二次函数与一元二次方程教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5.1二次函数与一元二次方程教学设计

教学目标:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系,理解二次函数与x轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.

2.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神,通

过观察二次函数与x轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.通过学生共同观察和讨论,培养合作交流意识

3.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受

数学的严谨性以及数学结论的确定性,具有初步的创新精神和实践能力

教学重点:

理解何时方程有两个不等的实根、两个相等的实根和没有实根;理解一元二次方程的根就

是二次函数与y二h交点的横坐标.

教学难点:

探索方程与函数之间的联系的过程;理解二次函数与x轴交点的个数与一元二次方程的根

的个数之间的关系.

教法与学法指导:

在教学中,为了更好地体现在课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织一一启发引导,学生探究一一交流发现,组织开展教学活动

教学准备:多媒体课件

教学过程:

一、设问题情境,弓I入新课

【师】我们已学过一元一次方程kx • b = 0(k = 0)和一次函数y二kx • b( k = 0)的关系,

你还记得吗?处理方式:学生交流后回答.

【师】现在我们学习了一元二次方程ax+ bx (0(a0和二次函数

2

y=ax + b x( c 0 )它们之间是否也存在一定的关系呢?(学生可进行猜测)今天这

节课我们就来探索他们之间的关系•(教师板书课题)

设计意图:这一环节主要是激发学生的求知欲望,使学生通过解决问题,让学生有种成就

感.同时也可使学生养成一个主动思考和善于思考的学习习惯

二、活动探究

探究一:二次函数与一元二次方程的内在联系

(多媒体展示)

2

h - ~5t v o t h o 表示,其中h 0(m)是抛出时的高度 h(m)与运动时间t(s)的关系如图所

示,那么 (1)

h 与t 的关系是什么?

(2) 小球经过多少秒后落地?你有几种求解方法?与同伴进行交流

实数根?用判别式验证一下 • 一元二次方程X 2 -2x • 2 = 0有实数根吗?

(3)二次函数y = ax 2 • bx c 的图象与x 轴交点坐标和一元二次方程 ax 2 bx 0的根 有什么关系? 处理方式:学生以小组为单位进行观察图象讨论交流 .教师巡回指导,参与到学生的讨论中,

及时掌握学生的信息,及时点拨指正 •然后各组选出一个代表来讲解自己的结论 •

(教师利用多媒体展示学生得到的结论

)

2

二次函数y =ax bx c 的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没 有交点•

我们已经知道,竖直上抛物体的高度

h(m)与运动时间t(s)的关系可以近似地用公式

处理方式:让学生以小组为°° 单位进行讨论交流,教师可以读题,可重点强调:

h o 和 V o

不是变量,你能确定它们 80

设计意图:通过竖直上抛小 与一

元二次方程之间的联 60

交点的个数与一元二次方程40 探

究二:抛物线与 x 轴的交 20

(多媒体展示)

吗?然后选代表回答•

球的问题情境,使学生初步感受二次函数 系,为下一步探讨二次函数的图像和横轴

的个数之间的关系作铺垫• 点和一元二次方程的根的关系

2

t y = x -2x1

-2x 2的图象如图所

(2) —元二次方程 x 2 2x =0,

x 2

-2x • 1 = 0有几个

2

示.

5

4

3

1 -1

(1)每个图象与x 轴有几个交点?

2

6

2

二次函数y =x 2x , o

ZN 6

5

4

2 6

5

4

2

n

n

【师】一元二 次方程ax bx ,c=0的根的情况 可以由b -4ac 来判 断,二次函 数

2

o

y 二ax bx c 的图象与x 轴的交点情况是不是也可以由 b -4ac 来判断?

处理方式:学生思考,交流所得结论,并讨论,以得到正确的判断方法 •然后选代表回答•

(教师利用多媒体展示所得结论)

【师】如果将上面的条件和结论反过来,成立吗? 处理方式:学生在小组中进行交流•

设计意图:通过学生独立思考,自主探索二次函数的图象和 x 轴交点个数与一元二次方程

根的个数的关系,鼓励学生归纳总结,培养学生语言表达能力

探究三:探究二次函数 y = ax 2 bx - c 与一元二次方程 ax 2 bx d 的联系 (多媒体展示想一想)

在本节一开始的小球上抛问题中,何时小球离地面的高度是

60m ?你是如何知道的?

处理方式:学生在小组中讨论交流, 教师可以对有疑问的小组进行适当点播, 然后小组选代

表进行回答•

说明:在教学中,应鼓励学生借助图象和方程解决问题

设计意图:通过此问题的解决,让学生进一步沟通“数”与“形”的联系,从而进一步感 受二次函数与一元二次方程的联系

三、知识运用

(多媒体展示)

1.下列抛物线与x 轴只有一个公共点的是(

2 2

A . y =4x 2x 1

B • y = 3x 1

__ 2

点拨:要想判断抛物线y = ax b^ (c a0)与x 轴交点的个数,只需判定方程

1

C"#2)

D ・ y 二-丄(x-3)2 3

2

相关文档
最新文档