d x s x -=⎥⎦⎤⎢⎣⎡=⎰, 又xx xx s n n-==∑∞=1)(12,所以)1,1()1(1)1(2)(222-∈-+=---=x x xx xx x x x s ,于是3)1(21)12()21(21221=⎥⎦⎤⎢⎣⎡-+=-==∞=∑x nn x x x n s .3.求微分方程x e y y y 223=+'-''的通解.解:微分方程对应的齐次线性微分方程的特征方程0232=+-r r 的特征根为2,121==r r ,x e x f 2)(=的1=λ为特征方程的单根,则原方程的特解为xAxey =*,代入原方程中得2-=A ,齐次线性微分方程的通解为x x e C e C Y 221+=,所以原方程的通解为=+=*y Y y x x x xe e C e C 2221-+.四、计算下列各题(每小题6分,共18分) 1.求函数22)(4),(y x y x y x f ---=的极值.解:由于x y x f x 24),(-=,y y x f y 24),(--=,令,0),(0),(⎩⎨⎧==y x f y x f y x 得驻点,22⎩⎨⎧-==y x 又 2),(-==y x f A xx ,0),(==y x f B xy ,2),(-==y x f C yy ,及4)()2,2(2-=--AC B ,则点)2,2(-位极大值点,极大值为8)2(2)]2(2[4)2,2(22=-----=-f .2.求幂级数∑∞=-12)1(n nnn x 的收敛半径及收敛域.解:令 1-=x t ,则nn nn nn t n n x ∑∑∞=∞==-11212)1(,由于212)1(2limlim11=+=+∞→+∞→n n n nn n n n a a ,则收敛半径2=R .又当2-=t 时,级数∑∞=-1)1(n nn收敛,当2=t 时,级数∑∞=11n n发散,所以)2,2[-∈t ,即级数的收敛域为)3,1[-.3.设),()sin(yx x xy z ϕ+=,其中),(v u ϕ具有二阶偏导数,求yx z ∂∂∂2.解:),(1),()c o s (21yx x yyx x xy y xz ϕϕ'+'+=∂∂,)(),(1),(1)(),()sin()cos(222222122yx yx x yyx x yyx yx x xy xy xy yx z -⋅''+'--⋅''+-=∂∂∂ϕϕϕ五、(本题5分)求函数2),(22+-=y x y x f 在椭圆域}14|),{(22≤+=yx y x D 上的最大值和最小值.解:由于x y x f x 2),(=,y y x f y 2),(-=,令,0),(0),(⎩⎨⎧==y x f y x f y x 在D 内求得驻点)0,0(. 在D 的边界上,设)14(2),,(2222-+++-=yx y x y x F λλ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+==+-==+=)3(014),,()2(0212),,()1(022),,(22y x y x F y y y x F x x y x F yx λλλλλλ 当0≠x ,由(1)得1-=λ,代入(2)得0=y ,在代入(3)得⎩⎨⎧=±=01y x ;同理当0≠y 得⎩⎨⎧±==20y x ;由于2)0,0(=f , 3)0,1(=±f , 2)2,0(-=±f ,所以最大值为3,最小值为2-.六、(本题5分)设在上半平面}0|),{(>=y y x D 内,函数),(y x f 具有连续偏导数,且对任意的0>t 都有),(),(2y x f t ty tx f -=,证明对D 内的任意分段光滑的有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.解:由格林公式,对D 内的任意分段光滑的有向简单闭曲线L ,⎰⎰⎰----±=-1)],(),(),(),([),(),(D y x Ldxdyy x yf y x f y x xf y x f dyy x xf dx y x yf .dxdy y x yf y x xf y x f y D x )],(),(),(2[1---±=⎰⎰ (*)由于函数),(y x f 具有连续偏导数,且对任意的0>t 都有),(),(2y x f t ty tx f -=,即),(),(2ty tx f y x f t =上式两端对t 求导有),(),(),(221ty tx f y ty tx f x y x tf '+'= 特取1=t 得),(),(),(2y x yf y x xf y x f y x += 由(*)式既有0),(),(=-⎰dy y x xf dx y x yf L。

高等数学期末考试试题及解答

高等数学期末考试试题及解答

高等数学(下)期末试题(2)二、填空题(每题3分,总计15分)。

1、函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数a =______。

2、若曲面2222321x y z ++=的切平面平行于平面46250x y z -++=,则切点坐标为______________________。

3、二重积分3110x ydyye dx -蝌的值为______________。

5、微分方程2yy x y ¢=+的通解为_____________________。

三、计算题(每题7分,总计35分)。

2、设(,)z f x y xy =-具有连续的二阶偏导数,求2z x y¶抖。

3、将函数23()2f x x x=--展开成x 的幂级数,并指出收敛域。

4、设)(x y y 满足方程322x y y y e ⅱ?-+=,且其图形在点)1,0(与曲线21y x x =-+相切,求函数)(x y 。

5、计算222Ldsx y z++ò,其中L 是螺旋线8cos ,8sin ,x t y t z t ===对应02t p#的弧段。

四、计算题(每题7分,总计35分)。

1、设0a >,计算极限23123lim ()n n na a a a??++++的值。

2、计算z dv W蝌?,其中W 由不等式z ?22214x y z ?+?所确定。

4、将函数()(11)f x x x =-#展开成以2为周期的傅立叶级数。

5、设函数)(x f 具有连续导数并且满足(1)3f =,计算曲线积分22(())(())Ly f x x dx x f x y dy +++ò的值,假定此积分在右半平面内与路径无关,曲线L 是由)2,1(到)1,2(的任一条逐段光滑曲线。

五、本题5分。

对0p >,讨论级数11(1)nn n n p¥+=-å的敛散性。

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x(B )(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. .6.,)(cos 的一个原函数是已知x f x x.7. lim(cos cos cos )→∞-+++=22221n n n n n n ππππ . 8. .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10.11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,,且,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线及x 轴、y 轴、直线x x =0所围成面积的2倍及该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线及曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且,.证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设)解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分)5. 6e .6..7. 2π. 8..三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10.解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:10330()x f x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令12.解:由(0)0f =,知(0)0g =。

大一第二学期高数期末考试题含答案

大一第二学期高数期末考试题含答案

大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x并讨论'()g x 在=0x 处的连续性.13.求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰q f x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x yey xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:1033()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

西南大学高等数学期末考试试卷(含答案)

西南大学高等数学期末考试试卷(含答案)

西南大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.设函数,则.
A、正确
B、不正确
【答案】B
2.函数是微分方程的解.
A、正确
B、不正确
【答案】B
3.微分方程满足的特解是().
A、
B、
C、
D、
【答案】C
4.函数的单调增加区间是().
A、
B、
C、
D、
【答案】B
5.设函数,则().
A、
B、
C、
D、
【答案】B
6.函数的图形如图示,则是函数的
( ).
A、极小值点也是最小值点
B、极小值点但非最小值点
C、最大值点
D、极大值点
【答案】A
7.设,则.
A、正确
B、不正确
【答案】B
二、二选择题
8.设函数,则().A、
B、
C、
D、
【答案】D
9.设函数,则().A、
B、
C、
D、
【答案】C
10.设函数,则导数.
A、正确
B、不正确
【答案】B
11.定积分.
A、正确
B、不正确
【答案】B
12..
A、正确
B、不正确
【答案】B
13.函数的图形如图示,则函数 ( ).
A、有四个极大值
B、有两个极大值
C、有一个极大值
D、没有极大值
【答案】C
14.设,则=().
A、
B、
C、
D、
【答案】D
15.微分方程的通解是().A、
B、
C、
D、
【答案】C。

重庆市西南大学附中2022-2023学年高三数学第一学期期末联考试题含解析

重庆市西南大学附中2022-2023学年高三数学第一学期期末联考试题含解析

2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知ABC ∆中内角,,A B C 所对应的边依次为,,a b c ,若2=1,7,3a b c C π+==,则ABC ∆的面积为( )A .332B .3C .33D .232.已知实数,x y 满足约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则3z x y =+的最小值为( )A .-5B .2C .7D .113.已知非零向量a 、b ,若2b a =且23a b b -=,则向量b 在向量a 方向上的投影为( ) A .32b B .12b C .32b -D .12b -4.已知底面是等腰直角三角形的三棱锥P -ABC 的三视图如图所示,俯视图中的两个小三角形全等,则( )A .PA ,PB ,PC 两两垂直 B .三棱锥P -ABC 的体积为83C .||||||6PA PB PC ===D .三棱锥P -ABC 的侧面积为355.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不修要条件6.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( )A .15B .120C .112D .3407.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)8.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④9.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( ) A .22B .21-C .322-D .31-10.双曲线C :2215x y m-=(0m >),左焦点到渐近线的距离为2,则双曲线C 的渐近线方程为( ) A .250x y ±=B .250x y ±=C .520x y ±=D .50x y ±=11.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .505012.执行如图所示的程序框图,则输出S 的值为( )A .16B .48C .96D .128二、填空题:本题共4小题,每小题5分,共20分。

陕西省西安市西大附中高二数学理下学期期末试卷含解析

陕西省西安市西大附中高二数学理下学期期末试卷含解析

陕西省西安市西大附中高二数学理下学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在数列中,则( ) A.-2 B.C.D.参考答案:B2. 等于A. 1B.C. D.参考答案: C3. 博鳌亚洲论坛2018年年会于4月8日至11日在海南博鳌举行,为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在下面“性别与会俄语”的2×2列联表中,__________.44 【分析】根据总人数为50结合表格中的数据可求出的值. 【详解】由于总人数为50,可得出,解得,故答案为:44.【点睛】本题考查列联表的相关计算,解题时要充分利用题中信息与数据,考查计算能力,属于基础题.4. 某产品的广告费用x 与销售额y 的统计数据如表: 根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为( )A. 63.6万元B. 67.7万元C. 65.5万元D. 72.0万元参考答案:C 【分析】根据回归方程的性质,利用样本数据的中心点可求出方程的系数,可得答案.【详解】解:由表中数据得:,,又回归方程中的为9.4, 故,将代入回归直线方程,得(万元).∴此模型预报广告费用为6万元时销售额为65.5(万元). 故选:C .【点睛】本题主要考察统计案例中的回归方程,属于基础题型. 5. 直线2x ﹣y=7与直线3x+2y ﹣7=0的交点是( ) A .(3,﹣1) B .(﹣1,3) C .(﹣3,﹣1)D .(3,1)参考答案:A【考点】两条直线的交点坐标. 【专题】计算题.【分析】要求两条直线的交点坐标,联立两条直线的方程求出解集即可得到.【解答】解:联立直线方程得:解得即交点坐标为(3,﹣1)故选A【点评】考查学生会根据两条直线的方程求交点坐标,此题比较简单.6. 已知F是抛物线y2=16x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=12,则线段AB中点到y轴的距离为()A.8 B.6 C.2 D.4参考答案:C【考点】抛物线的简单性质.【分析】根据抛物线的方程求出准线方程,利用抛物线的定义:抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到该抛物线准线的距离.【解答】解:∵F是抛物线y2=16x的焦点,∴F(4,0),准线方程x=﹣4,设A(x1,y1),B(x2,y2)∴|AF|+|BF|=x1+4+x2+4=12,即有x1+x2=4,∴线段AB的中点横坐标为(x1+x2)=2,∴线段AB的中点到y轴的距离为2.故选:C.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离是解题的关键.7. 已知,则A. B. C. D.参考答案:C【分析】根据已知求出,再求.【详解】因为,故,从而.故选:C【点睛】本题主要考查诱导公式和同角的三角函数关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.8. 现将甲、乙、丙、丁四个人安排到座位号分别是1,2,3,4的四个座位上,他们分别有以下要求,甲:我不坐座位号为1和2的座位;乙:我不坐座位号为1和4的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为2的座位,我就不坐座位号为1的座位.那么坐在座位号为3的座位上的是()A. 甲B. 乙C. 丙D. 丁参考答案:C【分析】对甲分别坐座位号为3或4分类推理即可判断。

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。

(A)(0)2f '= (B)(0)1f '=(C )(0)0f '= (D)()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。

(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +。

二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(lim .6.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。

7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ .8.=-+⎰21212211arcsin -dx xx x 。

三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()lim x f x A x ,A 为常数。

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B)(0)1f '=(C)(0)0f '= (D )()f x 不可导。

2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。

(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小。

3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。

(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A)22x (B )222x +(C)1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。

7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8.=-+⎰21212211arcsin -dx xx x 。

三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x Ax ,A 为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 7 西北大学成人教育学院2018-2018学年第二学期期末考试
高等数学(90分钟)试卷
2018年1月
一、选择题(每题3分,共30分)
1、当0→x 时,下列变量中为无穷小量的是( )
A 、
x 1 B 、x x sin C 、)1ln(x + D 、2x
x 2、一元函数在某点极限存在是函数在该点连续的( )
A
、必要条件 B 、充分条件 C 、充要条件 D 、既不充分又不必
要条件
3、若函数)(x f 在点1=x 处可导,则=
∆-∆-→∆x
f x f x )
1()21(lim 0
( )
A 、)1(f '
B 、)1(2f '
C 、)1(f '-
D 、)1(2f '-
4、设⎪⎩
⎪⎨⎧=≠-+-=2
,2,2
2
3)(2x a x x x x x f 为连续函数,则=
a ( )
A 、0
B 、1
C 、2
D 、任意值
5、若)(x f 在),(b a 上具有二阶导数,且( ),则)(x f 在),(b a 上单调增且凹的
A 、0)(,0)(>''>'x f x f
B 、0)(,0)(<''>'x f x f
C 、0)(,0)(>''<'x f x f
D 、0)(,0)(<''<'x f x f 6、=⎰
-1
1
dx x ( )
A
、0 B 、1 C 、2 D 、3
7、过点)2,1(且切线斜率为3
4x 的曲线方程为( ) A 、4
x B 、c x +4
C 、14
+x D 、14
-x
8、若矩阵A 有可逆矩阵,则下列说法不正确的是( ) A
、矩阵A 必是方阵
B 、0=A
第1页 共5页
2 / 7
C 、A
A A
*
1
=- ,其中*A 为A 的伴随矩阵 D 、矩阵A 经过初等变换一定能化为单位矩阵 9、设)(x F '=)(x G ',则( )
A 、)()(x G x F =
B 、)()(x CG x F =
C 、
C x G x F +=)()(
D 、C
x G x F )
()(=
10、已知向量组)0,0,1(1=α,)0,2,0(2=α,)3,0,0(3=α,则下列说法不正确的是( )
A 、向量组321,,ααα线性无关
B 、以向量321,,ααα为行排列成的矩阵的秩是3
C 、向量21,αα及向量32,αα也线性无关
D 、向量31,αα线性相关
二、填空题(每题3分,共15分)
1、若23sin lim
0=→x
kx
x ,则=k 。

2、曲线上任意一点的切线斜率为x 2,且过)1,1(-点的曲线方程是。

3、
⎰-=0
2
sin πxdx 。

4、已知A 为三阶方阵,且2=A 则=A 2 。

5、当A 为6阶方阵,4)(=A R ,则齐次线性方程组0=AX 的一个基础解系中所含解向量个数为个。

三、计算题(每题6分,共30分)
1、计算极限:3
29lim 223---→x x x x
2、已知:
x x x y ln sin 22+=,求:y '
3、用凑微分法求:⎰
dx x x 2
sin
第2页 共5页
3 / 7
4、计算行列式9
41
321
1
11
的值 5、判断矩阵⎪⎪⎪⎭
⎫ ⎝⎛--=121011322A 是否有逆矩阵,若有求出逆矩阵1-A 。

四、应用题(共10分)
求由曲线
x y =2与2x y =所围成的的平面图形的面积。

五、简答题(15分)
λ为何值时,线性方程组⎪

⎪⎨
⎧=-+=+--=++-2321321321222
2λλx x x x x x x x x 无解?有唯一解?有无穷多解?
第3页 共5页
4 / 7
西北大学成人教育学院期末考试答题纸
试卷代号: 科目: 考试时间: 年 月
1、考生必须准确填写试卷代号和科目名称,否则答题无效;
2、所有题目均需答在答题纸上并详细标明各题题号,答在原试卷上一律不计分;
3、答题纸正反面均可答题,共四页。

阅卷教师注意:
请核总分人员根据卷面实际将多余题号删掉。

一、
选择题 二、 填空题
1、 ,
2、 ,
3、 ,
4、 ,
5、
三、计算题
1、 2、
3、 4、
第4页 共5页
5 / 7
5、
四、应用题
五、简答题
第5页 共5页
6 / 7
西北大学成人教育学院2018-2018学年第一学期期末考试
高等数学试卷参考答案
1、6
2、22-=x y
3、-1
4、16
5、2
三、 计算题
1、 解:3
29
lim 223---→x x x x
=)1)(3()3)(3(lim 3+-+-→x x x x x =13lim 3++→x x x =2
3 2、 解:x
x x x x y 1cos 2sin 42
+
+='
3、 解:

dx x x 2
sin =22
sin 21⎰dx x
=c x +-2
cos 2
1
4、 解:2)12)(13)(23(941
321
1
11
=---= 5、 解:013221
2
101
1
3
22
≠-=+--=--=A ,所以1-A 存在 因为⎪⎪⎪⎭⎫ ⎝
⎛----=461351
341*
A ,所以⎪⎪⎪⎭


⎛-----==-46135
1341*1A A A 四、 应用题
因为x y =2与2
x y =的交点为)0,0(和)1,1(点,
所以dx x x S
⎰-=1
2)(
7 / 7

⎰⎰-=-1
1
2
1
2
)(dx x dx x dx x x
=01
3
2013123
3x x -
3
13231-=-= 所以曲线
x
y =2

2x
y =所围成的的平面图形的面积为3
1
-
五、 简答题
解:⎪⎪⎪⎭⎫
⎝⎛----=2211
12
12112λλA
⎪⎪⎪⎭

⎝⎛----=21121212112λλ ⎪⎪⎪
⎪⎭⎫ ⎝⎛
+-----=22
2
22330330211λλλλ⎪
⎪⎪

⎫ ⎝
⎛-+---=20
)1(3302
1122
λλλλλ
当022
=-+λλ,即2-=λ或1=λ时,32)()(<==A R A R ,方程组有无穷多解
当022
≠-+λλ,即2-≠λ或1≠λ时,3)(2)(=≠=A R A R ,则方程组无解。

相关文档
最新文档