丙烷制冷循环

合集下载

丙烷压缩机循环制冷系统工艺流程优化

丙烷压缩机循环制冷系统工艺流程优化

[ 摘 要]塔 中油 田10 . 2 ; 然气装置制冷 系统有3 5 ̄ 台制冷压缩机 :低压 制冷压 缩机 4 K 、 中压 制冷压缩机4 K 、高压制冷压 -1 一2 缩 机 4 K 。 当 高压 制 冷 压 缩 机 4 K 出现 故 障 时 , 无 法 对 原 料 天 然 气 进行 预 冷 ,导 致 装 置全 面 停 产 。本 文 通 过 工 艺 流 程 优 化 一3 一3 将 4 K 作 为 4 K 的 备 用 机 组 ,避 免 该 情 况 的发 生 。 一2 一3
[ 关键 词 ] 丙烷 制 冷 ;压 缩 机 ; 工 艺优 化
塔 中 油 田1 0 天然 气 装 置用 于 处理 塔 中四油 2万 田伴 生 气 。处理 后 水 、烃 的露 点均 <一0 。该装 3℃ 置采 用 分 子筛 脱 水 、丙 烷 制 冷 后 进 行 干 气 吸 收 的 工 艺流 程 。 回 收 的轻 烃 主 要 成 分 是 C 、C 组 分 , 达 到 回收 天 然 气 中重 组 分 的 目的 。装 置 制 冷 系 统 采 用 螺 杆 压 缩 机 , 该机 德 国YO RK公 司 制造 ,其 中4 K1 缩机 功 率 为 1 lk ,4K 压 缩 机功 率 为 . 压 15 W -2 4 5 W ,4 K3 缩机 功 率 为6 0 W 。机 组 主 要 由 1k 一 压 8k 微 处 理 器 、微 机通 讯 、 压 缩机 、润 滑 系 统 、 油分 离 系 统 、 压 缩机 液压 系 统 、冷 却 系 统 、 吸入 单 流 阀等 组成 。
均未 设 置 备 用 机 组 , 一 旦 当4K3 组 出现 故 障 , 一 机
2问题 提 出 由图 1 可看 出, 当2E1 法 对 原料 天 然气 进行 一 无 预冷 时 , 由于 原 料 天 然 气 温 度 过 高 ,导 致 分 子筛 的脱 水 效 率 降低 ,使 水 露 点 达 不 到 工 艺 要 求 ,装 置必 须全 厂 停产 。 由于制 冷 系 统 的3 台制 冷压 缩机

丙烷制冷压缩机工作原理

丙烷制冷压缩机工作原理

丙烷制冷压缩机工作原理Propane refrigeration compression can be explained through the process of heat transfer and compression within the refrigeration system. Propane is a type of refrigerant that is commonly used in compressors for its ability to absorb and release heat efficiently. The compression process begins when the gaseous refrigerant enters the compressor through the suction line.丙烷制冷压缩可以通过制冷系统内的传热和压缩过程来解释。

丙烷是一种常用于压缩机中的制冷剂,因为它具有高效吸收和释放热量的能力。

压缩过程始于气态制冷剂通过吸气管进入压缩机。

As the refrigerant enters the compressor, it undergoes a compression process where its pressure and temperature are increased. This is achieved through the use of a rotating compressor that squeezes the refrigerant gas, causing it to become more compact and pressurized. The increase in pressure and temperature allows the refrigerant to release the absorbed heat, which is crucial for the cooling process.当制冷剂进入压缩机时,它经历了一个压缩过程,使其压力和温度增加。

AspenHysys丙烷制冷循环

AspenHysys丙烷制冷循环

目的和背景
目的
本文旨在介绍AspenHysys软件在丙烷制冷循环中的应用,通过模拟和分析不同工况下的制冷性能,为实际制冷 系统的设计和优化提供参考。
背景
随着制冷技术的不断发展,制冷系统在工业、商业和家庭等领域的应用越来越广泛。如何提高制冷效率、降低能 耗和减少对环境的影响,是当前制冷技术领域研究的热点问题。AspenHysys软件作为一种先进的模拟工具,为 解决这些问题提供了有力支持。
系统优化的高级软件,广泛应用于化 工、石油和天然气等行业。它提供了 强大的计算引擎和丰富的模型库,能 够精确模拟各种复杂的工艺流程和系 统。
参考文献
参考文献
• - AspenHysys在丙烷制冷循环优化中的作 用
• AspenHysys可以通过模拟和优化工具, 帮助用户找到丙烷制冷循环的最佳操作条 件。通过调整循环参数,如制冷剂流量、 蒸发温度和冷凝压力等,AspenHysys可 以找到能效最高、成本最低的优化方案。
探索AspenHysys与其他制冷技术的集成方案,以提高系统整体能效 和减排效果。
深入研究AspenHysys丙烷制冷循环的动态特性和控制策略,以满足 复杂多变的制冷需求。
加强与实际应用的结合,开展AspenHysys丙烷制冷循环的示范项目 ,推动其商业化进程。
05
参考文献
参考文献
• - AspenHysys软件介绍 • AspenHysys是一款用于流程模拟和
• - AspenHysys在丙烷制冷循环中的局限性
THANKS
感谢观看
根据模拟结果,提出优化建议,如改 进冷凝器结构、调整压缩机转速等, 以提高制冷循环的效率和降低能耗。
能耗分析
计算制冷循环的能耗,包括压缩机的 能耗、冷凝器的能耗、蒸发器的能耗 等。

某天然气处理厂丙烷制冷系统能耗研究与分析

某天然气处理厂丙烷制冷系统能耗研究与分析

某天然气处理厂丙烷制冷系统能耗研究与分析摘要:天然气处理工艺中对原料天然气的脱油脱烃脱水处理是很有必要的。

天然气具有反凝析的特点,随着压力、温度的变化会析出液体,因而导致产品天然气水露点及烃露点不合格。

在脱烃脱水技术工艺进行天然气处理过程中,丙烷则就充当了制冷剂,起到制冷降温的作用,进而析出液烃和除水,如果MR系统使用不当,可能会引起能耗过高等问题。

本文针对MR系统存在的问题作了原因分析,并提出了丙烷制冷系统节能降耗的改造方案,对改造前后的效果进行了对比评价。

关键词:丙烷压缩机;节能改造;效果评价一、丙烷制冷系统(MR)概述目前,某天然气处理厂用的丙烷制冷机组[1]-[3]采用的工艺流程为丙烷蒸发器中的气态丙烷由丙烷压缩机进行压缩,在压缩机出口油分离器中分离出机油后,去水冷冷凝器冷凝成液态丙烷,冷凝后高压液态丙烷经节流膨胀后进入经济器。

经济器中的气态丙烷返回压缩机中段进一步进行压缩;液态丙烷经过控制蒸发器液位的调节阀进入蒸发器,气化变成气态丙烷,吸收天然气的热量;丙烷在制冷系统内部如此反复循环,不断吸收天然气的热量,从而达到制冷的目的。

其中丙烷压缩机是丙烷压缩制冷系统的主要能耗设备。

如果忽略管线和静设备压降,压缩制冷循环在压焓图上如图1所示。

1-2线段表示气态冷剂在压缩机中的压缩过程,近似地沿等熵线进行;2-2′-3′-3线段表示冷剂在冷凝器中的冷凝过程,为等压过程;3-4线段表示冷剂节流膨胀过程,为等焓过程;4-1线段表示冷剂在蒸发器中的蒸发过程,为等压过程[4]。

图1丙烷压缩制冷循环流程及压焓图二、丙烷制冷系统高电耗根因分析(一)电机选型过大,负载过低、电耗过高1.电机选型过大该天然气处理厂应用的丙烷压缩机电机选用1600kW的大功率电机,单套系统制冷能力5400kw,压缩机在正常工作中能量负载只能达到5%-15%,存在“大马拉小车”现象。

2.电机负载低压缩机在低负荷运转时,轴功率将增大,耗电量增加。

大庆石化HYSYS培训教程2

大庆石化HYSYS培训教程2
保存模板:
将 .hsc文件转 换成 .tpl文件
另存文件
C:\Programefile\Hyprotech\Hysys3.2\Template
HYSYS应用基础教程
-8-
第二章 丙烷制冷循环
练习题1:
在这个例子当中,如果我们不知道Chiller的 热负荷,但是知道压缩机标定功率为250hp, 且以最大功率的90%运行,那么当压缩机的效 率为72%的时候,Chiller的热负荷是多少?
Stream1 Chiller Stream3 Stream4 Mixer Condenser
T=50° C
DP=7kpa
T=-20 °C
Vf=0.0 Q=1e6kj/h Vf=1.0
P=625kpa Equal All DP=35kpa Pressures
请大家将文件保存为C3loop2.hsc
HYSYS应用基础教程
-5-
第二章 丙烷制冷循环
定义模块:
加入模块: 连接物流: 输入数据: 加其它模块 完成流程
HYSYS应用基础教程
-6-
第二章 丙烷制冷循环
PFD操作:
在完成流程搭接之后,并不会出现一张完美的流程图,我 们可以通过PFD操作,来打造整洁、实用的画面,常用的PFD 操作包括:
HYSYS应用基础教程
大庆石化总厂培训中心仿真
第二章 丙烷制冷循环
教学目的:
利用HYSSYS搭建一个丙烷制冷流程:
教学内容:
考察流程/输入各类数据等:
教学重点:
掌握HYSYS各类数据的输入:
教学难点:
理解HYSYS中信息的双向传递过程:
HYSYS应用基础教程

丙烷制冷的实际能效比

丙烷制冷的实际能效比

丙烷制冷的实际能效比丙烷制冷的实际能效比分析与探讨一、引言在如今能源紧缺和环境保护的背景下,能效比的概念越来越受到人们的重视。

能效比通常是指使用单位能量所能产生的实际有效输出,对于各种制冷设备尤其重要。

丙烷(C3H8)是一种常见的烃类气体,广泛用于家庭和商业用途的制冷设备中,如冰箱和空调。

了解丙烷制冷的实际能效比有助于我们更好地利用这一制冷技术。

二、丙烷制冷的基本原理1. 丙烷制冷原理丙烷制冷是一种基于蒸发冷却和压缩的制冷技术。

它利用丙烷气体在蒸发过程中吸收热量,将环境中的热量转移到冷却剂上,然后通过压缩使其升温,最终释放热量到环境中。

2. 蒸发和压缩的关系蒸发是丙烷制冷中的关键步骤。

通过降低丙烷的压力,使其在蒸发器中蒸发,吸收环境中的热量。

压缩机将蒸发的丙烷气体压缩,增加其温度和压力,并将其传输到冷凝器中。

在冷凝器中,丙烷气体通过释放热量而冷却,并转变为液体状态。

三、丙烷制冷的实际能效比了解丙烷制冷的实际能效比对于我们正确选择制冷设备和有效使用能源至关重要。

1. 实际能效比的定义实际能效比是制冷设备所能产生的实际制冷量与其所耗能量之比。

在丙烷制冷中,实际能效比一般以制冷量或制冷剂的耗能度量。

2. 影响实际能效比的因素实际能效比受到多种因素的影响,包括气候条件、制冷设备的设计和性能等。

在炎热的环境下,实际能效比可能会下降,因为制冷设备需要更多的能量来保持低温。

制冷设备的设计和性能也会直接影响其能效比。

3. 提高实际能效比的方法提高丙烷制冷的实际能效比是一个复杂的过程,需要从多个方面入手。

选择高效能的制冷设备是关键。

定期清洁和维护制冷设备,以确保其正常运行。

减少制冷需求和合理使用制冷设备也是提高实际能效比的重要手段。

四、丙烷制冷的优势和挑战1. 优势丙烷制冷相比于其他制冷技术具有多个优势。

丙烷是一种清洁能源,不会产生温室气体和有害物质。

丙烷的能效比相对较高,能够提供稳定而高效的制冷效果。

丙烷制冷设备经济实惠,易于维护和操作。

丙烷制冷原理及其天然气处理行业中的应用

丙烷制冷原理及其天然气处理行业中的应用

丙烷制冷原理及其天然气处理行业中的应用摘要:阐述丙烷制冷装置的工艺流程及其工作原理,并举例说明其在中原油田天然气处理厂装置中的实际应用状况。

关键词:丙烷制冷压缩处理1、前言中原油田天然气处理厂第三气体处理厂日处理伴生气80-120万方,主要工艺流程为低压原料气经加压后除去水分和其它杂质,进入蒸馏塔进行蒸馏,产出相应的产品主要为气态甲烷、液态乙烷、液态丙烷、液态丁烷等。

众所周知天然气组分中C3以上组分含量越大,产量产出越多,收益也就越大,因此最大化的将C3以上组分液化后进行蒸馏是最关键的。

我厂利用膨胀制冷和丙烷辅助制冷系统来实现这一目的,有效的回收了外输甲烷中的C3及以上重组分。

2、丙烷制冷原理及制冷系数的计算丙烷制冷在天然气处理行业中应用的比较广泛,下面分别用温熵关系和压焓关系分析器制冷过程和原理。

丙烷制冷原理涉及到了热力学第一定律和热力学第二定律,以下是应用理论来分析和计算其循环制冷过程。

首先介绍下丙烷制冷系统的相关流程及介质的变化过程:丙烷制冷循环系统主要由压缩机、冷凝器、节流阀和蒸发器组成,用不用直径的管线把它们按一定的线路连接起来,就形成了一个能使制冷剂循环流动的密闭系统。

丙烷制冷压缩机由电动机拖动工作,不断的抽吸蒸发器中的制冷剂蒸汽,压缩成高压过热蒸汽而排出并送入冷凝器,正是由于这一高压存在,使制冷剂蒸汽在冷凝器中放出热量,把热量传递给周围的介质,从而使制冷剂蒸汽冷凝为液体,当然制冷剂蒸汽冷凝时的温度一定要高于周围介质的温度。

冷凝后的液体仍处于高压状态,经节流阀进入蒸发器。

制冷剂在节流阀中,由高压降低为低压,从高温降至低温,并出现少量液体气化为蒸汽。

在此过程中:丙烷制冷压缩机从蒸发器吸收蒸发压力为P1的饱和蒸汽,将其等熵压缩至冷凝压力为P2的饱和蒸汽,压缩过程即完成;丙烷压缩机压缩完的高温高压丙烷蒸汽进入冷凝器,经冷凝器与介质进行热交换,放出热量后,等压冷却至饱和液体,冷凝过程即完成,在冷却的过程中存在温差的出现;饱和液态丙烷经节流阀节流降压(此节流过程中焓值保持不变),压力降至蒸发压力,膨胀过程即完成;节流后的制冷剂丙烷蒸汽进入蒸发器,在蒸发器内吸收被冷却介质的热量等压气化,成为饱和蒸汽,蒸发过程即完成。

天然气处理厂丙烷制冷系统节能改造

天然气处理厂丙烷制冷系统节能改造

天然气处理厂丙烷制冷系统节能改造摘要:多数天然气处理厂都应用了丙烷制冷系统,但是该系统在运行过程中存在高能耗、低能效等问题。

这一问题主要是由多种因素造成的,例如电机问题、经济器问题都会加大系统能耗。

为了降低系统能耗,应当对系统进行节能改造,科学选择改造方案,从而达到节能的目的。

关键词:天然气;丙烷制冷系统;节能前言:天然气处理厂在人们的生活中发挥着重要作用,但是传统的丙烷制冷系统加大了处理厂的能耗,不仅降低了处理厂的经济效益,也造成了资源浪费。

因此,天然气处理厂应针对系统高能耗的成因对系统进行节能改造,减少资源浪费。

1.丙烷制冷系统概述1.1工艺丙烷制冷系统即丙烷压缩循环制冷单元,主要是由满液蒸发器、压缩机以及蒸发式空冷器共同构成的,可以通过提供冷量的方式降低天然气的温度,将原料天然气的温度降低至-25℃以下,从而通过低温分离的方式实现天然气脱油脱水【1】。

在制冷过程中,压缩机会对丙烷蒸发器处理形成的蒸汽进行压缩,之后将蒸汽输送至油分离器当中,分离蒸汽中的润滑油,再将蒸汽输送至蒸发式冷凝器中,将蒸汽转变为丙烷液体,将液体输送至满液蒸发器的底部,进行冷却处理,最后经过换热形成低压丙烷蒸汽。

1.2运行参数丙烷制冷系统中有两台压缩机,其中一台是主用压缩机,一台是备用压缩机,压缩机的功率都是900kW,转速是2950r/min。

2.影响丙烷制冷系统能耗的因素2.1电机因素丙烷制冷系统能耗较高是由多种因素造成的,其中就包括电机因素。

若天然气处理厂选择的电机存在选型过大、负载过低等问题就会加大系统能耗。

首先,若电机选型过大就会降低压缩机的能量负载,造成“大马拉小车”的问题。

其次,压缩机在低负荷运转过程中,轴功率将会加大,能耗就会加大。

从系统运行情况来看,当压缩机的负载率在70-90%这个范围内时,压缩机的制冷效率最高【2】。

但是,当压缩机的负载率处于10-20%这个范围内时,电机的轴功率就会加大。

此外,若压缩机长期处于低负荷运行状态中将会影响到压缩机的机械性能,继而加大系统能耗。

丙烷制冷法影响因素敏感性的研究

丙烷制冷法影响因素敏感性的研究

我国应用丙烷制冷工艺处理天然气和轻烃回收时间不长,但由于丙烷压缩循环制冷具有操作简单、能耗低和流程短等特点,该项工艺发展迅速。

丙烷(R290),易燃易爆,是一种可以从液化气中直接获得的天然碳氢制冷剂;与氟利昂这种人工合成制冷剂相比,天然工质丙烷的分子中不含有氯原子,所以ODP值为零,对臭氧层不具有破坏作用。

因此,人们需要对丙烷制冷法影响因素进行分析。

1 丙烷制冷系统存在的不足1.1 制冷系统中丙烷大量减少制冷系统在运行期间丙烷流失较快,针对以下原因做了排查。

第一,压缩机轴封渗漏。

此种情况下轴封漏油量会增加,检查每日渗油量大概是5~6ml,排除压缩机轴封渗漏的情况。

第二,蒸发器管束内漏。

蒸发器内丙烷的蒸发压力仅为0.020MPa,液态丙烷的压力比天然气低1.1MPa,管束内漏时,天然气会进入丙烷制冷系统,丙烷并不会消失,排除蒸发器管束内漏原因。

第三,冷凝器管束内漏。

丙烷冷凝器内的冷却水压力相比于高温气态丙烷压力小0.8MPa,如果冷凝器管束内漏,丙烷会大量流失,进入管层;检修时,将泠凝器浮头法兰拆卸,利用泡沫水并未查找到渗漏管束。

第四,密封点渗漏。

对密封点用专用检测仪检测,发现密封点并未渗漏,所有不是密封点渗漏。

第五,安全阀内漏。

因为火炬链接着安全阀出口,用测温枪检测安全阀进出口管线温度,对比后发现进出口管线温度相差不大,因此该安全阀内漏。

通过以上判断和分析,可知安全阀内漏是导致丙烷缺少的主要原因。

1.2 丙烷蒸发器无液位将制冷系统加入3瓶丙烷,总量为60g。

2天后蒸发器20kPa。

由此推断系经过上述操作后分析下部引压管堵塞;放置1周后,各容器底部大约共排出2L水。

分析得出,丙烷内含有少量水,导致蒸发器液位计引压管冻堵,是蒸发器无液位的主要原因。

新进的丙烷正常情况下会沉降,应避免横向移动,丙烷瓶在加装时应保持直立。

2 丙烷制冷脱水工艺模拟软件为了方便研究,本位引入了油气化工模拟软件,该软件在油气处理方面能够表现出较高准确性特点,工艺优化效果良好,进而实现动态和稳态模拟。

丙烷制冷压缩机组成及控制原理简介唐明洪

丙烷制冷压缩机组成及控制原理简介唐明洪

TIC
PIC
丙烷供液
备注: 当丙烷机加载≥90% YV101电磁阀得电打开,UCV101开始接受TIC控制
13
14
RWF II机组启动控制程序
15
关键参数联锁一览表
约克丙烷制冷机参数设定联锁表
联锁点
数值
单位
延时(秒)
吸气压力低 吸气压力高 排气压力高 排气温度高 油压低 油压差高 油温高 油温低 油分温度低 油位低 主蒸发器液位高 附蒸发器液位高 电机电流高 电机电流低 电机轴承温度高 电机定子温度高
3
流程简图
4
丙烷制冷原 理
丙烷制冷原理:是利用液体丙烷在绝热条件下膨 胀汽化,内能降低,自身温度随之下降而达到对工 艺介质降温的目的。
5
丙烷制冷原 理
丙烷制冷属蒸汽压缩制冷法,它包括四个过程:压缩、 冷凝、膨胀蒸发、制冷。
压缩:是利用丙烷压缩机对丙烷蒸气进行压缩,提高丙 烷蒸气的压力和温度;
冷凝:将压缩后的高温气态丙烷通过风冷式冷却器冷凝 成液态丙烷;
否 保护
否 保护
显示再循环 保护
显示吸气压力 低保护
是 -15KPa≤吸气压力≤1100KPa
平衡压力 是否满足
否 保护
显示高压差 保护
进出口压差≤340KPa是
低油温 是否满足
滑油温度≥9.4℃ 是
否 保护
显示低油温 保护
高油温 是否满足
否 保护
是 滑油温度≤ 80℃
排气温度 是否满足
否 保护
是 温度≤100℃
蒸发:低温气液混合丙烷进入换热器从制冷对象吸热,同时自 身蒸发成气态丙烷,从而达到制冷的目的。
7
油分离器气控制流程

丙烷制冷系统简述

丙烷制冷系统简述

丙烷制冷系统简述丙烷制冷系统通常用于天然气冷却处理。

利用丙烷气化时的吸热效应产生冷量来冷却天然气。

主要包括丙烷压缩机、丙烷缓冲罐、丙烷吸入罐,丙烷蒸发器和丙烷后冷器。

重要系统组件:螺杆压缩机,油泵,微处理控制盘,高压接受器,空冷式冷凝器,浸没式冷却器,缓冲罐,液态丙烷。

流程描述:丙烷缓冲罐来的液体丙烷(1.15MPa、30℃),经经济器换热后温度降至8℃,再进一步节流降温至0.35MPa、-10℃。

与天然气换热后,丙烷液蒸发为气态丙烷(蒸发温度为-10℃),丙进入丙烷吸入罐。

经吸入罐分离出夹带的液滴后,进入丙烷压缩机压缩至1.2MPa,经丙烷后冷器冷凝成液相丙烷(1.15MPa、30℃)后返回丙烷缓冲罐。

制冷原理:在制冷过程中,获得低温的方法通常是用高压常温的流体进行绝热膨胀来实现的,丙烷压缩制冷法由四个基本过程所组成:压缩→冷凝→膨胀→蒸发。

压缩-外界对工质作功,提高工质的压力和温度;冷凝-气态工质冷却冷凝成液态工质,并在高温下向冷却介质排热;膨胀-高压液态工质在节流阀中通过节流膨胀降压至蒸发压力,由于压力降低,相应的沸点就降低,当液体沸点低于当时温度时,一部分液态工质就要蒸发,从而吸收热量,但由于膨胀过程发生很快,节流阀周围外界来不及供热,这部分热量只好从本身降低内能来供给,所以节流后温度下降了,膨胀成为低温气液混合物;蒸发-低温液态工质进入换热器从制冷对象吸热,同时自身蒸发为气态工质,从而达到制冷的目的。

丙烷吸入罐:作用:分离出气相丙烷中夹带的液滴,防止液击。

注意:丙烷吸入罐液位达到90%时,联锁停机。

丙烷系统统运行时,丙烷吸入罐液位达到80%时,应立即手动停机。

丙烷压缩机:丙烷压缩机为螺杆式,与活塞式相比,特点:重量轻、体积小;无质量惯性力,动平衡性能好;可采用喷油冷却,排温低,单级压比高;无余隙容积,容积效率高。

能量调节控制方式:滑阀,滑块。

两者均为液压系统驱动,滑阀实现压缩机的加载和卸载,滑块来增加或降低压缩机的容积比。

天然气处理中丙烷制冷技术的探究

天然气处理中丙烷制冷技术的探究

天然气处理中丙烷制冷技术的探究我国是一个能源使用的大国,对于天然气的使用量具有着巨大的需求。

丙烷制冷技术是在天然气传输处理过程中比较实用的一项处理技术。

在本篇文章当中,对天然气处理工艺的概念进行了介绍,之后对于丙烷制冷在天然气处理过程中的具体应用做了简单的叙述。

标签:丙烷制冷;天然气处理;技术研究在天然气管道的输送过程当中,由于温度和压力降低的原因,会在输配管线当中使天然气发生有液烃的凝结,并且在管道的低洼处形成积液,严重的影响了正常的输气,甚至会堵塞到管线。

不但降低了管道的输送能力,并且使得外输的天然气不能达到国家的二类气质标准。

根据上列问题,一般通过丙烷制冷以及分子筛脱水,来对天然气进行集中的脱水、脱烃处理。

与此同时,回收的轻烃还能够带来一定的经济价值。

1天然气处理工艺我们平时所讲的天然气的处理与加工工艺就是指使天然气从井口到输气管的整个过程。

该过程通常都需要通过井场分离、净化处理、输气管网等过程。

通过丙烷进行制冷主要是为了对天然气当中的烃露点进行控制,并且对轻烃进行回收。

2丙烷制冷制冷就是指通过人工的办法来制造一个低温环境的技术。

一般来说,使温度从室温降低到120K这个范围内就属于是制冷,从120K到0K也就是绝对零度的范围内就属于是低温,也被叫做低温制冷。

一般通过三种方法来进行制冷:①通过气体膨胀的冷效应来进行制冷,比如说:膨胀机和J-T;②利用半导体热效应来进行制冷,比如说:热分离机;③通过物质状态转变(比如蒸发、升华、融化)的吸热效应来进行制冷,比如说:蒸气压缩制冷。

常用的丙烷制冷采用的就是第三种方式,也就是利用物质的状态转变进行制冷。

现在,通过丙烷制冷一般能够将原料天然气冷却到零下二十到零下五十摄氏度之间,实现对天然气的低温分离脱烃的目的。

通过蒸气压缩来实现制冷是一种比较常用的方法,其制冷原理为:将制冷剂放入蒸发器当中,跟冷却对象进行热量的交换,将冷却物的热量吸收之后自身发生汽化现象,在利用压缩机将其蒸发的气体吸收,在压缩机中压缩之后形成高温高压的气体,再将其排入冷凝器中,利用常温介质进行冷却,使之凝结成一种高压低温的液体,也有可能是一种气液混合的物质,利用膨胀阀对高压液体进行节流,使之成为一种低温低压的液体,也有可能为气液混合体,将其投入蒸发器当中,再次与冷却物质进行热量的交换,将低压蒸汽排入压缩机中,往复循环制冷。

丙烷预冷混合制冷剂循环液化天然气流程

丙烷预冷混合制冷剂循环液化天然气流程

丙烷预冷混合制冷剂循环液化天然气流程图由三部分组成:天然气液化
回路;混合制冷剂循环;丙烷预冷循环。

在此液化流程中,丙烷预冷循环用
于预冷混合制冷剂和天然气,而混合制冷剂循环主要用于深冷液化天然气。

天然气从节点1 进入管路,首先经过丙烷预冷器,然后通过第一至第三
换热器逐步被冷却至常压下的液化天然气温度,最后经过节流阀 4 进行降压,
从而使液化天然气在常压下储存。

混合制冷剂经两级压缩机压缩至高压,首先用水冷却,带走一部分热量,
然后通过丙烷预冷循环预冷,预冷后进入气液分离器成为液相和气相,液相
经第一换热器冷却后,节流、降温、降压,与返流的混合制冷剂混合后,为
第二个换热器提供冷量,冷却天然气和从分离器出来的气相和液相两股混合
制冷剂。

从第二个换热器出来的气相制冷剂,经第三个换热器冷却后,节流、
降温后进入第三换热器,冷却天然气和气相混合制冷剂。

丙烷预冷循环如图3-2 所示,丙烷预冷循环中,丙烷通过三个温度级的
换热器,为天然气和混合制冷剂提供冷量。

丙烷经压缩机压缩至高温高压,
经冷却水水冷却后流经节流阀降温降压,再经分离器产生气液两相,气相返
回压缩机,液相分成两部分,一部分用于冷却天然气和制冷剂,另外一个部
分作为后续流程的制冷剂。

制冷剂 丙烷 标准

制冷剂 丙烷 标准

制冷剂丙烷标准一、纯度要求丙烷作为制冷剂,其纯度要求极高。

根据国际标准,丙烷制冷剂的纯度应不小于99.5%,且不应含有任何其他姓类或酸性物质。

同时,丙烷中的水含量和氧气含量也需符合标准,以确保制冷系统的稳定性和可靠性。

二、蒸发压力范围在制冷循环中,丙烷的蒸发压力范围对其性能具有重要影响。

根据相关标准,丙烷的蒸发压力应在0.01-0.45MPa之间。

在此范围内,蒸发压力蒸发压力过高或过低都会影响制与冷凝压力之间的压差应不超过0.1MPao冷效果和系统稳定性。

三、临界温度和临界压力丙烷的临界温度为96.8。

C左右,临界压力为4.2MPa左右。

在制冷循环中,丙烷的温度和压力应低于其临界值,以避免发生相变和产生不稳定性。

四、粘度和密度丙烷的粘度较小,有利于其在制冷系统中的流动和传热。

同时,丙烷的密度较大,能够提供更多的制冷能力。

在实际应用中,应根据系统需求和制冷能力要求选择适合的丙烷型号。

五、腐蚀性丙烷对金属材料无腐蚀性,但在高温和高湿度的环境下,可能会对金属产生一定的氧化作用。

因此,在使用丙烷作为制冷剂时,应定期检查系统的密封性和金属材料的氧化程度,以确保系统的稳定性和安全性。

六、安全性能丙烷为易燃易爆气体,使用时应严格遵守安全操作规程。

在使用和贮存过程中,应避免火源、高温和静电等安全隐患。

同时,应按照相关规定使用符合要求的压力容器和阀门等配件,确保系统的安全运行。

七、环境影响丙烷是一种低毒性的物质,对环境的影响较小。

但在使用过程中,应避免泄漏和排放到大气中,以减少对环境的负面影响。

同时,废弃的丙烷应按照相关规定进行妥善处理。

八、贮存和运输丙烷应贮存在干燥、阴凉、通风良好的地方,远离火源和热源。

在运输过程中,应使用专用的压力容器和车辆,并确保容器和车辆的安全性能符合相关标准要求。

同时,运输人员应具备相关的安全知识和技能,遵守运输规定和要求。

九、使用要求在使用丙烷作为制冷剂时,应根据具体的应用场景和需求选择适合的型号和配置。

丙烷不同温度下的密度

丙烷不同温度下的密度

丙烷不同温度下的密度
一、丙烷的基本特性
丙烷(化学式:C3H8)是一种无色、无臭、不溶于水的气体,属于烷烃类化合物。

在常温常压下,丙烷是一种稳定的气体,但其密度较低,不利于储存和运输。

为了便于使用,通常将丙烷压缩储存在钢瓶中,作为液化石油气的一种。

二、丙烷在不同温度下的密度变化
1.温度与密度的关系:一般来说,气体的密度随着温度的升高而降低。

这是因为温度升高会使气体分子的热运动加剧,分子间距离增大,从而导致单位体积内的分子数减少,密度降低。

2.丙烷在不同温度下的密度数据:根据实验数据,丙烷在以下温度下的密度如下:
- 20℃:0.564 kg/m
- 40℃:0.418 kg/m
- 60℃:0.319 kg/m
- 80℃:0.268 kg/m
三、丙烷密度变化的应用
1.液化石油气的生产与储存:通过压缩丙烷,可以使其密度显著增加,便于储存和运输。

在液化石油气厂家中,通常采用压缩丙烷技术,将其转化为液体,储存在钢瓶中。

2.制冷系统:丙烷在制冷系统(如空调、冰箱等)中具有广泛应用。

制冷
剂在压缩和膨胀过程中,吸收和释放热量,实现制冷效果。

丙烷作为制冷剂,在制冷系统中循环时,其密度变化有助于实现热量的传递。

3.气体输送:在工业生产中,丙烷常被用作气体输送介质。

通过调节丙烷的密度,可以实现对输送速度和输送压力的控制,提高生产效率。

四、结论
丙烷在不同温度下的密度变化对其应用具有重要意义。

了解丙烷的密度特性,有助于优化液化石油气、制冷系统和气体输送等领域的工艺参数,提高设备运行效率。

丙烷制冷影响天然气处理工艺分析

丙烷制冷影响天然气处理工艺分析

丙烷制冷影响天然气处理工艺分析摘要:针对丙烷制冷影响轻烃回收工艺的问题,对丙烷制冷工艺进行简单介绍,通过生产运行的方式,对丙烷制冷系统的影响进行现场生产作业分析,提供实际生产指导。

通过本次研究可以发现,丙烷蒸发后的温度、冷却器后的温度以及经济器后的温度都会对压缩机运行过程中能耗产生重要影响,但是,丙烷蒸发后温度对于压缩机运行的能耗影响较为敏感,冷却器后温度对于压缩机运行的能耗影响最不敏感。

关键词:丙烷压缩机;循环水冷却器;丙烷制冷影响分析所谓的丙烷制冷主要指的是将R290(丙烷)作为制冷剂,对天然气进行低温处理,通过热交换的基本原理,使得天然气在较低温度下进行脱水处理。

丙烷制冷工艺的流程相对较为简单,能耗相对较低,可以满足天然气脱水的基本目的。

但是在使用丙烷制冷工艺的过程中,多种温度因素会对其产生影响,最终影响压缩机的能耗,如果可以对丙烷制冷的影响进行分析,以此找出温度影响强弱的问题,则必然会给现场生产作业提供指导。

丙烷制冷工艺简介在使用丙烷制冷工艺对天然气进行脱水处理的过程中,首先使用低温丙烷将天然气的温度降低,然后将低温状态下的天然气输送到分离器中,将天然气中的凝液脱离出来,然后将丙烷蒸发器中吸热后的丙烷挥发气进入口分离器输送到压缩机组内,对丙烷进行压缩,由于压缩做功产生热量,需输送到出口冷却器后,再进入丙烷储罐,此时丙烷将恢复到液态状态,通过经济器预冷后低温状态,再由调节阀来节流制冷输送到丙烷蒸发器低温液态丙烷,与高温天然气换热气化,这个相对较为简单的流程,即可实现天然气低温产生烃凝液处理以及丙烷的循环使用。

通过对整个工艺进行分析后发现,压缩机是整个工艺过程中能耗设备,丙烷制冷工艺所需要的能耗主要由压缩机所决定,因此,进行丙烷制冷影响因素敏感性分析,就是进行整个过程中压缩机能耗的敏感性分析。

丙烷制冷影响分析通过天然气的流量变化可以发现,天然气流量的逐渐增加,丙烷的消耗量以及压缩机的能耗都在逐渐升高,天然气流量对于丙烷消耗量以及压缩机能耗的影响十分明显,在使用丙烷制冷工艺的过程中,要根据自身的产能对丙烷的用量以及压缩机的数量进行准确的配备。

丙烷制冷循环

丙烷制冷循环

丙烷制冷循环1工况介绍在这个模块中,要进行丙烷制冷循环模拟的搭接、运行、分析和调控。

然后,把完成的模拟转换成模板,以用于连接其它模拟。

2学习目的●添加和连接单元操作模块,搭接模拟●使用图形界面在H YSYS 中操纵流程●理解H YSYS 中的前-后信息传递●把模拟工况转换成模板3搭接模拟定义模拟基础C3,Peng-Robinson 方程安装物流向流程中添加单元操作模块在H YSYS 中,对于物流,有多种添加单元操作模块的方法:丙烷制冷循环包含4个单元模块:阀、冷却器、压缩机、冷凝器使用F12热键添加阀图1:从可应用的单元操作模块列表中选择阀。

2. 命名:J-T;输入物流:1;输出物流:2。

图2:添加冷却器在HYSYS 中我们用加热器模块模拟丙烷制冷循环中的冷却器模块。

冷却器的出口状态为露点。

添加加热器:1 Ctrl+W→Unit Ops图3:2 在连接页上,输入如下信息:图4:3 到参数页上。

输入冷却器的压降值7.0kPa(1 psi ),热负荷值1.00e+06 kJ/h(1.00e+06Btu/hr)。

图5:对于大多数单元操作模块来说参数页都是一样的,包含如压降、负荷和效率之类的参数。

添加压缩机压缩机模块用于提高入口气体物流的压力。

添加压缩机:1. 按F4,打开对象面板。

2. 双击对象面板上的压缩机图标,压缩机属性窗口出现。

3. 在连接页上,输入如下信息:图6:4. 完成参数页如下:图7:添加冷凝器冷凝器是丙烷制冷循环的最后一环。

它被放在压缩机和阀之间,用冷却器模块来模拟。

因为可以用图形代表模块,所以你可以在P FD上搭接模拟,用鼠标来安装和连接对象。

下面就叙述了怎样拖动对象面板上的下陷图标技术来安装和连接冷却器。

1. 在对象面板上点击冷却器图标。

2. 把光标移动到PFD 上,光标会变成有一个框和一个加号相连的特殊形式,该框指示冷却器图标的尺寸和位置。

3. 再点击一下鼠标,把冷却器放到P FD 上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HYSYS应用基础教程
-5-
丙烷制冷循环
保存模板:
将 .hsc文件转 换成 .tpl文件 另存文件
C:\Programefile\Hyprotech\Hysys3.2\Template
HYSYS应用基础教程
-6-
丙烷制冷循环
练习题1:
在这个例子当中,如果我们不知道Chiller的 热负荷,但是知道压缩机标定功率为250hp, 且以最大功率的90%运行,那么当压缩机的效 率为72%的时候,Chiller的热负荷是多少?
丙烷制冷循环
丙烷制冷循环
流程综述:
请大家将文件保存为C3loop.hsc
HYSYS应用基础教程 -2-
丙烷制冷循环
建流体包:
建组份列表: C3 选物性方法: Peng Robinson 物流1数据: C3(Mole Frac) 1.0000 物流3数据: C3(Mole Frac) 1.0000
Hidden Objects命令。
显示表格:选中对象并单击鼠标右键,在出现的下拉菜单中选择Show table命令。
翻转: 选中对象并单击鼠标右键,在出现的下拉菜单中选择Transform命令,并
在随后出现的子菜单中选择翻转的角度和方向。 选中对象并单击鼠标右键,在出现的下拉菜单中选择Change icon命 变换图标: 令,并在随后出现的对话框中选择所要的图标。

请大家将文件保存为C3loop2.hsc
HYSYS应用基础教程 -8-
如果制冷剂换成组成为摩尔百分比为95/5有 丙烷/乙烷混合物。
HYSY装置,创建如下图所示的两级制冷循环,在下 表所示的物流条件下,考察新流程的净压缩功为多少马力?
Stream1 Chiller T=50° DP=7kpa C Vf=0.0 Q=1e6kj/h Stream3 Stream4 Mixer Condenser T=-20 P=625kpa Equal All DP=35kpa °C Pressures Vf=1.0
-4-
丙烷制冷循环
PFD操作:
在完成流程搭接之后,并不会出现一张完美的流程图,我 们可以通过PFD操作,来打造整洁、实用的画面,常用的PFD 操作包括:
隐藏对象:选中对象并单击鼠标右键,在出现的下拉菜单中选择Hide命令。
在PFD上单击鼠标右键,并在出现的下拉菜单中选择Reveal 显示隐藏对象:
HYSYS应用基础教程
Temperature 50º C Temperature -20º C
Vapour Fraction 0.0000 Vapour Fraction 1
-3-
丙烷制冷循环
定义模块:
加入模块: 连接物流:
输入数据: 加其它模块 完成流程
HYSYS应用基础教程
相关文档
最新文档