几何证明选讲知识点总结

合集下载

几何证明知识点总结

几何证明知识点总结

几何证明知识点总结几何证明是数学学科中的一个重要部分,它要求通过逻辑推理和几何知识来解决一系列的问题。

在几何证明中,我们需要运用一些基本的几何定理和方法,以求得证明的正确性。

以下是几个常见的几何证明知识点的总结。

1.等腰三角形的性质等腰三角形的定义是指具有两条边相等的三角形。

我们可以通过以下几种方式来证明一个三角形是等腰三角形:(1)通过两边相等的条件,如两条边的长度相等或两条边的角度相等。

(2)通过等腰三角形的性质,如等腰三角形的底角相等。

在进行这类证明时,我们可以使用一些常见的几何画法,如辅助线、垂线、平移等,来辅助推理。

2.直角三角形的性质直角三角形是指其中一个角度为90度的三角形。

直角三角形有许多重要的性质,如勾股定理、正弦定理、余弦定理等。

在证明直角三角形的性质时,我们可以运用这些定理进行推导,或者使用勾股定理来求解已知直角三角形的边长。

3.平行线与三角形的关系平行线与三角形之间有很多重要的关系。

在证明平行线与三角形的性质时,我们可以使用平行线的基本性质,如对应角相等、同位角相等等。

同时,我们还可以应用平行线与三角形内角、外角之间的关系,来推导出一些三角形的性质。

4.相似三角形的证明相似三角形是指具有相同形状但大小不同的三角形。

在证明相似三角形时,我们可以运用一些相似三角形的基本性质,如对应角相等、对应边比例相等等。

同时,我们还可以使用比例关系和三角形边长之间的关系,来求解未知的边长或角度。

5.圆的性质的证明圆是几何中的重要概念,我们常常需要证明其性质。

在证明圆的性质时,我们可以运用圆的基本定义和性质,如圆心角、弧长、切线等。

同时,我们还可以使用圆的切线与半径之间的关系,来推导出一些圆的性质。

6.多边形的性质的证明多边形是指由多条边和多个内角构成的图形。

在证明多边形的性质时,我们需要运用多边形的基本定义和性质,如内角和、外角和、对角线的性质等。

同时,我们还可以使用多边形的各个边长和角度之间的关系,来求解未知的边或角。

圆锥曲线性质的探讨 几何证明选讲知识小结

圆锥曲线性质的探讨 几何证明选讲知识小结

名师大讲堂·2013 高考总复习《数学》(理科)
3.平面与圆锥面的截线:在空间中,取直线 l 为轴,直线 l′ 与 l 相交于 O 点,其夹角为 α,l′围绕 l 旋转得到以 O 为顶 点, l′为母线的圆锥面, 任取平面 π, 若它与轴 l 交角为 β(π 与 l 平行,记 β=0),则平面 π 与圆锥的交线为圆锥曲线, cosβ 其离心率 e= ,则(1)β>α,平面 π 与圆锥的交线为椭圆; cosα (2)β=α, 平面 π 与圆锥的交线为抛物线;(3)β<α,平面 π 与圆锥的交线为双曲线.
名师大讲堂·2013 高考总复习《数学》(理科)
【名师点睛】
选择适当的轴截面,把空间图形平面化,是解
这类题目的关键.
名师大讲堂·2013 高考总复习《数学》(理科)
2.已知球的半径为 2,相互垂直的两个平 面分别截球面得两个圆.若两圆的公共弦长为 2,则两圆的 圆心距等于( A.1 答案:C 解析:设两圆的圆心分别为 O1、O2,球心为 O,公共弦为 AB,其中点为 E,则 OO1EO2 为矩形,于是对角线 O1O2= OE,而 OE= OA2-AE2= 22-12= 3,∴O1O2= 3 ) B. 2 C. 3 D.2
名师大讲堂·2013 高考总复习《数学》(理科) 平面与圆锥面的截线 一个顶角为 60° 的圆锥面被一平面 π 所截,Dandelin 双球均
Hale Waihona Puke 在顶点 S 的下方,且一个半径为 1,另一个半径为 5,则截线的形 状是________,其离心率等于________ 【思路分析】 由 Dandelin 双球均在 S 的同侧,可知截线是椭圆, 可计算出椭圆中的参数 a,c,从而求出离心率. 【解法一】 如图所示的轴截面,F1,F2 是截线椭圆的两个焦点, 所以 2c=F1F2=EF1+EF2, 因为 O1O2=2O2D-2O1C=8, 易证明 Rt△O1EF1∽Rt△O2EF2, O1E O1F1 所以 = , EO2 O2F2

几何证明选讲知识点总结

几何证明选讲知识点总结

相似三角形的判定及有关性质——备课人:李发知识点1:比例线段的相关概念比例线段:对于四条线段a b c d 、、、,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a c b d=(或:=a b c d :)那么这四条线段叫做成比例线段,简称比例线段. 注意:⑴在求线段比时,线段单位要统一,单位不统一应先化成同一单位.⑵当两个比例式的每一项都对应相同,两个比例式才是同一比例式.⑶比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 知识点2:比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:d dc b b ad c b a ±=±⇒=.发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c ba ba c cd a ab dc b a 等等. 等比性质:如果)0(≠++++====n f d bm e c a ,那么am e c a =++++ . 知识点3:比例线段的有关定理平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等. 推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.(三角形中位线定理的逆定理) 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰.(梯形中位线定理的逆定理) 平行线等分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.知识点:4:黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=0.618AB ≈. 知识点5:相似图形1、相似图形的定义:把形状相同的图形叫做相似图形(即对应角相等、对应边的比也相等的图形). 相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比值叫预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理的基本图形语言:数学符号语言表述是:BCDE//∴ADE∆∽ABC∆.判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似.判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.三角形相似的判定方法与全等的判定方法的联系列表如下:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法.3、相似三角形的性质定理:(1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;(2)相似三角形的周长比等于相似比;(3)相似三角形的面积比等于相似比的平方;(4)相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方.4、相似三角形的等价关系(1)反身性:对于任一ABC∆有ABC∆∽ABC∆.(2)对称性:若ABC∆∽'''CBA∆,则'''CBA∆∽ABC∆.(3)传递性:若ABC∆∽CBA'∆'',且CBA'∆''∽CBA''''''∆,则ABC∆∽CBA''''''∆.5、相似直角三角形引理:如果一条直线截三角形的两边(或两边的延长线)所得的线段成比例,那么这两条直线平行于三角形的第三边.(与三角形的中位线定理类似)定理:如果两个直角三角形有一个锐角对应相等,那么这两个直角三角形相似.定理:如果两个直角三角形的两条直角边对应成比例,那么这两个直角三角形相似.定理:如果两个直角三角形的斜边和一直边对应成比例,那么这两个直角三角形相似.从一定向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段.点和线段的正射影简称为射影直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上的射影与斜边的比例中项.推论:直角三角形中其中一条直角边是该直角边在斜边上的射影与斜边的比例中项.B知识点6:与位似图形有关的概念1、如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫做位似图形.这个点叫做位似中心,这时的相似比又称为位似比.23、画位似图形⑴画位似图形的一般步骤: ①确定位似中心;②分别连接原图形中的关键点和位似中心,并延长(或截取); ③根据已知的位似比,确定所画位似图形中关键点的位置;④顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ⑵位似中心的选取:①位似中心可以在图形外部,此时位似中心在两个图形中间,或在两个图形之外; ②位似中心可取在多边形的一条边上; ③位似中心可取在多边形的某一顶点上.说明:位似中心的选取决定了位似图形的位置,以上位似中心位置的选取中,每一种方法都能把一个图形放大或缩小.圆的章节知识点总结——备课人:李发一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合;轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线; 二、点与圆的位置关系1、点在圆内⇔d r <⇔点C 在圆内;2、点在圆上⇔d r =⇔点B 在圆上;3、点在圆外⇔d r >⇔点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离⇔d r >⇔无交点; 2、直线与圆相切⇔d r =⇔有一个交点; 3、直线与圆相交⇔d r <⇔有两个交点;AD四、圆与圆的位置关系外离(图1)⇔ 无交点 ⇔d R r >+; 外切(图2)⇔ 有一个交点⇔d R r =+;相交(图3)⇔ 有两个交点⇔R r d R r -<<+; 内切(图4)⇔ 有一个交点⇔d R r =-; 内含(图5)⇔ 无交点 ⇔d R r <-;图1五、垂径定理弦:连接圆上任意两点之间的线段叫做弦.垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧;推论3:平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论.即:AB 是直径;②AB CD ⊥;③CE DE =;④ 弧BC =弧BD ( );⑤ ;中任意2个条件推出其他3个结论.推论4:圆的两条平行弦所夹的弧相等.即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD图2图4图5BC BD =AC AD =DBBBABAO六、 圆心角定理圆心角的定义:顶点在圆心且两边与圆相交的角叫做圆心角.圆心角定理:圆心角的度数等于它所对弧的度数. (同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等——也称一推三定理)即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论也即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ BA ED = 推论1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; 推论2:在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等; 推论3:在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等;七、圆周角定理圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.圆周角定理:同弧或等弧所对的圆周角相等且都等于它所对的圆心的角的一半. 符号语言:①∵在O 中, C D ∠∠、都是弧AB 所对的圆周角 ∴C D ∠=∠ ②∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠图形语言:推论1:同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆或直径所对的圆周角是直角;(90︒的圆周角所对的弧是半圆,所对的弦是直径)符号语言:∵在O 中,AB 是直径∴=90C ︒∠;或∵=90C ︒∠ ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形符号语言:在△ABC 中,∵OA OB OC ==∴△ABC 是直角三角形或=90C ︒八、圆内接四边形圆内接四边形:如果多边形的所有顶点都在一个圆上,那么这个多边形叫做圆的内接多边形,这个圆叫做多边形的外接圆.圆的内接四边形的性质定理:圆的内接四边形的对角互补,圆的内接四边形的外角等于它的内角的对角. 符号语言:∵在O 中,四边形ABCD 是内接四边形 ∴180180C BAD B D DAE C ︒︒∠+∠=∠+∠=∠=∠,, 图形语言:圆的内接四边形的判定定理1:如果一个四边形的对角互补,那么这个四边形四个顶点共圆. 符号语言:∵在四边形ABCD 中,180180C BAD B D ︒︒∠+∠=∠+∠=, ∴A B C D 、、、四点共圆圆的内接四边形的判定定理2:如果四边形的一个外角等于它内角的对角,那么这个四边形的四个顶点共圆. 符号语言:∵在四边形ABCD 中,DAE C ∠=∠ ∴A B C D 、、、四点共圆 九、 切线的性质与判定定理1、切线的定义:当直线和圆有且只有一个公共点时,我们把这条直线叫做圆的切线. (1)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.符号语言:∵MN OA ⊥且MN 过半径OA 外端∴MN 是O 的切线 图形语言:(2)性质定理:圆的切线垂直于经过切点的半径. 推论1:经过圆心且垂直于切线的直线必经经过切点. 推论2:经过切点且垂直于切线的直线必经经过圆心.2、切线长的定义:经过圆外一点作圆的切线,该点和切点之间的线段的长叫做该点到圆的切线长. 切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等且该点和圆心的连线平分两条切线的夹角. 符号语言:∵PA PB 、是的两条切线 ∴=PA PB 且PO 平分APB ∠ 图形语言:3、弦切角:顶点在圆上,且一边和圆相交而另一边和圆相切的角叫做弦切角.(弦与切线的夹角叫做弦切角) 弦切角定理:弦切角等于它所夹弧所对的圆周角.符号语言:∵BAC ∠是圆的一个弦切角 ∴BAC APC ∠=∠4、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等. 符号语言: ∵在⊙O 中,弦AB 、CD 相交于点P ,∴PA PB PC PD ⋅=⋅ 图形语言:推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.DBA5、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等.符号语言:∵在⊙O中,PB、PE是割线∴PC PB PD PE⋅=⋅6、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.符号语言:∵在⊙O中,PA是切线,PB是割线∴2PA PC PB=⋅图形语言:十、圆内正多边形的计算(1)正三角形:在O中,△ABC是正三角形,有关计算在Rt△BOD中进行,::2OD BD OB=(2)正四边形:同理,四边形的有关计算在Rt△OAE中进行,::OE AE OA=(3)正六边形:同理,六边形的有关计算在Rt△OAB中进行,::2AB OB OA=十一、圆的有关概念1、三角形的外接圆、外心. →用到:线段的垂直平分线及性质2、三角形的内切圆、内心. →用到:角的平分线及性质3、圆的对称性。

《选修4-1 几何证明选讲》核心考点8.圆内接多边形的性质与判定

《选修4-1 几何证明选讲》核心考点8.圆内接多边形的性质与判定

《选修4-1 几何证明选讲》核心考点与典型例题知识点8:圆內接多边形的性质与判定 【圆内接四边形的性质与判定定理】性质定理1:圆的内接四边形的对角互补.性质定理2:圆内接四边形的外角等于它的内角的对角.判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆. 常考题型:证明多点共圆,角度相等或互补方法详述:证明多点共圆,当它们在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.例1 如图,AB 是⊙O 的直径,G 是AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AG 的垂线,交直线AC 于点E ,交直线AD 于点F ,过点G 作⊙O 的切线,切点为H .(1)求证:C ,D ,E ,F 四点共圆;(2)若GH =6,GE =4,求EF 的长.(1)证明:连接DB ,∵AB 是⊙O 的直径,∴∠ADB =90°,在Rt △ABD 与Rt △AFG 中,∠ABD =∠AFE ,又∠ABD =∠ACD ,∴∠ACD =∠AFE ,∴C ,D ,E ,F 四点共圆.(2) ⎭⎪⎬⎪⎫C ,D ,E ,F 四点共圆⇒GE ·GF =GC ·GD GH 切⊙O 于点H ⇒GH 2=GC ·GD ⇒GH 2=GE ·GF ,又GH =6,GE =4,∴GF =9,EF =GF -GE =5.高考试题精析【2014·全国卷Ⅰ】如图,四边形ABCD 是O的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O的直径,AD 的中点为M ,且MB MC =,证明:ADE ∆为等边三角形.解析:(I )由题设知,,,A B C D 四点共圆,所以D CBE ∠=∠.由已知得E CBE ∠=∠,故D E ∠=∠.(II )设BC 的中点为N ,连接MN ,则由MB MC =知MN BC ⊥,故O 在直线MN 上.又AD 不是O 的直径,AD 的中点为M ,故O M A D ⊥,即M N A D ⊥.所以//AD BC ,故A CBE ∠=∠.又CBE E ∠=∠,故E A ∠=∠.由(1)知,D E ∠=∠,所以ADE ∆为等边三角形.【2015·湖南理】如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明:(1)180MEN NOM ∠+∠=;(2)FE FN FM FO ⋅=⋅解析:(1)如图a 所示, ∵M ,N 分别是弦AB ,CD 的中点,∴OM AB ⊥,ON CD ⊥, 即90OME ∠= , 90ENO ∠= ,180OME ENO ∠+∠= ,又四边形的内角和等于360,故180MEN NOM ∠+∠=;(2)由(I )知,O ,M ,E ,N 四点共圆,故由割线定理即得FE FN FM FO ⋅=⋅。

专题:几何证明选讲

专题:几何证明选讲

专题:几何证明选讲【知识梳理】1.相似三角形的判定定理:判定定理1.两角对应相等的三角形相似。

判定定理2.三边对应成比例的两个三角形相似。

判定定理3.两边对应成比例,并且夹角相等的两个三角形相似。

2.相似三角形的性质性质定理1.相似三角形对应边上的高、中线和它们的周长的比都等于相似比。

性质定理2.相似三角形的面积比等于相似比的平方。

3.平行截割定理三条平行线截任意两条直线,所截出的对应线成比例。

4.射影定理直角三角形中,每一条直角边是这条直线边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项。

5.圆周角与弦切角圆的切线判定定理:经过圆的半径的外端切垂直于这条半径的直线,是圆的切线。

圆的切线的性质定理:圆的切线垂直过圆的半径。

推论1.从圆外的一个已知点所引的两条切线长相等。

推论2.经过圆外的一个已知点和圆心的直线,平分从这个点向圆所做的两条切线所夹的角。

6.圆周角定理圆周角的度数等于它所对弧的度数的一半。

推论1.直径所对的圆周角都是直角推论2.同弧或等弧所对的圆周角相等。

推论3.等于直角的圆周角所对的弦是圆的直径。

7.弦切角定理弦切角的度数等于它所夹的弧的度数的一半。

推论:弦切角等于它所夹弧所对的圆周角。

8.圆幂定理相交弦定理:圆内的两条相交弦,被交点分成的两条线短长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

圆幂定理:(不用掌握)9.圆内接四边形的性质定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

10.圆内接四边形的判定定理:如果一个四边形的一组对角互补,那么这个四边形内接于圆。

【知识梳理】平行线等分线段定理平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。

推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。

几何证明选讲定理大全

几何证明选讲定理大全
5.ΔABC中,AD、BD分别平分∠BAC和 ∠ABC,延长AD交ΔABC 旳外接圆于E, 连接BE,求证:BE=DE.
6.ΔABC内接于⊙O,AD是⊙O旳直径, CE⊥AD,E为垂足,CE旳延长线交AB
于点F,求证:AC2=AF·AB.
7.已 知BC是 圆O的直 径,AD BC,垂足 为D, BF交AD于E, 且AE BE. (1)求证 :弧AB 弧AF; (2)如 果sinFBC 3,AB 4 5, 求AD的 长.
直线CE和⊙O切于点C,AD⊥CE,垂
足为D,
求证:AC平分∠BAD
E
O
A
C
D
2.如图,⊙O和⊙O′都经过A、B 两点,AC是⊙O ′旳切线,交 ⊙O于C,AD是⊙O旳切线,交 ⊙O ′于D,
求证:AB2=BC·BD.
A
O CB
O' D
3.在△ABC中,∠A旳平分线AD交BC 于D,⊙O过点A,且和BC切于D, 和AB、AC分别交于E、F, 求证:EF//BC.
若∠PAD=∠DCB,则ABCD四点共圆;
D
若∠ADB=∠ACB,则ABCD四点共圆;
C O
PA
B
练习
情况唯一吗?
1.⊙O1和⊙O2都经过A、B两点,经过A点旳直线CD与
⊙O1交于点C,与⊙O2交于点D,经过B点旳直线EF与
⊙O1交于点E,与⊙O2交于点F,求证:CE∥DF.
D
E
A
A
D
C
C O1
O2
F
D
E
B
C
A
D
E
16
16 8
CF DE , BF 8
.
3
33
B

数学4-1《几何证明选讲》知识点总结.

数学4-1《几何证明选讲》知识点总结.

高中数学选修4-1《几何证明选讲》----知识点总结1、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。

推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。

平分线分线段成比例定理2、平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线所得的对应线段成比例。

3、相似三角形的判定:定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似三角形对应边的比值叫做相似比(或相似系数。

由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。

所以我们曾经给出过如下几个判定两个三角形:4、相似的简单方法:(1两角对应相等,两三角形相似;(2两边对应成比例且夹角相等,两三角形相似;(3三边对应成比例,两三角形相似。

5、预备定理:平行于三角形一边的直线和其他两边(或两边的延长线相交,所构成的三角形与三角形相似。

6、判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

7、判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

8、判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

9、引理:如果一条直线截三角形的两边(或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边。

10、定理:(1如果两个直角三角形有一个锐角对应相等,那么它们相似;(2如果两个直角三角形的两条直角边对应成比例,那么它们相似。

证明几何图形的定理和定律

证明几何图形的定理和定律

证明几何图形的定理和定律1.三角形的内角和定理:三角形的三个内角之和等于180度。

2.三角形的两边之和大于第三边。

3.三角形的两边之差小于第三边。

4.等腰三角形的性质:两腰相等,底角相等。

5.等边三角形的性质:三边相等,三角相等。

6.直角三角形的性质:有一个90度的角,斜边大于其他两边。

7.勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

8.四边形的内角和定理:四边形的四个内角之和等于360度。

9.平行四边形的性质:对边平行且相等,对角相等。

10.矩形的性质:四个角都是直角,对边平行且相等。

11.菱形的性质:四条边相等,对角相等。

12.正方形的性质:四条边相等,四个角都是直角。

13.梯形的性质:一组对边平行,一组对边不平行。

14.圆的定义:平面上所有到圆心距离相等的点的集合。

15.圆的性质:圆心到圆上任意一点的距离等于半径。

16.圆的周长公式:C = 2πr,其中C为周长,r为半径。

17.圆的面积公式:A = πr²,其中A为面积,r为半径。

18.弧的性质:圆上任意两点间的部分。

19.弦的性质:圆上任意两点间的线段。

20.圆心角的性质:圆心所对的角等于它所对的弧的两倍。

四、相似图形1.相似图形的定义:形状相同,大小不同的图形。

2.相似图形的性质:对应角相等,对应边成比例。

3.相似三角形的性质:对应角相等,对应边成比例。

4.相似四边形的性质:对应角相等,对应边成比例。

五、全等图形1.全等图形的定义:形状和大小都相同的图形。

2.全等图形的性质:对应边相等,对应角相等。

3.全等三角形的性质:对应边相等,对应角相等。

4.全等四边形的性质:对应边相等,对应角相等。

六、几何图形的变换1.平移:在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。

2.旋转:在平面内,将一个图形绕着某一点转动一个角度的图形变换。

3.轴对称:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

考点52 几何证明选讲

考点52 几何证明选讲

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点52 几何证明选讲一、填空题1.(2013·天津高考理科·T13)如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E,AD 与BC 交于点F.若AB=AC,AE=6,BD=5,则线段CF 的长为 .【解题指南】利用圆以及平行线的性质计算.【解析】因为AE 与圆相切于点A,所以AE 2=EB ·(EB+BD),即62=EB ·(EB+5),所以BE=4,根据切线的性质有∠BAE=∠ACB,又因为AB=AC,所以∠ABC=∠ACB,所以∠ABC=∠BAE,所以AE ∥BC,因为BD ∥AC,所以四边形ACBE 为平行四边形,所以AC=BE=4,BC=AE=6.设CF=x,由BD ∥AC 得=AC CF BDBF,即456=-xx,解得x=83,即CF=83. 【答案】83.2. (2013·湖南高考理科·T11)0中,弦,,2,AB CD P PA PB ==相交于点1PD O =,则圆心到弦CD 的距离为 .【解题指南】本题要利用相交弦定理:PA ·PB=PD ·PC 和解弦心三角形22)21(CD r d -=【解析】由相交弦定理PC PD PB PA ∙=∙得4=PC ,所以弦长5=CD ,故圆心O 到弦CD 的距离为234257)21(22=-=-CD OC .【答案】23. 3. (2013·陕西高考文科·T15)如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = .【解题指南】先通过A C ∠=∠及线线平行同位角相等,找出三角形相似,再由比例线段求得答案.【解析】..//BAD PED C A PED BCD PE BC ∠=∠⇒∠=∠∠=∠且所以因为.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPD PA PE APE EPD 所以4. (2013·北京高考理科·T11)如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D.若PA=3,PD ∶DB=9∶16,则PD= ,AB= .【解题指南】利用切割线定理求出PD,再在Rt △PBA 中利用勾股定理求出AB. 【解析】由于PD ∶DB=9∶16,设PD=9a,DB=16a,根据切割线定理有PA 2=PD ·PB,有a=15,所以PD=95,在Rt △PBA 中,有AB=4. 【答案】95 4. 5. (2013·湖北高考理科·T15)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E ,若AB=3AD,则EOCE的值为【解题指南】先用半径表示,再求比值. 【解析】设半径为R ,AB=3AD=2R. AD=23R ,OD=13R,3R =3cos ,3RC R ==228cos ,339CE CD C R R === 所以EO=R ―CE ―R ―81,99R R =898.19RCE EO R== 【答案】8.6. (2013·陕西高考理科·T15)如图, 弦AB 与CD 相交于圆O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE = .【解题指南】先通过圆周角相等及线段平行同位角相等得出,∽APE EPD ∆∆再由比例线段求得答案.【解析】..//BAD PED BAD BCD PED BCD PE BC ∠=∠⇒∠=∠∠=∠且在圆中所以因为.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以 【答案】.67.(2013·广东高考理科·T15)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC=CD ,过C 作圆O 的切线交AD 于E.若AB=6,ED=2,则BC=______.【解题指南】本题考查几何证明选讲,可先作ABD ∆的中位线OC 再计算. 【解析】设BC x =,连接OC ,因为,BC CD AC BD =⊥,ABD ∆是等腰三角形,,6,2,4BC CD x AB AD ED AE ======,在ACD ∆中,CE AD ⊥,则22222CE AC AE AD DE =-=-,即2236164x x --=-,解得x =【答案】8.(2013·广东高考文科·T15)如图,在矩形ABCD 中,AB 3BC =,BE AC ⊥,垂足为E ,则ED = .【解题指南】本题考查几何证明选讲,可先利用射影定理再结合余弦定理计算. 【解析】3,30,AB BC AC ACB AC BE ==∠=⊥,BEC ∆是直角三角形,由射影定理2,BC AC EC EC =⋅=ECD ∆中,由余弦定理可得222212cos 604ED EC CD EC CD =+-⋅=,即ED =. 9. (2013·天津高考文科·T13)如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 .【解题指南】 首先利用圆的性质,得出角的关系,再分别在△ABE 与△ABD 中利用正弦定理求解.【解析】设∠=BAE α,因为AE 与圆相切于点A ,所以,∠=∠BAE ADB 又因为AB = AD ,所以∠=∠=ABD ADB α,因为AB //DC ,所以∠=∠=ABD CDB α,所以2∠=∠=ABE ADC α.在△ABE 中,由正弦定理得sin sin =∠BE ABBAE E ,即45sin sin(3)=-απα,解得3cos .4=α在△ABD中,由正弦定理得sin sin =∠∠BD AB BAD ADB ,即5sin(2)sin =-BD παα,解得15.2=BD【答案】152. 10. (2013·重庆高考理科·T14)如图,在△ABC 中,090C ∠=,060A ∠=,20AB =,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为【解题指南】 直接根据圆的切线及直角三角形的相关性质进行求解【解析】由题意知AB 是圆的直径,设圆心为O ,连接OC ,因为CD 是圆的切线,则CDOC ⊥又因为BD ⊥CD ,所以BD OC //.因为 60,=∠=A OC OA ,所以30,60=∠=∠OCB ACO ,因为20=AB ,所以310=BC ,因为BD OC //,所以30=∠CBD 所以15=BD ,又因为AB 是圆的直径, 点E 在圆上, 20=AB 且 60=∠ABD ,所以10=BE ,故51015=-=-=BE BD DE【答案】5. 二、解答题11. (2013·辽宁高考文科·T22)与(2013·辽宁高考理科·T22)相同 如图,AB 为O 的直径,直线CD 与O 相切于E , AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F,连接,AE BE .证明: ()I FEB CEB ∠=∠;()II 2.EF AD BC =⋅【解题指南】 借助等量代换,证明相等关系;利用全等三角形的对应边,角相等.【证明】()I 由直线CD 与O 相切于E ,得EAB CEB ∠=∠ 由AB 为O 的直径,得AE EB ⊥,从而2EAB EBF π∠+∠=又EF 垂直AB 于F ,得2FEB EBF π∠+∠=,从而FEB CEB ∠=∠()II 由BC 垂直CD 于C ,得BC CE ⊥又EF 垂直AB 于F EF AB ⇒⊥,FEB CEB ∠=∠,BE 为公共边, 所以Rt BCE ∆≌Rt BFE ∆,所以BC BF = 同理可证,Rt ADE ∆≌Rt AFE ∆,所以AD AF = 又在Rt AEB △中, EF AB ⊥,所以2.EF AF BF =⋅ 综上,2.EF AD BC =⋅12. (2013·新课标Ⅰ高考文科·T22)与(2013·新课标Ⅰ高考理科·T22)相同如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D 。

高中数学第十一章 几何证明选讲(选修4-1)

高中数学第十一章 几何证明选讲(选修4-1)

第十一章⎪⎪⎪几何证明选讲(选修4-1)第一节 相似三角形的判定及有关性质1.平行线的截割定理 (1)平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. (2)平行线分线段成比例定理定理:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例. 2.相似三角形的判定定理(1)判定定理1:两角对应相等,两三角形相似.(2)判定定理2:两边对应成比例且夹角相等,两三角形相似. (3)判定定理3:三边对应成比例,两三角形相似. 3.相似三角形的性质定理(1)性质定理:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.(2)推论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方.4.直角三角形相似的判定定理(1)判定定理1:如果两个直角三角形有一个锐角对应相等,那么它们相似. (2)判定定理2:如果两个直角三角形的两条直角边对应成比例,那么它们相似. (3)判定定理3:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.5.直角三角形射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.[小题体验]1.(教材习题改编)如图,AB ∥EM ∥DC ,AE =ED ,EF ∥BC ,EF=12 cm ,则BC 的长为________ cm.解析:由⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED ⇒E 为AD 中点,M 为BC 的中点, 又EF ∥BC ⇒EF =MC =12 cm. ∴BC =2MC =24 cm. 答案:242.(教材习题改编)如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且ADDB=2,那么△ADE 与四边形DBCE 的面积比是________.解析:∵DE ∥BC ,∴△ADE ∽△ABC , ∴S △ADE S △ABC =AD 2AB 2. ∵AD DB =2,∴AD AB =23,∴S △ADE S △ABC =49,故S △ADE S 四边形DBCE =45. 答案:451.在使用平行线截割定理时易出现对应边的对应顺序混乱,导致错误. 2.在解决相似三角形的判定或应用时易出现对应边和对应角的对应失误.3.射影定理是直角三角形中的一个重要结论,其实质就是三角形的相似.但要注意满足直角三角形射影定理结论的三角形不一定是直角三角形,所以要搞清楚定理中的条件和结论之间的关系,不能乱用.[小题纠偏]1.(2016·鞍山模拟)如图,在▱ABCD 中,E 是BC 上一点,BE ∶EC =2∶3,AE 交BD 于点F ,则BF ∶FD 的值为________.解析:因为AD =BC ,BE ∶EC =2∶3, 所以BE ∶AD =2∶5,因为AD ∥BC , 所以BF ∶FD =BE ∶AD =2∶5, 所以BF ∶FD 的值为25.答案:252.如图,在Rt △ABC 中 ,∠BAC =90°,AD 是斜边BC 上的高,若AB ∶AC =2∶1,则AD ∶BC 为________.解析:设AC =k ,则AB =2k ,BC =5k , ∵∠BAC =90°,AD ⊥BC , ∴AC 2=CD ·BC , ∴k 2=CD ·5k ,∴CD =55k , 又BD =BC -CD =455k , ∴AD 2=CD ·BD =55k ·455k =45k 2, ∴AD =255k ,∴AD ∶BC =2∶5. 答案:2∶5考点一 平行线分线段成比例定理的应用(基础送分型考点——自主练透)[题组练透]1.如图,在梯形ABCD 中,AD ∥BC ,BD 与AC 相交于点O ,过点O 的直线分别交AB ,CD 于E ,F ,且EF ∥BC ,若AD =12,BC =20,求EF 的值.解:∵AD ∥BC , ∴OB OD =BC AD =2012=53, ∴OB BD =58.∵OE ∥AD ,∴OE AD =OB BD =58.∴OE =58AD =58×12=152,同理可求得OF =38BC =38×20=152,∴EF =OE +OF =15.2.如图,在△ABC 中,点D 是AC 的中点,点E 是BD 的中点,AE 交BC 于点F ,求BFFC 的值.解:如图,过点D 作DM ∥AF 交BC 于点M . ∵点E 是BD 的中点,∴在△BDM 中,BF =FM . 又点D 是AC 的中点, ∴在△CAF 中,CM =MF , ∴BF FC =BF FM +MC =12.[谨记通法]平行线分线段成比例定理及推论的应用的一个注意点及一种转化(1)一个注意点:利用平行线分线段成比例定理来计算或证明,首先要观察平行线组,再确定所截直线,进而确定比例线段及比例式,同时注意合比性质、等比性质的运用.(2)一种转化:解决此类问题往往需要作辅助的平行线,要结合条件构造平行线组,再应用平行线分线段成比例定理及其推论转化比例式解题.考点二 相似三角形的判定及性质 (重点保分型考点——师生共研)[典例引领]如图,在△ABC 中,AB =AC ,∠BAC =90°,D ,E ,F 分别在AB ,AC ,BC 上,AE =13AC ,BD =13AB ,且CF =13BC .求证:(1)EF ⊥BC ; (2)∠ADE =∠EBC . 证明:设AB =AC =3a , 则AE =BD =a ,CF =2a . (1)CE CB =2a 32a =23,CF CA =2a 3a =23. 又∠C 为公共角, 故△BAC ∽△EFC ,由∠BAC =90°,得∠EFC =90°, 故EF ⊥BC .(2)由(1)得EF =FC AC ·AB =2a , 故AE EF =a 2a =22,AD BF =2a 22a =22,∴AE EF =AD BF, ∴△ADE ∽△FBE , 所以∠ADE =∠EBC .[由题悟法]证明相似三角形的一般思路(1)先找两对内角对应相等.(2)若只有一个角对应相等,再判定这个角的两邻边是否对应成比例. (3)若无角对应相等,就要证明三边对应成比例.[即时应用]如图,已知在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.解:(1)证明:因为DE ⊥BC ,D 是BC 的中点,所以EB =EC ,所以∠B =∠BCE .又因为AD =AC ,所以∠ADC =∠ACB.所以△ABC ∽△FCD.(2)如图,过点A 作AM ⊥BC , 垂足为点M .因为△ABC ∽△FCD ,BC =2CD , 所以S △ABC S △FCD =⎝⎛⎭⎫BC CD 2=4.又因为S △FCD =5,所以S △ABC =20. 因为S △ABC =12BC ·AM ,BC =10,所以20=12×10×AM ,所以AM =4.因为DE ∥AM ,所以DE AM =BDBM . 因为DM =12DC =52,BM =BD +DM ,所以DE 4=55+52,解得DE =83.考点三 直角三角形中的射影定理 (重点保分型考点——师生共研)[典例引领]如图所示,CD 垂直平分AB ,点E 在CD 上,DF ⊥AC ,DG ⊥BE ,F ,G 分别为垂足.求证:AF ·AC =BG ·BE . 证明:因为CD 垂直平分AB , 所以∠ADC =∠BDC =90°,AD =D B.在Rt △ADC 中,因为DF ⊥AC , 所以AD 2=AF ·AC . 同理BD 2=BG ·BE . 所以AF ·AC =BG ·BE .[由题悟法]对射影定理的理解和应用(1)利用直角三角形的射影定理解决问题首先确定直角边与其射影.(2)要善于将有关比例式进行适当的变形转化,有时还要将等积式转化为比例式或将比例式转化为等积式,并且注意射影定理的其他变式.(3)注意射影定理与勾股定理的结合应用.[即时应用]在Rt △ACB 中,∠C =90°,CD ⊥AB 于D ,若BD ∶AD =1∶9,求tan ∠BCD 的值. 解:由射影定理得CD 2=AD ·BD , 又BD ∶AD =1∶9, 令BD =x ,则AD =9x (x >0). ∴CD 2=9x 2, ∴CD =3x .Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13.1.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,求EF BC +FGAD 的值.解:由平行线分线段成比例定理得 EF BC =AF AC ,FG AD =FC AC ,故EF BC +FG AD =AF AC +FC AC =AC AC =1.2.如图,等边三角形DEF 内接于△ABC ,且DE ∥BC ,已知AH ⊥BC 于点H ,BC =4,AH =3,求△DEF 的边长.解:设DE =x ,AH 交DE 于点M ,显然MH 的长度与等边三角形DEF 的高相等,又DE ∥BC ,则DE BC =AM AH =AH -MH AH , 所以x4=3-32x 3=2-x 2,解得x =43.故△DEF 的边长为43.3.如图,M 是平行四边形ABCD 的边AB 的中点,直线l 过点M 分别交AD ,AC 于点E ,F ,交CB 的延长线于点N .若AE =2,AD =6,求AFAC的值. 解:∵AD ∥BC , ∴△AEF ∽△CNF , ∴AF CF =AE CN , ∴AF AF +CF =AEAE +CN.∵M 为AB 的中点,∴AE BN =AMBM =1,∴AE =BN , ∴AF AC =AF AF +CF =AE AE +BN +BC =AE 2AE +BC. ∵AE =2,BC =AD =6, ∴AF AC =22×2+6=15.4.如图,AD ,BE 是△ABC 的两条高,DF ⊥AB ,垂足为F ,交BE 于点G ,交AC 的延长线于H ,求证:DF 2=GF ·HF .证明:在△AFH 与△GFB 中, 因为∠H +∠BAC =90°, ∠GBF +∠BAC =90°,所以∠H =∠GBF .因为∠AFH =∠BFG =90°, 所以△AFH ∽△GFB , 所以HF BF =AF GF , 所以AF ·BF =GF ·HF .因为在Rt △ABD 中,FD ⊥AB , 所以DF 2=AF ·BF . 所以DF 2=GF ·HF .5.(2016·大连模拟)如图,已知D 为△ABC 中AC 边的中点,AE ∥BC ,ED 交AB 于G ,交BC 延长线于F ,若BG ∶GA =3∶1,BC =8,求AE 的长.解:因为AE ∥BC ,D 为AC 的中点, 所以AE =CF ,AE BF =AG BG =13.设AE =x ,又BC =8, 所以x x +8=13,所以x =4. 所以AE =4.6.(2016·大连模拟)如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 的延长线交BC 于F .(1)求BFFC 的值;(2)若△BEF 的面积为S 1,四边形CDEF 的面积为S 2,求S 1∶S 2的值. 解:(1)过点D 作DG ∥BC ,并交AF 于点G ,因为E 是BD 的中点,所以BE =DE . 又因为∠EBF =∠EDG ,∠BEF =∠DEG , 所以△BEF ≌△DEG ,则BF =DG , 所以BF ∶FC =DG ∶FC .又因为D 是AC 的中点,则DG ∶FC =1∶2, 则BF ∶FC =1∶2,即BF FC =12.(2)若△BEF 以BF 为底,△BDC 以BC 为底, 则由(1)知BF ∶BC =1∶3,又由BE ∶BD =1∶2,可知h 1∶h 2=1∶2, 其中h 1,h 2分别为△BEF 和△BDC 的高, 则S △BEF S △BDC =13×12=16, 则S 1∶S 2=1∶5. 故S 1∶S 2的值为15.7.如图,在△ABC 中,AB =AC ,过点A 的直线与其外接圆交于点P ,交BC 的延长线于点D.(1)求证:PC AC =PDBD ;(2)若AC =3,求AP ·AD 的值.解:(1)证明:因为∠CPD =∠ABC ,∠PDC =∠PDC , 所以△DPC ∽△DBA ,所以PC AB =PD BD . 又AB =AC ,所以PC AC =PD BD. (2)因为∠ABC +∠APC =180°,∠ACB +∠ACD =180°, ∠ABC =∠ACB , 所以∠ACD =∠APC .又∠CAP =∠DAC ,所以△APC ∽△ACD , 所以AP AC =AC AD. 所以AP ·AD =AC 2=9.8.△ABC 中,D ,E ,F 分别是BC ,AB ,AC 上的点,AD ,EF 交于点P ,若BD =DC ,AE =AF .求证:AB AC =PF PE .证明:过F 作MN ∥AD 交BA 的延长线及DC 于M ,N .对△MEF ,有PF PE =AMAE ,因为AE =AF ,所以PF PE =AM AF. 对△MBN ,有AB AM =BDDN , 因为BD =DC ,所以AB AM =DCDN . 对△ADC ,有AC AF =DC DN ,所以AB AM =ACAF . 所以AB AC =AM AF ,所以AB AC =PF PE .第二节 直线与圆的位置关系1.圆周角(1)定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半. (2)推论1:①同弧或等弧所对的圆周角相等; ②同圆或等圆中,相等的圆周角所对的弧也相等. (3)推论2:①半圆(或直径)所对的圆周角是直角; ②90°的圆周角所对的弦是直径. 2.圆的切线(1)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. (2)性质定理:圆的切线垂直于经过切点的半径.(3)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.3.弦切角定理及其推论(1)定理:弦切角等于它所夹的弧所对的圆周角. (2)推论:弦切角的度数等于它所夹的弧的度数的一半. 4.圆中的比例线段(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.[小题体验]1.(教材习题改编)如图,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.解析:设垂足为D ,⊙O 的半径等于R , ∵AB ,BC 是⊙O 的两条弦, AO ⊥BC ,AB =3,BC =22, ∴AD =1,∴R 2=2+(R -1)2, ∴R =1.5.故⊙O 的半径为1.5. 答案:1.52.如图,AC 为⊙O 的直径,OB ⊥AC ,弦BN 交AC 于点M .若OC =3,OM =1,则MN 的长为________.解析:由题意得: CM =CO +OM =3+1, AM =AO -OM =3-1, BM 2=OB 2+OM 2=4,BM =2, 根据相交弦定理有CM ·AM =BM ·MN ,代入数值可解得MN =CM ·AM BM =(3+1)(3-1)2=1.答案:13.如图,⊙O 的直径AB =6 cm ,P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC ,若∠CPA =30°,PC =________ cm.解析:连接OC ,则OC ⊥PC .又OC =3,∠CPA =30°, ∴CP =OCtan 30°=3 3.答案:3 31.解决圆周角、圆心角及弦切角问题时,角之间关系易于混淆导致错误.2.使用相交弦定理与切割线定理时,注意对应线段成比例及相似三角形知识的应用.[小题纠偏]1.如图所示,CD 是圆O 的切线,切点为C ,点B 在圆O 上,BC =2,∠BCD =30°,则圆O 的面积为________.解析:设圆O的半径为r,过B作⊙O的直径BA,连接AC,则∠ACB=90°.又由弦切角定理得∠CAB=∠BCD=30°,∴AB=2BC=4.∴r=2,∴S=πr2=4π.答案:4π2.如图所示,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为________.解析:设⊙O的半径为r.由割线定理得PA·PB=PC·PD,3×7=(PO-r)(PO+r),即21=25-r2,∴r2=4,∴r=2.答案:2考点一圆周角、弦切角和圆的切线问题(基础送分型考点——自主练透)[题组练透]1.(2016·黄冈模拟)已知点C在圆O的直径BE的延长线上,直线CA与圆O相切于A,∠ACB的平分线分别交AB,AE于D,F两点,求∠AFD的大小.解:因为AC为圆O的切线,由弦切角定理,得∠B=∠EAC.又因为CD平分∠ACB,则∠ACD=∠BCD,所以∠B+∠BCD=∠EAC+∠ACD.根据三角形外角定理,∠ADF=∠AFD.因为BE是圆O的直径,则∠BAE=90°,所以△ADF是等腰直角三角形.所以∠ADF=∠AFD=45°.2.(2015·广东高考改编)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于点D和点P,求OD的长.解:由题意得OP =12BC =12,OA =2,于是PA =CP =22-⎝⎛⎭⎫122=152. 因为∠DCP =∠B =∠POA ,又∠DPC =∠APO ,所以△DCP ∽△AOP , 故PD PA =PCPO, 即PD =15212×152=152,所以OD =152+12=8.[谨记通法]1.圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.2.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端作圆周角或弦切角.考点二 圆内接四边形的性质及判定 (重点保分型考点——师生共研)[典例引领](2016·昆明模拟)如图所示,已知D 为△ABC 的BC 边上一点,⊙O 1经过点B ,D ,交AB 于另一点E ,⊙O 2经过点C ,D ,交AC 于另一点F ,⊙O 1与⊙O 2的另一交点为G .(1)求证:A ,E ,G ,F 四点共圆;(2)若AG 切⊙O 2于G ,求证:∠AEF =∠ACG . 证明:(1)如图,连接GD ,四边形BDGE ,四边形CDGF 分别内接于⊙O 1,⊙O 2, ∴∠AEG =∠BDG , ∠AFG =∠CDG ,又∠BDG +∠CDG =180°, ∴∠AEG +∠AFG =180°,∴A,E,G,F四点共圆.(2)∵A,E,G,F四点共圆,∴∠AEF=∠AGF,∵AG与⊙O2相切于点G,∴∠AGF=∠ACG,∴∠AEF=∠ACG.[由题悟法]证明四点共圆的常用方法(1)若四个点到一定点等距离,则这四个点共圆.(2)若一个四边形的一组对角的和等于180°,则这个四边形的四个顶点共圆.(3)若一个四边形的一个外角等于它的内对角,则这个四边形的四个顶点共圆.(4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.[即时应用](2016·吉林实验中学)如图,圆周角∠BAC的平分线与圆交于点D,过点D的切线与弦AC的延长线交于点E,AD交BC于点F.(1)求证:BC∥DE;(2)若D,E,C,F四点共圆,且AC=BC,求∠BAC.解:(1)证明:因为DE为圆的切线,所以∠EDC=∠DAC.又因为∠DAC=∠DAB,∠DAB=∠DCB,所以∠EDC=∠DCB,所以BC∥DE.(2)因为D,E,C,F四点共圆,所以∠CFA=∠CED,由(1)知∠ACF=∠CED,所以∠CFA=∠ACF.设∠DAC=∠DAB=x,因为AC=BC,所以∠CBA=∠BAC=2x,所以∠CFA=∠FBA+∠FAB=3x,在等腰△ACF中,180°=∠CFA+∠ACF+∠CAF=7x,则x≈25.7°,所以∠BAC=2x≈51.4°.考点三 与圆有关的比例线段 (重点保分型考点——师生共研)[典例引领](2015·陕西高考)如图,AB 切⊙O 于点B ,直线AO 交⊙O 于D ,E 两点,BC ⊥DE ,垂足为C .(1)证明:∠CBD =∠DBA;(2)若AD =3DC ,BC =2,求⊙O 的直径. 解:(1)证明:因为DE 为⊙O 的直径, 所以∠BED +∠EDB =90°.又BC ⊥DE ,所以∠CBD +∠EDB =90°, 从而∠CBD =∠BED.又AB 切⊙O 于点B ,得∠DBA =∠BED , 所以∠CBD =∠DBA . (2)由(1)知BD 平分∠CBA , 则BA BC =ADCD=3. 又BC =2,从而AB =3 2. 所以AC =AB 2-BC 2=4, 所以AD =3.由切割线定理得AB 2=AD ·AE , 即AE =AB 2AD =6,故DE =AE -AD =3, 即⊙O 的直径为3.[由题悟法]与圆有关的比例线段解题思路(1)见到圆的两条相交弦就要想到相交弦定理. (2)见到圆的两条割线就要想到割线定理. (3)见到圆的切线和割线就要想到切割线定理.[即时应用]1.(2015·天津高考改编)如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N ,若CM =2,MD =4,CN =3,求线段NE 的长.解:由题意可得CM ·MD =AM ·MB , 则2×4=2AM 2,AM =2. 又CN ·NE =AN ·NB , 即3NE =4×2,解得NE =83.2.(2015·湖北高考改编)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且BC =3PB ,求ABAC的值. 解:因为PA 是圆的切线, A 为切点,PBC 是圆的割线,由切割线定理,知PA 2=PB ·PC =PB (PB +BC ), 因为BC =3PB ,所以PA 2=4PB 2,即PA =2PB. 由弦切角定理,得∠PAB =∠PCA , 又∠APB =∠CPA ,故△PAB ∽△PCA , 所以AB AC =PB PA =12.1.(2015·重庆高考改编)如图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA =6,AE =9,PC =3,CE ∶ED =2∶1,求BE 的长.解:由切割线定理,知PA 2=PC ·PD , 即62=3PD , 解得PD =12,所以CD =PD -PC =9, 所以CE =6,ED =3.由相交弦定理,知AE ·EB =CE ·ED ,即9BE =6×3,解得BE =2.2.(2016·兰州双基测试)如图,在正△ABC 中,点D ,E 分别在BC ,AC 上,且BD =13BC ,CE =13CA ,AD ,BE 相交于点P .求证:(1)P ,D ,C ,E 四点共圆; (2)AP ⊥CP .证明:(1)在正△ABC 中,由BD =13BC ,CE =13CA ,知:△ABD ≌△BCE ,∴∠ADB =∠BEC ,即∠ADC +∠BEC =180°, ∴P ,D ,C ,E 四点共圆.(2)连接DE ,在△CDE 中,CD =2CE ,∠ACD =60°, 由正弦定理知∠CED =90°,由P ,D ,C ,E 四点共圆知,∠DPC =∠DEC , ∴AP ⊥CP .3.(2016·陕西一检)如图,设AB 为⊙O 的任一条不与直线l 垂直的直径,P 是⊙O 与l 的公共点,AC ⊥l ,BD ⊥l ,垂足分别为C ,D ,且PC =PD.(1)求证:l 是⊙O 的切线;(2)若⊙O 的半径OA =5,AC =4,求CD 的长.解:(1)证明:连接OP , ∵AC ⊥l ,BD ⊥l , ∴AC ∥BD.又OA =OB ,PC =PD , ∴OP ∥BD ,从而OP ⊥l .∵点P 在⊙O 上,∴l 是⊙O 的切线. (2)由(1)可得OP =12(AC +BD ),∴BD =2OP -AC =10-4=6. 过点A 作AE ⊥BD ,垂足为E , 则BE =BD -AC =6-4=2. ∴在Rt △ABE 中,AE =AB 2-BE 2=102-22=4 6. ∴CD =4 6.4.(2015·全国卷Ⅰ)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC交⊙O 于点E .(1)若D 为AC 的中点,证明:DE 是⊙O 的切线; (2)若OA =3CE ,求∠ACB 的大小. 解:(1)证明:如图,连接AE ,由已知得AE ⊥BC ,AC ⊥AB. 在Rt △AEC 中,由已知得DE =DC ,故∠DEC =∠DCE . 连接OE ,则∠OBE =∠OEB. 又∠ACB +∠ABC =90°, 所以∠DEC +∠OEB =90°,故∠OED =90°,即DE 是⊙O 的切线. (2)设CE =1,AE =x .由已知得AB =23,BE =12-x 2. 由射影定理可得AE 2=CE ·BE , 所以x 2=12-x 2,即x 4+x 2-12=0. 解得x =3,所以∠ACB =60°.5.(2015·沈阳一模)如图所示,已知AB 为圆O 的直径,C ,D 是圆O 上的两个点,CE ⊥AB 于E ,BD 交AC 于G ,交CE 于F ,CF =FG .(1)求证:C 是劣弧BD 的中点; (2)求证:BF =FG .证明:(1)∵CF =FG ,∴∠CGF =∠FCG . ∵AB 是圆O 的直径,∴∠ACB =∠ADB =π2.∵CE ⊥AB ,∴∠CEA =π2.∵∠CBA =π2-∠CAB ,∠ACE =π2-∠CAB ,∴∠CBA =∠ACE .∵∠CGF =∠DGA ,∠DGA =∠ABC , ∴π2-∠DGA =π2-∠ABC , ∴∠CAB =∠DAC , ∴C 为劣弧BD 的中点.(2)∵∠GBC =π2-∠CGB ,∠FCB =π2-∠GCF ,∴∠GBC =∠FCB ,∴CF =FB ,∴BF =FG .6.(2016·贵州七校联考)如图,⊙O 1和⊙O 2的公切线AD 和BC 相交于点D ,A ,B ,C 为切点,直线DO 1交⊙O 1于E ,G 两点,直线DO 2交⊙O 2于F ,H 两点.(1)求证:△DEF ∽△DHG ;(2)若⊙O 1和⊙O 2的半径之比为9∶16,求DEDF 的值. 解:(1)证明:∵AD 是两圆的公切线, ∴AD 2=DE ·DG ,AD 2=DF ·DH , ∴DE ·DG =DF ·DH ,∴DE DH =DF DG , 又∵∠EDF =∠HDG , ∴△DEF ∽△DHG .(2)连接O 1A ,O 2A , ∵AD 是两圆的公切线, ∴O 1A ⊥AD ,O 2A ⊥AD , ∴O 1,A ,O 2共线,∵AD 和BC 是⊙O 1和⊙O 2的公切线, DG 平分∠ADB ,DH 平分∠ADC , ∴DG ⊥DH ,∴AD 2=O 1A ·O 2A .设⊙O 1和⊙O 2的半径分别为9x 和16x ,则AD =12x , ∵AD 2=DE ·DG ,AD 2=DF ·DH ,∴144x 2=DE (DE +18x ),144x 2=DF (DF +32x ), ∴DE =6x ,DF =4x , ∴DE DF =32.7.(2016·沈阳模拟)如图,已知圆O 1与圆O 2外切于点P ,直线AB 是两圆的外公切线,分别与两圆相切于A ,B 两点,AC 是圆O 1的直径,过C 作圆O 2的切线,切点为D.(1)求证:C ,P ,B 三点共线; (2)求证:CD =CA .证明:(1)连接PC ,PA ,PB ,BO 2,∵AC是圆O1的直径,∴∠APC=90°.连接O1O2必过点P,∵AB是两圆的外公切线,A,B为切点,∴设∠BAP=∠ACP=α,∴∠AO1P=2α.由于O1A⊥AB,O2B⊥AB,∴∠BO2P=π-2α,∴∠O2BP=α.又∠ABP+∠O2BP=90°,∴∠ABP+∠BAP=90°,∴C,P,B三点共线.(2)∵CD切圆O2于点D,∴CD2=CP·CB.在△ABC中,∠CAB=90°,又∵AP⊥BC,∴CA2=CP·CB,故CD=CA.8.(2015·全国卷Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=23,求四边形EBCF的面积.解:(1)证明:由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分线.又因为⊙O分别与AB,AC相切于点E,F,所以AE=AF,故AD⊥EF,从而EF∥BC.(2)由(1)知,AE=AF,AD⊥EF,故AD是EF的垂直平分线.又EF为⊙O的弦,所以O在AD上.连接OE,OM,则OE⊥AE.由AG等于⊙O的半径得AO=2OE,所以∠OAE =30°.因此△ABC 和△AEF 都是等边三角形. 因为AE =23,所以AO =4,OE =2.因为OM =OE =2,DM =12MN =3, 所以OD =1.于是AD =5,AB =1033. 所以四边形EBCF 的面积为12×⎝⎛⎭⎫10332×32-12×(23)2×32=1633.。

_几何证明知识整理.docx

_几何证明知识整理.docx

知识整理一、知识梳理:1、有关概念:命题及逆命题___________________________________________________ 定理及逆定理_____________________________________________________ 2、重要定理:★线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。

如图:・・・MN垂宜平分线段AB・・・PA=PB逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

如图:・.・PA=PB・•・点P在线段AB的垂直平分线上★角平分线泄理:在角平分线上的点到这个角的两边的距离相等。

如图:/MB逆定理: 如图:VOP 平分ZAOBPD丄OA, PE±OB・•・PD=PEAAR在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上。

J PD=PEPD10A, PE丄OB・・・0P平分ZAOB★直角三角形的全等判定肓角三角形的全等:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。

(H.L)(注意:必须先证明两个三和形都是RTZ,才能应用本判定定理;以前所学的ASA、A AS. SAS、SSS这四条判定定理对于直角三角形全等的判定仍然适用。

)★直角三角形的性质及判定定理1:直角三角形的两个锐角互余。

如图:VZC=90°・,.ZA+ZB=90°定理2:直角三角形斜边上的中线等于斜边的一半。

(直角、中点一想一半)如图:V ZACB=90° ,且点D是AB的屮点:.CD = -AB2推论1:在直角三角形中,如果一个锐角等于30。

,那么它所对的直角边等于斜边的一半。

如图:V ZC=90° , ZA二30°B ,.心和推论2:在直角三角形中,如果有一条直角边等于斜边的一半一,那么这条直角边所对的角 等于30°。

【高考精品复习】选修4-1 几何证明选讲 第1讲 平行截割定理与相似三角形

【高考精品复习】选修4-1 几何证明选讲 第1讲 平行截割定理与相似三角形

第1讲平行截割定理与相似三角形【高考会这样考】考查相似三角形的判定和性质定理的应用及直角三角形的射影定理的应用.【复习指导】复习本讲时,只要掌握好教材上的内容,熟练教材上的习题即可达到高考的要求,该部分的复习以基础知识、基本方法为主,掌握好解决问题的基本技能即可.基础梳理1.平行截割定理(1)平行线等分线段定理及其推论①定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.②推论:经过梯形一腰的中点而且平行于底边的直线平分另一腰.(2)平行截割定理及其推论①定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例.②推论:平行于三角形一边的直线截其他两边(或两边的延长线),截得的三角形与原三角形的对应边成比例.(3)三角形角平分线的性质三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比.(4)梯形的中位线定理梯形的中位线平行于两底,并且等于两底和的一半.2.相似三角形(1)相似三角形的判定①判定定理a.两角对应相等的两个三角形相似.b .两边对应成比例且夹角相等的两个三角形相似.c .三边对应成比例的两个三角形相似.②推论:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.③直角三角形相似的特殊判定斜边与一条直角边对应成比例的两个直角三角形相似. (2)相似三角形的性质相似三角形的对应线段的比等于相似比,面积比等于相似比的平方. (3)直角三角形射影定理直角三角形一条直角边的平方等于该直角边在斜边上射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上射影的乘积.双基自测1.如图所示,已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A ,B ,C 和A ′,B ′,C ′,如果AB =BC =1,A ′B ′=32,则B ′C ′=________.解析 由平行线等分线段定理可直接得到答案.答案 322.如图所示,BD 、CE 是△ABC 的高,BD 、CE 交于F ,写出图中所有与△ACE 相似的三角形________.解析 由Rt △ACE 与Rt △FCD 和Rt △ABD 各共一个锐角,因而它们均相似,又易知∠BFE =∠A ,故Rt △ACE ∽Rt △FBE . 答案 △FCD 、△FBE 、△ABD3.(2011·西安模拟)如图,在△ABC 中,M 、N 分别是AB 、BC 的中点,AN 、CM 交于点O ,那么△MON 与△AOC 面积的比是________. 解析 ∵M 、N 分别是AB 、BC 中点,故MN 綉12AC , ∴△MON ∽△COA ,∴S △MON S △AOC =MN 2AC 2=14.答案 1∶44.如图所示,已知DE ∥BC ,BF ∶EF =3∶2,则AC ∶AE =______,AD ∶DB =________.解析 ∵DE ∥BC ,∴AE AC =DE BC =EFBF .∵BF ∶EF =3∶2,∴AE AC =EF BF =23.∴AC ∶AE =3∶2.同理DE ∥BC ,得AB ∶AD =3∶2,即AB AD =32. ∴AD AB =23,即AD AB -AD =23-2=2.即ADBD =2.∴AD ∶BD =2∶1. 答案 3∶2 2∶15.(2010·广东)如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E 、F 分别为线段AB 、AD 的中点,则EF =________.解析 连接DE 和BD ,依题知,EB ∥DC ,EB =DC =a2,∴EBCD 为平行四边形,∵CB ⊥AB ,∴DE ⊥AB ,又E 是AB 的中点,故AD =DB =a ,∵E ,F 分别是AD 、AB 的中点,∴EF =12DB =12a . 答案 a 2考向一 平行截割定理的应用【例1】►(2011·广州测试(二))在梯形ABCD 中,AD ∥BC ,AD =2,BC =5,点E 、F 分别在AB 、CD 上,且EF ∥AD ,若AE EB =34,则EF 的长为________. [审题视点] 把梯形的两腰BA 、CD 分别延长交于一点,利用平行截割定理可求解.解析 如图所示,延长BA 、CD 交于点P ,∵AD ∥BC ,∴P A PB =AD BC =25,∴P A AB =23,又∵AE EB =34,∴AE AB =37,∴P A AE =149,∴P A PE =1423.∵AD ∥EF ,∴AD EF =P A PE =1423,又AD =2,∴EF =237. 答案 237在解题时要注意添加辅助线.【训练1】 如图,在△ABC 中,DE ∥BC ,EF ∥CD ,若BC =3,DE =2,DF =1,则AB 的长为________.解析由⎩⎨⎧DE ∥BC ,EF ∥CD ,BC =3,DE =2⇒AE AC =AF AD =DE BC =23,又DF =1,故可解得AF =2,∴AD =3,又AD AB =23,∴AB =92. 答案 92考向二 相似三角形的判定和性质的应用【例2】►已知,如图,在△ABC 中,AB =AC ,BD ⊥AC ,点D 是垂足. 求证:BC 2=2CD ·AC .[审题视点] 作AE ⊥BC ,证明△AEC 和△BDC 相似即可.证明 过点A 作AE ⊥BC ,垂足为E , ∴CE =BE =12BC ,由BD ⊥AC ,AE ⊥BC . 又∴∠C =∠C ,∴△AEC ∽△BDC . ∴EC DC =ACBC ,∴12BC CD =AC BC , 即BC 2=2CD ·AC.判定两个三角形相似要注意结合图形的性质特点灵活选择判定定理.在一个题目中,相似三角形的判定定理和性质定理可能多次用到. 【训练2】 (2011·惠州调研)如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析 因为DE ∥BC ,所以△ADE ∽△ABC ,所以AE AC =DE BC ,即35=6BC ,所以BC =10.又DF ∥AC ,所以四边形DECF 是平行四边形,故BF =BC -FC =BC -DE =10-6=4. 答案 4考向三直角三角形射影定理的应用【例3】►已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD=________.[审题视点] △ACB为直角三角形,可直接利用射影定理求解.解析如图,连接AC,CB,∵AB是⊙O的直径,∴∠ACB=90°设AD=x,∵CD⊥AB于D,∴由射影定理得CD2=AD·DB,即62=x(13-x),∴x2-13x+36=0,解得x1=4,x2=9.∵AD>BD,∴AD=9.答案9注意射影定理的应用条件.【训练3】在△ABC中,∠ACB=90°,CD⊥AB于D,AD∶BD=2∶3.则△ACD 与△CBD的相似比为________.解析如图所示,在Rt△ACB中,CD⊥AB,由射影定理得:CD2=AD·BD,又∵AD∶BD=2∶3,令AD=2x,BD=3x(x>0),∴CD2=6x2,∴CD=6x.又∵∠ADC=∠BDC=90°,∴△ACD∽△CBD.易知△ACD与△CBD的相似比为ADCD=2x6x=63.即相似比为6∶3.答案6∶3高考中几何证明选讲问题(一)从近两年新课标高考试题可以看出,高考主要以填空题的形式考查平行截割定理和相似三角形判定定理的应用,难度不大.【示例1】►(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=________.【示例2】►(2011·广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2,E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为________.。

几何证明选讲定理大全

几何证明选讲定理大全

与圆周角定理有什么关系?
若∠ADB+∠ABC=180°,则ABCD四点共圆; 若∠PAD=∠DCB,则ABCD四点共圆; 若∠ADB=∠ACB,则ABCD四点共圆;
P
A C D O B
练习
情况唯一吗?
1.⊙O1和⊙O2都经过A、B两点,经过A点的直线CD与 ⊙O1交于点C,与⊙O2交于点D,经过B点的直线EF与 ⊙O1交于点E,与⊙O2交于点F,求证:CE∥DF.
BC EF AC DF
合比
?
AB BC AC DE EF DF
BC AC EF DF
AB DE AC DF
C 1、如图:EF∥AB,BF:FC= 5 :4, AC=3厘米,则CE=( )
4 cm 3
E
F B
2、已知在△ABC中,DE∥BC,EF∥DC,那么下列结论不成立的 A 是( ) B
解析 ∵E 是 AB 的中点, ∴AB=2EB. ∵AB=2CD,∴CD=EB. 又 AB∥CD,∴四边形 CBED 是平行四边形. ∴CB∥DE, ∠DEM=∠BFM, ∴ ∴△EDM∽△FBM. ∠EDM=∠FBM, DM DE ∴ = .∵F 是 BC 的中点, BM BF 1 ∴DE=2BF.∴DM=2BM,∴BM= DB=3. 3
E
B
选修4-1相关定理
弦切角的性质
弦切角
弦切角:顶点在圆上,一边和圆相交、
E
另一边和圆相切的角叫做弦切角. 要点: 顶点在圆上 一边和圆相交 A 一边和圆相切
E A O B C D E 极限状态
O D
C
B
A(D)
O
B
C
∠EAB=∠BCD
∠EAB=∠BCA

几何证明选讲定理大全

几何证明选讲定理大全

几何证明选讲定理大全几何证明是数学中的一项重要内容,它通过推理和逻辑推导来证明几何定理的正确性。

下面是一些常见的几何定理的证明:1.直角三角形的斜边平方等于两直角边平方和定理(勾股定理):设直角三角形的两直角边长度分别为a和b,斜边长度为c,根据勾股定理可得:c²=a²+b²。

证明如下:画出一个以a和b为直角边的正方形,将其分成两个小正方形和两个矩形。

则大正方形的面积等于a²+b²,而两个小正方形和两个矩形的面积之和等于c²。

因此,c²=a²+b²。

2.等腰三角形底角的平分线也是高的平分线:设ABC为等腰三角形,AB=AC,且BD为底角ABC的平分线,BE为高的平分线。

证明如下:连接AE和BD。

由于BE是高的平分线,所以角BED=90°。

又由于BD 是角ABC的平分线,所以角ABE=角EBC。

因此,三角形ABE和BEC是全等的。

根据全等三边对应定理,可得AE=BE。

因此,BD也是高的平分线。

3.任意角的正弦定理:设三角形ABC的边长分别为a、b、c,角A的对边长度为a,角B的对边长度为b,角C的对边长度为c。

根据正弦定理可得:sinA/a = sinB/b = sinC/c。

证明如下:假设有一个单位圆O,并在圆上取一点D,作OD ⊥ AB。

则AD = b·sinA,BD = b·cosA,OC = b。

连接DC,OC。

根据正弦的定义,可得sinA = AD/OD = AD/OC = b·sinA/b = BD/b。

同理,可得sinB = AD/a,sinC = BD/c。

因此,sinA/a = sinB/b = sinC/c。

4.正方形的对角线相等定理:设ABCD为正方形,对角线AC和BD相交于点O。

证明如下:连接AO和DO。

根据正方形的定义,AB=BC=CD=DA。

第十九章_几何证明知识点

第十九章_几何证明知识点

第十九章 几何证明知识整理一、知识梳理:1、有关概念: 命题及逆命题 如原命题:互余的角不相等;逆命题:不相等的角互余。

这里原命题与逆命题都是假命题。

如原命题:平行四边形的两组对边分别相等;逆命题:两组对边分别相等的四边形是平行四边形。

这里原命题、逆命题都是真命题。

如原命题:凡直角必相等;逆命题:凡相等的角必为直角。

这里原命题是真命题,逆命题是假命题 定理及逆定理如原定理:等边三角形三个内角都相等;逆定理:三个内角相等的三角形是等边三角形。

如原定理:同圆的半径相等;逆命题:半径相等的圆是同圆。

这里,原定理的逆命题是假命题,如等圆,所以原定理没有逆定理。

2、重要定理:★线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。

如图: ∵MN 垂直平分线段AB ∴PA=PB 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

如图: ∵PA=PB∴点P 在线段AB 的垂直平分线上★角平分线定理:在角平分线上的点到这个角的两边的距离相等。

如图: ∵OP 平分∠AOBP D ⊥OA ,P E ⊥OB∴PD=PE逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上。

如图: ∵PD=PEP D ⊥OA ,P E ⊥OB∴OP 平分∠AOB★直角三角形的全等判定 直角三角形的全等:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。

(H.L )(注意:必须先证明两个三角形都是R T ⊿,才能应用本判定定理;以前所学的ASA 、AAS 、SAS 、SSS 这四条判定定理对于直角三角形全等的判定仍然适用。

) ★直角三角形的性质及判定定理1:直角三角形的两个锐角互余。

如图: ∵∠C=90°∴∠A+∠B=90°M NBA P AB ODEP B定理2:直角三角形斜边上的中线等于斜边的一半。

(直角、中点→想一半)如图: ∵∠ACB=90°,且点D 是AB 的中点∴AB CD 21=推论1:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

几何证明选讲

几何证明选讲

第1页 (共4页)选修4-1 《几何证明选讲》一,几何证明选讲基础知识填空:1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________。

推论2: 经过梯形一腰的中点,且与底边平行的直线________________。

2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________。

3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______; 相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________; 相似三角形面积的比、外接圆的面积比都等于____________________;4. 直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项。

5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半。

圆心角定理:圆心角的度数等于_______________的度数。

推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______。

推论2:半圆(或直径)所对的圆周角是_______;90o的圆周角所对的弦是________。

弦切角定理:弦切角等于它所夹的弧所对的______________。

6.圆内接四边形的性质定理与判定定理:圆的内接四边形的对角_______;圆内接四边形的外角等于它的内角的_________。

如果一个四边形的对角互补,那么这个四边形的四个顶点__________;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________。

几何证明选讲基本知识点

几何证明选讲基本知识点

一、基本知识点
(一)相似三角形
〈1〉两角对应相等。

〈2〉两边对应成比例,且夹角相等。

〈3〉三边对应成比例。

相似三角形的对应边、对应高、对应中线、对应角平分线、周长的比都等于相似比。

面积比等于相似比的平方。

##几个相似的基本模型:
(二)与圆有关的知识
〈1〉圆周角定理:圆上一条弧所对的圆周角等于
它所对的圆心角的一半。

# 同一条弧所对的所有圆周角都相等。

〈2〉圆内接四边形:
1、圆内接四边形的对角互补。

2、圆内接四边形的每一个角的外角等于它的内角的对角。

3、如果一个四边形的对角互补,它的四个顶点一定公圆。

〈3〉圆的切线
1、性质定理:圆的切线垂直于经过切点的半径。

2、判定定理:经过半径的外端且垂直于
这条半径的直线是圆的切线。

3、弦切角定理:弦切角等于它所夹得弧所对的圆周角。

#由相似得出的几个重要性质:
1、直角三角形射影定理:
(1)CD^2 = AD . BD
(2)BC^2= BD. BA
(3)AC^2 =AD . AB
2、相交弦定理:AQ. BQ = CQ . DQ
3、切割线定理:PA^2 = PB . PC
3、割线长定理:PB .PC = PE . PF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的判定及有关性质一一备课人:李发知识点1比例线段的相关概念比例线段:对于四条线段a b c、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即- -b d (或a:b=cd )那么这四条线段叫做成比例线段,简称比例线段.注意:⑴在求线段比时,线段单位要统一,单位不统一应先化成同一单位.⑵当两个比例式的每一项都对应相同,两个比例式才是同一比例式.⑶比例线段是有顺序的,如果说a是b,c,d的第四比例项,那么应得比例式为:b dc a知识点2:比例的性质基本性质:(1) a: b c: d ad bc;(2) a : c c: b c a b .反比性质(把比的前项、后项交换):a cb db d a cb a d ca c ab cd 合比性质:•.发生同样和差变化比例仍成立.如: ac a c等等.b d b d a bc da b c do p p m八,,小、a c e m a等比性质:如果一(b d f n 0),那么b d f n b d f n b注意:实际上,由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如ad be,除了可化为a:b c:d,还可化为a:c b:d , c: d a : b , b:d a : c , b:a d:c, c:a d:b, d : c b: a , d:b c:a.知识点3:比例线段的有关定理平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等•推论1:经过三角形一边的中点与另一边平行的直线必平分第三边•(三角形中位线定理的逆定理)推论2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰•(梯形中位线定理的逆定理)平行线等分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.知识点:4 :黄金分割把线段AB分成两条线段AC,BC(AC BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC AB 0.618AB .2知识点5:相似图形1、相似图形的定义:把形状相同的图形叫做相似图形(即对应角相等、对应边的比也相等的图形)相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比值叫做相似比(或相似系数)(1 )相似三角形是相似多边形中的一种;2、相似三角形的判定方法预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理的基本图形语言:数学符号语言表述是:DE // BC ••• ADE s ABC .判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似•简述为:两角对应相等,两三角形相似•判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似•简述为:两边对应成比例且夹角相等,两三角形相似判定定理3 :如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似•简述为:三边对应成比例,两个三角形相似•判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法•3、相似三角形的性质定理:(1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;(2)相似三角形的周长比等于相似比;(3)相似三角形的面积比等于相似比的平方;(4)相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方4、相似三角形的等价关系(1)反身性:对于任一ABC有ABC s ABC .⑵对称性:若ABC s A'B'C',则A'B'C's ABC .⑶ 传递性:若 ABC s A'B'C ,且 A'B'C s ABC ,贝V ABC s ABC •5、 相似直角三角形引理:如果一条直线截三角形的两边(或两边的延长线)所得的线段成比例,那么这两条直线平行于三角形的 第三边•(与三角形的中位线定理类似)定理:如果两个直角三角形有一个锐角对应相等,那么这两个直角三角形相似 定理 定理 6、 直角三角形的射影定理从一定向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段 的两个端点在这条直线上的正射影间的线段•点和线段的正射影简称为射影直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在 斜边上的射影与斜边的比例中项 •推论:直角三角形中其中一条直角边是该直角边在斜边上的射影与斜边的比例中项B经过归纳和总结,相似三角形有以下几种基本类型如果两个直角三角形的两条直角边对应成比例,那么这两个直角三角形相似 如果两个直角三角形的斜边和一直边对应成比例,那么这两个直角三角形相似知识点6:与位似图形有关的概念1、如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫做位似图形这个点叫做位似中心,这时的相似比又称为位似比拓展:(1)位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点.(2)位似图形一定是相似图形,但相似图形不一定是位似图形.(3)位似图形的对应边互相平行或共线.2、位似.拓展:位似图形有许多性质,它具有相似图形的所有性质.3、画位似图形⑴画位似图形的一般步骤:①确定位似中心;②分别连接原图形中的关键点和位似中心,并延长(或截取);③根据已知的位似比,确定所画位似图形中关键点的位置;④顺次连结上述得到的关键点,即可得到一个放大或缩小的图形⑵位似中心的选取:①位似中心可以在图形外部,此时位似中心在两个图形中间,或在两个图形之外;②位似中心可取在多边形的一条边上;③位似中心可取在多边形的某一顶点上说明:位似中心的选取决定了位似图形的位置,以上位似中心位置的选取中,每一种方法都能把一个图形放大或缩小.圆的章节知识点总结一一备课人:李发、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3轨迹形式的概念:、圆的内部:可以看作是到定点的距离小于定长的点的集合;1、圆:至庞点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线)3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线; 、点与圆的位置关系1、点在圆内 d r 点C在圆内;2、点在圆上3、点在圆外dr 点B在圆上; dr 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离2、直线与圆相切3、直线与圆相交d r 无交点;d r 有一个交点;d r 有两个交点;A五、垂径定理弦:连接圆上任意两点之间的线段叫做弦 垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧 推论1 :平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 推论2 :弦的垂直平分线经过圆心,并且平分弦所对的两条弧;推论3:平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共 5个结论中,只要知道其中 即:AB 是直径;②AB CD ;③CE DE ;④弧BC 弧BD ( B C ); B D ⑤AC 条件推出其他3个结论.推论4:圆的两条平行弦所夹的弧相等 .即:在O O 中,••• AB // CD •••弧AC 弧BD 六、圆心角定理圆心角的定义:顶点在圆心且两边与圆相交的角叫做圆心角 圆心角定理:圆心角的度数等于它所对弧的度数 •(同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相四、圆与圆的位置关系外离(图1) 无交点 外切(图2) 有一个交点 相交(图3) 有两个交点 内切(图4) 有一个交点 内含(图5)无交点d R r ; d R r ; R r d R r ; d R r ; d R r ;2个即可推出其它 3个结论.;A D 中任意2个D等,弦心距相等一一也称一推三定理)即上述四个结论中,只要知道其中的结论也即:①AOB DOE;②AB DE ;③OC OF;④B A ?D 推论1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;推论2 :在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等;推论3:在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等;七、圆周角定理圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角圆周角定理:同弧或等弧所对的圆周角相等且都等于它所对的圆心的角的一半图形语言:3 :三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形符号语言:在△ ABC中,• OA OB OC ABC是直角三角形或C=90注:此推论实际上是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理八、圆内接四边形圆内接四边形:如果多边形的所有顶点都在一个圆上,那么这个多边形叫做圆的内接多边形,这个圆叫做多边形的外接圆• 圆的内接四边形的性质定理:圆的内接四边形的对角互补,圆的内接四边形的外角等于它的内角的对角符号语言:••在e O中,四边形ABCD是内接四边形1个相等,则可以推出其它的3个符号语言: ①,••在e O中, C、D都是弧AB所对的圆周角AOB和ACB是弧AB所对的圆心角和圆周角AOB 2 ACB推论推论1:同圆或等圆中,相等的圆周角所对的弧相等2:半圆或直径所对的圆周角是直角;(90符号语言:••在e O中,AB是直径•••的圆周角所对的弧是半圆,C=90 ;或•C=90所对的弦是直径)••• AB是直径C BAD 180, B D 180, DAE C图形语言:推论圆的内接四边形的判定定理1:如果一个四边形的对角互补,那么这个四边形四个顶点共圆符号语言:•••在四边形 ABCD 中, C BAD 180 , B D 180 /• A B 、C 、D 四点共圆圆的内接四边形的判定定理2:如果四边形的一个外角等于它内角的对角,那么这个四边形的四个顶点共圆符号语言:•••在四边形 ABCD 中, DAE C 二A 、B 、C 、D 四点共圆九、切线的性质与判定定理 1、切线的定义:当直线和圆有且只有一个公共点时,我们把这条直线叫做圆的切线 (1)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线•符号语言:••• MN OA 且MN 过半径0A 外端二MN 是e O 的切线(2)性质定理:圆的切线垂直于经过切点的半径推论1 :经过圆心且垂直于切线的直线必经经过切点 推论2:经过切点且垂直于切线的直线必经经过圆心 以上三个定理及推论也称二推一定理:即: (1)经过圆心(2)经过切点(3)垂直于切线.以上三个条件中,知道其中两个条件推出最后一个条件•( ••• MN 是切线••• MN 0A )2、切线长的定义:经过圆外一点作圆的切线,该点和切点之间的线段的长叫做该点到圆的切线长切线长定理:从圆外一点引圆的两条切线,它们的切线长相等且该点和圆心的连线平分两条切线的夹角 符号语言:••• PA 、PB 是的两条切线 • PA=PB 且P0平分 APB推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项图形语言:图形语言:3、 弦切角:顶点在圆上,且一边和圆相交而另一边和圆相切的角叫做弦切角 弦切角定理:弦切角等于它所夹弧所对的圆周角 符号语言:•••BAC 是圆的一个弦切角 • BAC APC4、 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等.(弦与切线的夹角叫做弦切角 )符号语言:•••在O 0中,弦AB 、CD 相交于点P , • PA PB PC PD图形语言:BDA2符号语言:•••在O O中,直径AB CD , • CE AE BE5、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等符号语言:•••在O O中,PB、PE是割线••• PC PB PD PE6、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项符号语言:•••在O O中,PA是切线,PB是割线切线长定理从圆外一点引圆的两条切线,它们的切线长相等且该点和圆心的连线平分两条切线的夹角•弦切角定理弦切角等于它所夹弧所对的圆周角•相交弦定理圆内的两条相交弦,被交点分成的两条线段长的乘积相等割线定理从圆外一点引圆的两条割线,这一点到母条割线与圆的交点的两条线段长的乘积相等.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项•卜一、圆的有关概念十二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:I n -180(2)扇形面积公式:Sn R2丄IR22PA PC PB图形语言:(1) 正三角形:(2) 正四边形:(3)在eO中,△ ABC是正三角形,有关计算在Rt △ BOD中进行,OD : BD :OB 1:、.3:2OE : AE : OA 1:1: ,2AB : OB : OA 1: .3:2同理,四边形的有关计算在Rt △ OAE中进行,同理,六边形的有关计算在Rt △ OAB中进行,、三角形的外接圆、外心T用到:线段的垂直平分线及性质、三角形的内切圆、、圆的对称性。

相关文档
最新文档