计算方法复习新详解

合集下载

工龄计算方法详解

工龄计算方法详解

工龄计算方法详解
=======
一、确定起始工龄
---------
起始工龄是指在一家公司工作开始计算的年限。

起始工龄的确定通常以员工的入职日期为准。

例如,如果员工在2021年6月1日入职,那么他的起始工龄就是从这一天开始计算的。

二、确定终止工龄
--------
终止工龄是指在一家公司工作结束计算的年限。

终止工龄的确定通常以员工的离职日期为准。

例如,如果员工在2023年6月1日离职,那么他的终止工龄就是从这一天开始计算的。

三、工龄计算方式
--------
工龄是指员工在一家公司工作的总年限,可以通过以下方式计算:
终止工龄- 起始工龄= 总工龄
例如,如果一个员工在2021年6月1日入职,2023年6月1日离职,那么他的总工龄就是:2023年6月1日- 2021年6月1日= 2年。

四、特殊情况处理
--------
在某些情况下,员工的工龄可能会发生变化。

例如,如果员工在离职后再次回到公司工作,那么他的起始工龄应该重新计算。

另外,如果员工在工作中犯了错误被公司解雇,那么他的工龄也应该重新计算。

因此,在计算员工的总工龄时,需要根据具体情况进行调整。

五、工龄的作用
--------
工龄对于员工来说非常重要,因为它直接影响到员工的福利待遇和职业发展。

例如,一些公司会根据员工的工龄来决定是否给予晋升机会,也会根据员工的工龄来决定是否给予一些福利待遇,如年假、健康保险等。

因此,员工需要关注自己的工龄情况,以便更好地规划自己的职业发展。

第六单元 小数的加法和减法(单元复习讲义)-四年级数学下册复习讲练测(人教版)

第六单元  小数的加法和减法(单元复习讲义)-四年级数学下册复习讲练测(人教版)

第六单元小数的加法和减法(单元复习讲义)(知识梳理+精讲例题+专项练习)1、笔算小数加、减法的方法:(1)小数点对齐,也就是相同数位对齐;(2)从末位算起,算加法时,哪一位数相加满十都要向前一位进1;算减法时,哪一位不够减就要从前一位退1。

(3)得数末尾有 0,一般要把0去掉。

(4)不要忘记了小数点。

2、小数加减混合运算的顺序与整数加减混合运算的顺序相同:(1)没有括号,按从左往右的顺序依次计算;(2)有小括号,要先算小括号里面的。

3、整数的运算定律在小数运算中同样适用。

在小数四则运算中,恰当地运用加法交换律、结合律及连减的运算性质会使计算更简便。

4. 得数是小数时,(末尾)的0一般要去掉。

5. 一个整数与一个小数相加减时:①先在整数的右边点上小数点;②再添上与另一个小数部分同样多个数的0;③然后再按照小数加减法的计算方法计算。

6、验算:加法验算:①交换加数的位置再加一遍,看结果与原来是否相同;②用减法,把和减去一个加数,看差是否与另一个加数相同。

减法验算:①用加法,把减数与差相加,看结果是否等于被减数;②用减法,把被减数减去差,看是否等于减数。

应用整数运算定律进行小数的简便计算:整数运算定律在小数运算中同样适用。

在小数四则运算中,恰当地运用加法(交换律)、(结合律)及减法的运算性质会使计算更简便。

【例题一】笑笑原来有12.57元,她用9.37元买了一支圆珠笔,妈妈又给了她8.6元。

笑笑现在有()元。

A.11.8B.11.6C.10.8D.3.2.【分析】用笑笑原来有的钱数减去买一支圆珠笔的钱数,再加上妈妈又给她的钱数,即可求出笑笑现在有多少元。

【详解】12.57-9.37+8.6=3.2+8.6=11.8(元)所以,笑笑现在有11.8元。

故答案为:A【考点】本题主要考查了小数加法、减法的实际应用,花的钱数用减法计算,又给笑笑的钱数用加法计算。

【例题二】在下面的叙述中,不正确的有()。

①四(1)班学生进行跳远比赛,小红跳了1.23m,小强跳得比小红多0.13m,小华比小强少0.2m。

计算题复习教案

计算题复习教案

计算题复习教案一、教学目标。

1. 知识目标,复习基础数学知识,包括加减乘除、分数、小数、百分数等。

2. 能力目标,提高学生的数学计算能力,培养学生的逻辑思维能力和解决问题的能力。

3. 情感目标,激发学生对数学学习的兴趣,增强学生的自信心,培养学生的坚韧不拔的品质。

二、教学重点和难点。

1. 重点,加减乘除的基本运算,分数和小数的计算,百分数的应用。

2. 难点,多步骤的综合运算,应用题的解决能力。

三、教学准备。

1. 教材,教师备课教案、学生教材、习题册等。

2. 教具,黑板、彩色粉笔、教学PPT等。

3. 学具,学生练习册、计算器等。

四、教学过程。

1. 复习基础知识。

首先,通过简单的口算题目,复习学生的基本加减乘除能力,让学生熟悉基本的计算方法和技巧。

2. 讲解分数和小数。

接着,讲解分数和小数的基本概念和运算方法,引导学生掌握分数和小数的加减乘除规则,并通过例题巩固学生的理解和掌握程度。

3. 引入百分数。

在学生掌握了分数和小数的基本运算后,引入百分数的概念和应用,让学生了解百分数与分数、小数之间的转换关系,并通过实际例题让学生掌握百分数的计算方法。

4. 综合运用。

通过一些综合运用的练习题,让学生将所学的知识进行综合运用,培养学生的解决问题的能力和逻辑思维能力。

5. 拓展应用。

最后,通过一些拓展应用题,引导学生将所学的知识应用到实际生活中,培养学生的数学思维和创造能力。

六、课堂小结。

通过本节课的学习,学生对加减乘除、分数、小数和百分数的计算方法有了更深入的了解,数学计算能力得到了提高。

同时,学生的解决问题的能力和逻辑思维能力也得到了锻炼和提升。

七、课后作业。

布置一些相关的练习题作为课后作业,让学生巩固所学的知识,加强对数学计算方法的掌握。

八、教学反思。

通过本节课的教学,发现学生在分数和小数的运算中存在一些困难,需要加强相关的练习和讲解。

同时,也发现学生在综合运用和拓展应用题中存在一些解题思路不清晰的问题,需要引导学生多进行思考和训练。

整式的除法-2023年新七年级数学核心知识点与常见题型通关讲解练(沪教版)(解析版)

整式的除法-2023年新七年级数学核心知识点与常见题型通关讲解练(沪教版)(解析版)

整式的除法【知识梳理】一:单项式除以单项式1、单项式除以单项式:两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 二:多项式除以单项式1、多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.(1)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(2)中容易丢掉最后一项. (2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.【考点剖析】 题型一:单项式除以单项式 例1.计算:(1)527398b b ÷;(2)645242x y x y −÷; (3)362424a b a b ÷;(4)()22153ab b ÷−.【答案】(1)35627b ;(2)22xy −;(3)212ab ;(4)5a −. 【解析】(1)52523737356989827b b b b −⎛⎫÷=÷= ⎪⎝⎭;(2)()64526542242422x y x y x y xy −−−÷=−÷=−;(3)()362432642124242a b a b a b ab −−÷=÷=;(4)()()()22221531535ab b ab a−÷−=÷−=−.【总结】本题考查了单项式除以单项式:两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 【变式1】计算:(1)()226ab ab ÷=;(2)()()2515xy xy ÷−=;(3)()231255a x a ÷=;(4)()32243a b ab ÷=−.【答案】(1)2312a b ;(2)2375x y −;(3)325ax ;(4)28a b −.【解析】(1)2236212ab ab a b ⋅=;(2)22351575xy xy x y −⋅=−; (3)233125525a x a ax ÷=;(4)()3222438a b ab a b÷−=−.【总结】本题考查了单项式乘以单项式以及单项式除以单项式,注意法则的准确运用. 【变式2】计算:()2233310.52x y z x y ⎛⎫−÷− ⎪⎝⎭.【答案】3212xy z −.【解析】()()22333462332311120.50.524x y z x y x y z y z x xy ⎛⎫−÷−=÷−= −⎪⎝⎭.【总结】本题主要考查了单项式除以单项式.【变式3】计算:()()4312282x y y x ⎡⎤+÷−+⎣⎦.【答案】332x y −−.【解析】()()()()443312282128232x y y x x y x y −⎡⎤+÷−+=÷−+=−−⎡⎤⎣⎦⎣.【总结】本题主要考查了单项式除以单项式. 【变式4】若32144m n x y x y x ÷=,求2531335m n mn ÷的值.【答案】259.【解析】33121444mnm n x y x y x y x −−÷==,∴3210m n −=⎧⎨−=⎩,解得51m n =⎧⎨=⎩,253215321313535359m n mn m n mn −−⎛⎫÷=÷= ⎪⎝⎭,把51m n =⎧⎨=⎩代入得 原式2552551999mn ==⨯⨯=. 【总结】本题考查了单项式除以单项式,以及幂的运算. 【变式5】计算:()()564233331232a b c a b c a b c ÷−÷.【答案】2−. 【解析】()()()56423333523633413123212322a b c a b c a b c ab c −−−−−−÷−÷=÷−÷=−⎡⎤⎣⎦.【总结】本题主要考查了单项式除以单项式的运算,注意先确定符号,再去计算. 题型二:多项式除以单项式 例2.计算:(1)()3286x x x −÷;(2)()()2101055x x −−÷−.【答案】(1)286x x −;(2)2221x x −++.【解析】(1)()32322868686x x x x x x x x x−÷=÷−÷=−;(2)()()()()()22210105510510555221x x x x x x −−÷−=÷−−÷−−÷−=−++.【总结】本题考查了多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加. 【变式1】计算:()22642xy x y xy −÷. 【答案】32y x −.【解析】()2222642624232xyx y xy xy xy x y xy y x−÷=÷−÷=−.【总结】本题考查了多项式除以单项式. 【变式2】计算:(1)()324222a a a a −+÷;(2)()643396123a a a a −+÷.【答案】(1)221a a −+;(2)3324a a −+.【解析】(1)()32322422242222221a a a a a a a a a a a a −+÷=÷−÷+÷=−+; (2)()64336343333961239363123324a a a a a a a a a a a a −+÷=÷−÷+÷=−+.【总结】本题考查了多项式除以单项式. 【变式3】计算:(1)()312273ax ax ax −÷;(2)()2322224822x y x y xy xy +−÷.【答案】(1)249x −;(2)241xy x +−.【解析】(1)()3321227312327349ax ax ax ax ax ax ax x −÷=÷−÷=−;(2)()232222232222224822428222x y x y xy xy x y xy x y xy xy xy +−÷=÷+÷−÷241xy x =+−.【总结】本题考查了多项式除以单项式.【变式4】计算:()()33232222181263x y x y x y x y −+−÷−. 【答案】642xy y −+.【解析】()()33232222181263x yx y x y x y −+−÷−()()()33222322222218312363x y x y x y x y x y x y =−÷−+÷−−÷−642xy y =−+.【总结】本题考查了多项式除以单项式.【变式5】计算:()()755364523521287x y x y x y x y −+÷−.【答案】232534x y y xy −+−.【解析】()()755364523521287x yx y x y x y −+÷−()()()755253526452357217287x y x y x y x y x y x y =÷−−÷−+÷−232534x y y xy =−+−. 【总结】本题考查了多项式除以单项式,计算时注意商的符号.【变式6】计算:()()222233ab a ab a b a b a b ⎡⎤−−−÷⎣⎦.【答案】13b .【解析】()()222233ab a ab a b a b a b ⎡⎤−−−÷⎣⎦()3223222233a b a b a b a ba b =−−+÷222133a b a b b =÷=.【总结】本题考查了多项式乘单项式、合并同类项及多项式除以单项式. 【变式7】计算:()()()22342343223x x x x x x x x ++⋅−++÷−.【答案】543223321x x x x x ++−−−.【解析】()()()22342343223xx x x x x x x ++⋅−++÷−()345232123x x x x x =++−++543223321x x x x x =++−−−.【总结】本题考查了多项式乘单项式、合并同类项及多项式除以单项式. 【变式8】已知一个多项式与单项式22x y −的积是32212x y x y −,求这个多项式. 【答案】1124x y−+.【解析】()32221112224x y x y x y x y ⎛⎫−÷−=−+ ⎪⎝⎭.【总结】本题考查了多项式除以单项式,计算时要准确理解题意.【过关检测】一、单选题1.(2022秋·七年级单元测试)计算(﹣6xy 2)2÷(﹣3xy )的结果为( ) A .﹣12xy 3 B .2y 3 C .12xy D .2xy 3【答案】A【分析】先算积的乘方,再进行除法计算 【详解】原式=36x2y4÷(﹣3xy )=﹣12xy3, 故选:A .【点睛】本题考查了积的乘方,单项式的除法,掌握计算方法和计算顺序是解题关键.2.(2023·上海·七年级假期作业)小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab =4a 2b +2ab 3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( ) A .(2a +b 2) B .(a +2b ) C .(3ab +2b 2) D .(2ab +b 2)【答案】A【分析】根据多项式除单项式的运算法则计算即可. 【详解】∵(4a2b+2ab3)÷2ab =2a+b2, ∴被墨汁遮住的一项是2a+b2. 故选:A .【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.3.(2020秋·七年级校考课时练习)计算()()42357153x y x y −÷−的结果为( ) A .55xy B .355x yC .5xD .35x【答案】B【分析】根据单项式除以单项式除法的运算法则进行计算即可. 【详解】()()()423578125785127351531531535x y x y x yx y x y x y −−−÷−=÷=÷=,故选:B .【点睛】本题考查了单项式除以单项式,掌握运算法则是解题关键. 4.(2023·上海·七年级假期作业)下列运算中正确的是( ). A .()()632632x x x ÷= B .()()826842x x x ÷= C .()()233xy x y ÷=D .()()222x y xy xy ÷=【答案】B【分析】根据积的乘方和单项式的除法法则逐项计算判断即可.【详解】解:A 、()()633632x x x ÷=,故本选项计算错误;B 、()()826842x x x ÷=,故本选项计算正确; C 、()()22333xy x xy ÷=,故本选项计算错误;D 、()()2221x y xy ÷=,故本选项计算错误.故选:B .【点睛】本题主要考查积的乘方和单项式的除法,熟练掌握运算法则是解题关键.【答案】B【分析】把被除式、除式里的系数、同底幂分别相除可得解. 【详解】解:211131344a b c ac −−⎛⎫÷= ⎪⎝⎭,故选B .【点睛】本题考查整式的除法,熟练掌握整式的除法法则是解题关键.6.(2023·上海·七年级假期作业)如图,墨迹污染了等式中的运算符号,则污染的是( )A .+B .-C .×D .÷【答案】D【分析】根据整式的加减乘除计算法则逐一判断可求解. 【详解】解:∵332x 与4x 不是同类项,不能进行加减计算,∴A 、B 选项不符合题意;∵34324128x x x ⨯=,∴C 选项不符合题意;∵323248÷=x x x ,∴D 选项符合题意; 故选:D .【点睛】本题主要考查整式的四则运算,掌握相关计算法则是解题的关键.二、填空题7.(2023·上海·七年级假期作业)如果一个单项式乘以3x 的积是3x 2y ,那么这个单项式是 ___. 【答案】xy【分析】根据单项式的除法求解即可.【详解】解:由题意可得,这个单项式为233x yxy x =故答案为xy【点睛】此题考查了单项式除以单项式,解题的关键是熟练掌握单项式除法的运算法则.【答案】﹣8x3y【分析】单项式除以单项式:把系数,同底数幂分别相除,对于只在被除式里含有的字母则连同它的指数一起作为商的一个因式,根据运算法则直接计算即可. 【详解】解:原式=﹣8x3y . 故答案为:﹣8x3y .【点睛】本题考查的是单项式除以单项式,掌握单项式除以单项式的法则是解本题的关键. 9.(2019秋·上海青浦·七年级校考阶段练习)计算:232-93a b b ÷=_____________ 【答案】-3a2b【分析】根据单项式除以单项式的运算法则计算可得.【详解】解:23293a b b −÷=-3a2b故答案为-3a2b .【点睛】本题主要考查整式的除法,解题的关键是掌握单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.【答案】29a b【分析】先根据除数=被除数÷商,可知A=32133a b ab÷,再根据整式的除法运算法则进行计算即可. 【详解】解:∵32133a b A ab÷=, ∴A=32133a b ab ÷=29a b . 故答案为:29a b .【点睛】本题考查整式的除法运算,正确掌握运算法则是解题关键. 11.(2020秋·七年级校考阶段练习)计算:4262÷=a b a _________.【答案】23a b【分析】利用单项式除以单项式的法则计算即可【详解】解:422623b ÷=a b a a故答案为:23a b【答案】24168x y −+【分析】根据多项式除以单项式的运算法则计算即可.【详解】()322322223181264x yx y x y x y ⎛⎫−+−÷− ⎪⎝⎭()()32222322222233318126444x y x y x y x y x y x y ⎛⎫⎛⎫⎛⎫=−÷−+÷−+−÷− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭32232222222218126333444x y x y x y x y x y x y −−=++−−− 24168x y =−+,故答案为:24168x y −+.【点睛】本题主要考查了多项式除以单项式的知识,掌握多项式除以单项式的运算法则是解答本题的关键.【答案】13n ab+−【分析】根据单项式的乘法和除法法则从左到右依次计算即可.【详解】原式=3221124n n a b a b −−÷=13n ab +−.故答案为13n ab+−.【点睛】本题考查了单项式的乘法和除法,熟练掌握单项式的乘法和除法是解答本题的关键. 14.(2021秋·上海·七年级期末)计算:8x 2y 4÷(﹣2xy 2)=_____. 【答案】﹣4xy2【分析】根据单项式除以单项式运算法则,本题只需要把系数、同底数幂分别相除作为商的因式,计算得出答案即可.【详解】解:8x2y4÷(﹣2xy2)=21424x y −−−=﹣4xy2.故答案为:﹣4xy2.【点睛】本题考查了单项式除以单项式,掌握单项式除以单项式的运算法则是解题关键. 15.(2022秋·上海·七年级专题练习)计算:4a 3÷2a =_____. 【答案】2a2【分析】直接利用整式的除法运算法则计算得出答案 【详解】解:4a3÷2a =312a − =2a2.故答案为:2a2.【点睛】本题考查同底数幂的除法法则,正确使用法则是重点 16.(2022秋·上海·七年级校考期中)计算:446x x ÷=_____. 【答案】323x /323x【分析】根据单项式除以单项式运算法则进行计算即可. 【详解】解:432463x x x ÷=. 故答案为:323x .【点睛】本题主要考查了单项式除以单项式,熟练掌握单项式除以单项式运算法则是解答本题的关键.【答案】3x2y【分析】根据单项式除以单项式的法则计算即可. 【详解】原式=3x2y ,故答案为3x2y .【点睛】本题考查整式的运算有关知识,根据整式的运算法则即可求出答案. 18.(2019秋·上海黄浦·七年级统考期末)计算:(2xy )2÷2x =_____. 【答案】2xy2【分析】首先根据积的乘方的运算方法,求出(2xy )2的值是多少;然后用它除以2x 即可. 【详解】(2xy )2÷2x =4x2y2÷2x =2xy2 故答案为:2xy2.【点睛】此题主要考查了整式的除法的运算方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握.三、解答题19.(2020·七年级上海市建平中学西校校考期中)计算:()()322563−÷a b a a【答案】22523a b a −【分析】根据整式的除法法则,用多项式的每一项去除单项式,应用单项式除以单项式的除法法则计算,再把所得的商相加即可得出答案.【详解】解:()()322563−÷a b a a 3225363=÷−÷a b a a a 22523=−a b a .【点睛】本题考查了多项式除以单项式,解题的关键是熟练掌握运算法则进行解题. 20.(2021·上海奉贤·七年级校联考期末)计算:(6x 3+3x 2﹣2x )÷(﹣2x )﹣(x ﹣2)2. 【答案】﹣4x2+52x ﹣3【分析】直接利用整式的除法运算法则计算得出答案.【详解】原式=6x3÷(﹣2x )+3x2÷(﹣2x )+(﹣2x )÷(﹣2x )﹣(x ﹣2)2 =﹣3x2﹣32x+1﹣(x2﹣4x+4)=﹣3x2﹣32x+1﹣x2+4x ﹣4=﹣4x2+52x ﹣3.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.21.(2023秋·上海嘉定·七年级上海市育才中学校考期末)计算:()342(2)(12)(12)x x x x x −÷−−+−.【答案】22x【分析】先算除法和乘法,再去括号合并同类项即可. 【详解】解:()342(2)(12)(12)x x x x x −÷−−+−324(2)2(2)(14)x x x x x =÷−−÷−−−222114x x =−+−+22x =【点睛】本题考查了整式的四则混合运算,熟练掌握运算顺序是解答本题的关键.四则混合运算的顺序是先算乘除,再算加减;同级运算,按从左到右的顺序计算.【答案】9【分析】根据单项式除以单项式法则将等式左边化简,再根据左边等于右边,列出等式求得m 、n 的值,再根据单项式除以单项式法则将原式化简,代入数据计算即可.【详解】解:∵33121444m n m n x y x y x y x −−÷==,∴3210m n −=⎧⎨−=⎩,解得51m n =⎧⎨=⎩,∴253215321313535359m n mn m n mn −−⎛⎫÷=÷= ⎪⎝⎭,把51m n =⎧⎨=⎩代入得,原式2552551999mn ==⨯⨯=. 【点睛】本题考查了单项式除以单项式,以及幂的运算.利用法则将代数式进行化简是解决此题的关键.23.(2023·上海·七年级假期作业)计算:()()564233331232a b c a b c a b c ÷−÷.【答案】2−【分析】根据单项式除以单项式进行计算即可.【详解】解:()()564233331232a b c a b c a b c ÷−÷()5236334131232a b c −−−−−−=÷−÷⎡⎤⎣⎦2=−.【点睛】本题主要考查了单项式除以单项式的运算,注意先确定符号,再去计算. 24.(2022秋·七年级单元测试)小伟同学的错题本上有一题练习题,这道题被除式的第二项和商的第一项不小心被墨水污染了(污染处用字母M 和N 表示),污染后的习题如下:()()422223012632x y M x y x y N xy y ++÷−=+−.(1)请你帮小伟复原被污染的M 和N 处的代数式,并写出练习题的正确答案;(2)爱动脑的小芳同学把练习题的正确答案与代数式2x y xy y ++相加,请帮小芳求出这两个代数式的和,并判断所求的和能否进行因式分解?若能,请分解因式;若不能,请说明理由.【答案】(1)3218M x y =−;25N x y =−;2532x y xy y −+−(2)能,()221y x −−【分析】(1)根据多项式与单项式的除法法则计算即可(2)先求正确答案与2x y xy y ++的和,再因式分解即可. 【详解】(1)()2323618M xy x y x y =−=−,()42223065N x y x y x y =÷−=−,∴原题为())32422221830126x y x y x y x y +÷−−. 则答案为:2532x y xy y −+− (2)()22253244x y xy y x y xy y x y xy y −+−+++=−+−,能因式分解:()()2224444121x y xy y y x x y x −+−=−−+=−−【点睛】本题考查多项式除以单项式及因式分解,掌握相应法则时解题关键.【答案】44x y −【分析】先计算完全平方公式、单项式乘以多项式,再计算括号内的整式加减,然后计算多项式除以单项式即可得.【详解】解:原式22211164444x xy y xy y x ⎛⎫−++−÷ ⎪⎝⎭=()21634x xy x −=÷344x y =−.【点睛】本题考查了完全平方公式、单项式乘以多项式、多项式除以单项式等知识点,熟练掌握整式的运算法则是解题关键.【答案】(1)21600− (2)53225a a +(3)264【分析】(1)根据新定义的运算法则计算即可;(2)根据新定义的运算法则及整式的混合运算法则计算即可;(3)将2a =代入(2)中结论即可求解.【详解】(1)解:243 1.2−2314832 1.23421600=−⨯−÷=−; (2)解:()()()()86323386168626216822a a a a a a a a a a a a −+=+−−−−()53534242a a a a =+−−53534242a a a a =+−+ 53225a a =+;(3)解:2−的相反数是2,当2a =时,386621682a aa a a a +−−535322522252264a a =+=⨯+⨯=.【点睛】本题考查新定义运算,整式的混合运算,含乘方的有理数的混合运算,掌握新定义的运算法则并正确计算是解题的关键.【答案】2223x x −+− 【分析】根据多项式除以单项式法则进行运算,即可求解.【详解】解:()43222423x x x x ⎛⎫−+÷− ⎪⎝⎭211223x x =−+− 【点睛】本题考查了多项式除以单项式法则,熟练掌握和运用多项式除以单项式法则是解决本题的关键.【答案】5【分析】根据整式的运算法则,幂的运算法则处理.【详解】解:∵2223421111533n n n n xyz m x y z x y z ++−+⎛⎫−⋅=÷ ⎪⎝⎭, ∴22232311915x y z m x y z ⋅=.∴3232221131595m x y z x y z xz =÷=.∵正整数x 、z 满足:1223723x z −⋅==,∴3x =,12z −=.∴3x =,3z =,∴3273355m =⨯⨯=. 【点睛】本题考查幂的运算法则,整式的混合运算,掌握相关法则是解题的关键.。

一级建造师考试工程经济考点:建筑安装工程费用计算方法

一级建造师考试工程经济考点:建筑安装工程费用计算方法

学习攻略—收藏助考锦囊系统复习资料汇编考试复习重点推荐资料百炼成金模拟考试汇编阶段复习重点难点梳理适应性全真模拟考试卷考前高效率过关手册集高效率刷题好资料分享学霸上岸重点笔记总结注:下载前请仔细阅读资料,以实际预览内容为准助:逢考必胜高分稳过一级建造师考试工程经济考点27:建筑安装工程费用计算方法一、各费用构成要素的计算方法(考点6)1.人工费(单位工程量)人工费=∑(工日消耗量×日工资单价)(式3013-1)人工费=∑(工程工日消耗量×日工资单价)(式3013-3)◇日工资单价:根据计算要求、工种差别,考虑日工资总额。

2.材料费(1)材料费材料费=∑(材料消耗量×材料单价)材料单价=[(材料原价+运杂费)×(1+运输损耗率)]×(1+采购保管费率)(式3013-5)(2)工程设备费工程设备费=∑(工程设备量×工程设备单价)工程设备单价=(设备原价+运杂费)×[1+采购保管费率(%)](式3013-7)3.施工机具使用费(1)施工机械使用费施工机械费=∑(施工机械台班消耗量×机械台班单价)机械台班单价=台班折旧费+台班大修费+台班经常修理费+台班安拆费及场外运费+台班人工费+台班燃料动力费+台班车船税费(式3013-9)施工机械使用费=∑(施工机械台班消耗量×机械台班租赁单价)(式3013-13)(2)仪器仪表使用费=工程使用的仪器仪表摊销费+维修费(式3013-14)【例3013-1】某施工机械预算价格为100万元,折旧年限为10年,年平均工作225个台班,残值率为4%,求台班折旧费。

【解】根据计算公式(3013-10)=100×10000×(1-4%)/(10×225)=426.67元。

4.企业管理费的费率(1)以分部分项工程费为计算基础(2)以人工费和机械费合计为计算基础(3)以人工费为计算基础5.利润(1)施工企业(利润率)◆根据自身需求、市场实际,自主确定,列入报价。

人教版二年级上册数学《教材新解》第四单元 2.3 乘加 乘减 同步教材详解word版

人教版二年级上册数学《教材新解》第四单元 2.3 乘加 乘减 同步教材详解word版

2.3 乘加乘减(P58~59)教材提示目标导向1.理解并掌握乘加、乘减的计算方法。

2.通过乘加、乘减的计算,掌握相邻两句口诀之间的关系。

重点导学掌握乘加、乘减的计算方法。

难点剖析1.正确理解是运算顺序:在乘加、乘减中应先算乘法,再算加减法。

教材新解讲解知识点1 乘加乘减算式的含义及计算方法【例】一共坐了多少人?【分析】1.计数单位的认识。

这道题目选取学生喜爱的游戏,让同学们在游戏中理解乘加乘减的实际意义。

图上有4组旋转木马,其中3组旋转木马上有3人,第4组旋转木马上只有2人,问一共有多少人,就是求这四组旋转木马上的总人数。

对于这个问题,我们可以从不同的角度来观察,思考用不同的方法来解决问题。

2.解题方法。

方法一:先看相同加数,有3组旋转木马,每组有3人,第4组有2人。

我们可以先求出坐满人数的3组一共有多少人。

列式为3×3=9(人),再加上第4组的2人,列式为9+2=11(人)。

列成综合算式是3×3+2=11(人)。

方法二:先看整幅图片,一共有4组旋转木马,每组可以坐3人,一共可以坐4个3人,列式为4×3=12(人)或3×4=12(人),但通过观察我们发现,有一个座位上没有坐人,因此我们就要从12里面去掉1,列式为12-1=11(人),列综合算式是4×3-1=11或3×4-1=11。

3.列算式。

3×3+2 4×3-1像3×3+2这样有乘、有加的算式,我们把它叫做乘加,像4×3-1这样有乘、有减的算式,我们把它叫做乘减。

4.计算方法。

3×3+2=11 4×3-1=11○1○1重点提示乘减算式可以写成4×3-1,也可以写成3×4-1,。

9○2 12 ○2 在乘加、乘减中应先算乘法,再算加减法。

【解答】 3×3+2=11 4×3-1=11 【知识归纳】像3×3+2这样有乘、有加的算式,我们把它叫做乘加,像4×3-1这样有乘、有减的算式,我们把它叫做乘减。

2023年新高考数学大一轮复习专题18 三角恒等变换 (解析版)

2023年新高考数学大一轮复习专题18 三角恒等变换 (解析版)

专题18 三角恒等变换【考点预测】知识点一.两角和与差的正余弦与正切 ①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±=;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式 ①sin22sin cos ααα=;②2222cos2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-; 知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα== sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,). 【方法技巧与总结】 1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±; 1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;; 2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3. 拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-; ④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意 特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明 题型二:给式求值 题型三:给值求值 题型四:给值求角题型五:正切恒等式及求非特殊角 【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+; ②倍角公式(2)S α,(2)C α,(2)T α.【答案】(1)证明见解析;(2)①答案见解析;②答案见解析 【解析】 【分析】在单位圆里面证明()C αβ-,然后根据诱导公式即可证明()C αβ+和()S αβ+,利用正弦余弦和正切的关系即可证明()T αβ+;用正弦余弦正切的和角公式即可证明对应的二倍角公式.【详解】(1)不妨令2,k k απβ≠+∈Z . 如图,设单位圆与x 轴的正半轴相交于点1,0A ,以x 轴非负半轴为始边作角,,αβαβ-,它们的终边分别与单位圆相交于点()1cos ,sin P αα,()1cos ,sin A ββ,()()()cos ,sin P αβαβ--.连接11,A P AP .若把扇形OAP 绕着点O 旋转β角,则点,A P 分別与点11,A P 重合.根据圆的旋转对称性可知,AP 与11A P 重合,从而,AP =11A P ,∴11AP A P =. 根据两点间的距离公式,得:()()2222[cos 1]sin (cos cos )(sin sin )αβαβαβαβ--+-=-+-,化简得:()cos cos cos sin sin .αβαβαβ-=+ 当()2k k απβ=+∈Z 时,上式仍然成立.∴,对于任意角,αβ有:()cos cos cos sin sin αβαβαβ-=+. (2)①公式()C αβ+的推导: ()()cos cos αβαβ⎡⎤+=--⎣⎦()()cos cos sin sin αβαβ=-+-cos cos sin sin αβαβ=-.公式()S αβ+的推导:()sin cos 2παβαβ⎛⎫+=+- ⎪⎝⎭cos 2παβ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 22ππαβαβ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭cos sin sin cos αβαβ=+正切公式()T αβ+的推导:()()()sin tan cos αβαβαβ++=+sin cos cos sin cos cos sin sin αβαβαβαβ+=-tan tan 1tan tan αβαβ+=-②公式()2S α的推导:由①知,()sin2sin cos sin sin cos 2sin cos ααααααααα=+=+=. 公式()2C α的推导:由①知,()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-.公式()2T α的推导:由①知,()2tan tan 2tan tan2tan 1tan tan 1tan ααααααααα+=+==-⋅-.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数 22sin 26cos 343sin 26cos34+-; 22sin 39cos 213sin 39cos 21+-;()()22sin 52cos 1123sin 52cos112-+--;22sin 30cos 303sin 30cos30+-.(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论. 【答案】(1)选第四个式子,14;(2)证明见解析. 【解析】 【分析】(1)选第四个式子,由1sin 30,cos302︒=︒=(2)由题意,设一个角为α,另一个角为60α︒-,应用两角差的余弦公式展开三角函数,由同角正余弦的平方和关系化简求值 【详解】(1)由第四个式子:221331sin 30cos 303sin 30cos304444+-=+-= (2)证明:()()22sin cos 603sin cos 60αααα+---2211sin cos cos 22αααααα⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2222133sin cos cos sin cos sin 442αααααααα=++-14=【点睛】本题考查了三角函数,利用特殊角的函数值求三角函数式的值,应用两角差余弦公式展开三角函数式及同角的正余弦平方和关系化简求值,属于简单题例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值【答案】(1)证明见解析;(2)6365. 【解析】(1)根据向量的数量积公式即可证明;(2)根据角的范围分别求出正弦和余弦值,利用两角和的余弦公式计算得出答案. 【详解】(1)由题意知:||||1OA OB ==,且OA 与OB 的夹角为αβ-, 所以·11cos()cos()OA OB αβαβ=⨯⨯-=-, 又(cos ,sin )OA αα=,(cos ,sin )OB ββ=, 所以·cos cos sin sin OA OB αβαβ=+, 故cos()cos cos sin sin αβαβαβ-=+.(2)π,π2α⎛⎫∈ ⎪⎝⎭且5tan 12α=-,则512sin ,cos 1313αα==-;π0,2β⎛⎫∈ ⎪⎝⎭,则,02πβ⎛⎫-∈- ⎪⎝⎭,又π,π2α⎛⎫∈ ⎪⎝⎭,()0,αβπ∴-∈,4cos(),sin()553αβαβ-=--=,()()()1245363cos cos cos cos sin sin 13513565βααβααβααβ⎛⎫=--=-+-=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭【点睛】本题主要考查平面向量的数量积的定义,考查平面向量数量积的坐标运算,考查两角和与差的余弦公式,属于中档题.例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【答案】(1)推导见解析;(2【解析】 【分析】(1)根据图象可知2212AP PP =,再展开化简,得到两角和的余弦公式;(2)首先令ββ=-,求()cos αβ-,再代入所证明的公式;首先根据二倍角公式和诱导公式化简为11sin 37.5cos37.5sin 75cos1522⋅==,再根据两角差的余弦公式化简. 【详解】(1)因为12(cos ,sin ),(cos ,sin ),(cos(),sin())P P P ααββαβαβ-++, 根据图象,可得2212AP PP =,即2212||AP PP =, 即2222(cos()1)sin ()(cos cos )(sin sin )αβαββαβα+-++=-++. 即cos()cos cos sin sin αββαβα+=-.(2)由(1)可得cos()cos cos sin sin αββαβα+=-, ① cos()cos cos sin sin αββαβα-=+ ②由①+②可得:2cos cos cos()cos()βααβαβ=++- 所以1cos cos [cos()cos()]2βααβαβ=++-,所以()111sin 37.5cos37.5sin 75cos15cos 4530222︒︒︒︒︒︒===-.()1cos 45cos30sin 45sin 302=+1122⎫==⎪⎪⎝⎭【点睛】本题考查两角和差余弦公式的证明,以及利用三角恒等变换求值,重点考查逻辑推理证明,公式的灵活应用,属于基础题型.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=( )A B C D 【答案】A 【解析】易知()()sin sin βααβ=--,利用角的范围和同角三角函数关系可求得cos α和()sin αβ-,分别在()sin αβ-=和sin β,结合β的范围可确定最终结果.【详解】2sin α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴-<-<,()sin αβ∴-==当()sin αβ-=()()()()sin sin sin cos cos sin βααβααβααβ=--=---57==304πβ<<,sin 0β∴>,sin β∴=不合题意,舍去;当()sin αβ-=sin β=.综上所述:sin β=故选:A . 【点睛】易错点睛:本题中求解cos α时,易忽略sin α的值所确定的α的更小的范围,从而误认为cos α的取值也有两种不同的可能性,造成求解错误.例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13-C .23D .23-【答案】A 【解析】根据题意得到sin 152α⎛⎫︒- ⎪⎝⎭进而得到26cos 1529α⎛⎫︒-= ⎪⎝⎭,()1cos 303α︒-=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒-︒-=︒-⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒-=︒=︒+︒=︒= ⎪⎝⎭则226cos 151sin 15229αα⎛⎫⎛⎫︒-=-︒-= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒-=︒--︒-= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒-︒-⎣⎦ ()1cos 303α=︒-=, 故选A. 【点睛】本题主要考查二倍角公式,同角三角函数的基本关系,诱导公式,属于基础题.例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为( ).A .14B .78 C .14±D .78±【答案】C 【解析】 【分析】利用倍角公式以及诱导公式,结合已知条件,即可求得结果. 【详解】∵27cos(2)cos[2()]2cos ()13668x x x πππ-=-=--=-, ∴1cos()64x π-=±,∵1sin()cos[()]cos()32364x x x ππππ+=-+=-=±,故选:C. 【点睛】本题考查利用三角恒等变换解决给值求值问题,属基础题.(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=( )AB .12C .12-D. 【答案】AC 【解析】 【分析】利用三角恒等变换化简已知条件,结合同角三角函数的基本关系式,求得sin 3πβ⎛⎫- ⎪⎝⎭.【详解】依题意sin()sin 6πββ++=sin()sin 3233ππππββ⎛⎫-++-+= ⎪⎝⎭1cos()sin )3233πππβββ⎛⎫-+--= ⎪⎝⎭1sin )233ππββ⎛⎫--= ⎪⎝⎭)sin 2cos()133ππββ⎛⎫-+-⎪⎝⎭,)1sin cos()3πβπβ⎛⎫-- ⎪-=22sin cos 133ππββ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,)221sin 1sin 3πβπβ⎛⎫⎡⎤⎢⎥⎛⎫-+= ⎪⎝⎭-- ⎪⎦⎣,化简得(()(28sin 2sin 3033ππββ⎛⎫⎛⎫+----+= ⎪ ⎪⎝⎭⎝⎭,2,(24sin 2sin 033ππββ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭,2sin 12sin 033ππββ⎡⎤⎡⎛⎫⎛⎫-+-= ⎪ ⎪⎢⎥⎢⎝⎭⎝⎭⎣⎦⎣, 解得1sin 32πβ⎛⎫-=- ⎪⎝⎭或sin 3πβ⎛⎫-=⎪⎝⎭. 故选:AC例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos25β=,()4cos 5αβ+=,则cos α=___________.【解析】 【分析】 由,0,2,()4cos 5αβ+=,即可求得()sin αβ+,用二倍角公式即可求得sin β 和cos β ,用拼凑角思想可表示出()ααββ=+-,用三角恒等变换公式求解即可. 【详解】因为()4cos 5αβ+=,且,0,2,所以()3sin 5αβ+=.又因为23cos 212sin 5ββ=-=,解得sin β=则cos β==故()()()cos cos cos cos sin sin ααββαββαββ=+-=+++⎡⎤⎣⎦4355==. 例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为_____________.【答案】12##0.5 【解析】 【分析】由倍角公式以及诱导公式求解即可. 【详解】231cos 212sin 124442ππαα⎛⎫⎛⎫+=-+=-⨯=- ⎪ ⎪⎝⎭⎝⎭cos 2cos 2sin 242ππααα⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭1sin 22α∴=故答案为:12例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【解析】 【分析】首先利用二倍角公式和辅助角公式,化简,再代入求值. 【详解】()()111sin 21cos2sin 2cos2222f θθθθθ=-+=--()112222θθθϕ⎫---⎪⎝⎭(其中cos ϕsin ϕ=, 当()f θ取最大值时,022πθϕ-=,∴022πθϕ=+0sin 2sin cos 2πθϕϕ⎛⎫=+= ⎪⎝⎭0cos2cos sin 2πθϕϕ⎛⎫=+=-= ⎪⎝⎭∴0sin 24πθ⎛⎛⎫+== ⎪ ⎝⎭⎝⎭⎝⎭【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+( )A .12 B .12-C .2D .-2【答案】D 【解析】 【分析】由2222sin cos2tan222sin 2sincos22sin cos tan 1222ααααααααα===++,可解得tan 2α,即可求解 【详解】3sin 2sincos225ααα==-,故2222sincos2tan32225sin cos tan 1222αααααα==-++, 可解得1tan23α=-或tan 32α=-,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=-,故1tan 221tan2αα-=-+, 故选:D例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭( )A .78-B .78C.D【答案】B 【解析】 【分析】根据题意得sin 6x π⎛⎫- ⎪⎝⎭的值,再根据2cos 212sin 36x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】因为sin sin 66x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫-=- ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=--= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=( )A. B.C .12D【答案】D【解析】 【分析】由已知α的取值范围,求出4πα-的取值范围,再结合1cos 42πα⎛⎫-= ⎪⎝⎭即可解得α的值,cos2α即可求解 【详解】 因为22ππα-<<,所以3444πππα-<-< 又1cos 42πα⎛⎫-= ⎪⎝⎭,所以43ππα-=-,所以12πα=-所以cos 2cos cos 66ππα⎛⎫=-==⎪⎝⎭故选:D例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭( )A .2325B .2325-C D . 【答案】B 【解析】 【分析】利用诱导公式化简,然后利用二倍角公式即得. 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos2=α( )A .2425B .2425-C .725D .725-【答案】B 【解析】 【分析】首先根据同角三角函数的基本关系求出()cos 45α︒+,再利用二倍角公式及诱导公式计算可得; 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==-,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯-=- ⎪⎝⎭。

2019中考数学《面积的计算》专题复习考点讲解(含答案)

2019中考数学《面积的计算》专题复习考点讲解(含答案)

面积的计算考点图解技法透析面积法是一种重要方法,计算图形面积是平面几何中最常见的基本问题之一,与面积相关的知识有:(1)常见图形的面积计算公式:正方形面积=边长×边长;矩形的面积=长×宽;平行四边形面积=底×高;三角形面积=底×高÷2;梯形面积=(上底+下底)×高÷2;圆的面积=×半径的平方;扇形面积=2360n r(n为圆心角,r为半径)(2)计算面积常常用到以下结论:①等底等高的两个三角形的面积相等;②等底的两个三角形的面积比等于对应高的比;③等高的两个三角形的面积比等于对应底的比;④三角形一边上的中线平分这个三角形的面积.(3)面积计算常用到以下方法:①和差法:把所求图形的面积转化为常见图形面积的和、差表示,运用常见图形的面积公式;②等积法:找出与所求图形面积相等的或者关联的特殊图形,通过代换转化来求出图形的面积;③运动法:通过平移、旋转、割补等方式,将图形中的部分图形运动起来,把图形转化为容易观察或解决的形状;④代数法:通过寻求图形面积之间的关系列方程(组);把几何问题转化为代数问题.(4)非常规图形的面积计算往往采用“等积变换”,所谓“等积变换”就是不改变几何图形的面积,而是把它的形状改变成能够直接求出面积的图形,等积变换的主要目的,是把复杂的图形变成简单的图形,把不规则的图形变成规则的图形.(5)“等积变换”的方法①公式法,即运用某些图形的面积公式及其有关推论.②分割法,即把一个图形分割成熟知的若干部分图形.③割补法,即把一个图形的某一部分分割出来,然后用与其等积图形填补到某一位置.名题精讲考点1 用面积公式计算常规图形面积例1 如图,将直角三角形BC 沿着斜边AC 的方向平移到 △DEF 的位置(A 、D 、C 、F 四点在同一条直线上).直角边DE 交BC 于点G .如果BG =4,EF =12,△BEG 的面积等于4,那 么梯形ABGD 的面积是 ( )A .16B .20C .24D .28【切题技巧】【规范解答】 B【借题发挥】 把不能直接求出面积的图形通过转化或找出与它面积相等的特殊图形,从而能够求解.【同类拓展】 1.如图所示,A 是斜边长为m 的等腰直角三角形,B ,C ,D 都是正方形,则A ,B ,C ,D 的面积的和等于 ( )A .94m 2B .52m 2C .114m 2D .3m 2考点2 用面积的和、差计算非常规图形有面积例2 如图,P 是平行四边形ABCD 内一点,且S △PAB =5, S △PAD =2,请你求出S △PAC (即阴影部分的面积).【切题技巧】 △APC 的底与高显然无法求,则应用已知三角 形的面积的和或差来计算△APC 的面积.【规范解答】【借题发挥】 对于不能直接求的图形可以把图形进行分解和组合,通过图形的面积和或差进行计算.【同类拓展】 2.如图,长方形ABCD 中,△ABP 的面积为a , △CDG 的面积为b ,则阴影四边形的面积等于 ( )A .a +bB .a -bC .2a bD .无法确定考点3 列方程(组)求面积例3 如图所示,△ABC 的面积是1cm 2.AD =DE =EC , BG =GF =FC ,求阴影四边形的面积.【切题技巧】条件中有两组等分点,易知△BCE,△ACF的面积为13,但仍然不能求阴影部分面积,因此,只要求出△BCE中另两块面积即可,【规范解答】如图,设AG与BE交于N,AF与BE交于P,连接NC,ND,PC,PD.设△NGB的面积为x,△NDE的面积为y,则有△NCG的面积为2x,△NEA的面积为2y.因为△ABC的面积是1cm2,且AD=AE=EC,BG=GF=FC.【借题发挥】求一些关系复杂的图形面积,列方程是一个重要方法,它不但可以使我们熟悉列方程和了解方程在几何中的应用,而且能清晰地表明图形面积之间的关系,从而可以化解或降低解题的难度.【同类拓展】3.如图,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…、S8,试比较S3与S2+S7+S8的大小,并说明理由.考点4 面积比与线段比的转化例4 如图所示,凸四边形ABCD中,对角线AC、BD相交于O点,若△AOD的面积是2,△COD的面积是1,△COB的面积是4,则四边形ABCD的面积是 ( )A.16 B.15 C.14 D.13【切题技巧】分析△AOD,△DOC,△AOB,△COB四个三角形的面积,只有通过线段比联系起来,相邻两个三角形的面积都存在着一种比例关系.【规范解答】【借题发挥】 两三角形的高相等时,面积比等于对应底之比,则可以将面积比与对应线段比相互转化,这是.解答面积问题、线段比等问题的常用技巧.【同类拓展】 4.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则AGCD ABCDS S 四边形矩形等于 ( )A .56B .45C .34D .23考点5例5 如图所示,在四边形ABCD 中,AM =MN =ND , BE =EF =FC ,四边形ABEM 、MEFN 、NFCD 的面积分别记为S 1,S 2和S 3.求213?S S S =+【切题技巧】 把四边形分割成多个三角形,运用三角形等积变换定理即可求出,【规范解答】 连接A .E 、EN 、PC 和AC .【借题发挥】 等积变形的题目中,常将多边形面积转化为三角形面积,再运用等底同高来进行等积代换,因此,在转化时只要抓住题设中的等分点,就可以将多边形面积进行等积变换了.【同类拓展】 5.如图,张大爷家有一块四边形的菜地,在A 处有一口井,张大爷欲想从A 处引一条笔直的水渠,且这条笔直的水 渠将四边形菜地分成面积相等的两部分,请你为张大爷设计一种引水 渠的方案,画出图形并说明理由. 考点6 格点多边形的面积例6 如图,五边形ABCDE 的面积为多少?我们把方格纸上两组互相平行且垂直的直线的交点叫格点. 顶点在格点上的多边形叫格点多边形.可以通过图形的分割,转化为规则图形,再求面积.【规范解答】如图,标上字母F 、G 、H 、I 、J 点,使得△ABF , △BCG ,△CDH ,△DEI ,△EAJ 为直角三角形,【借题发挥】 格点多边形面积有如下计算规律:格点多边形的面积等于其所包含有格点个数,加上由其边界上的格点的个数之半,再减去1.此规律对凹多边形也适用.即:若格点多边形的面积为S ,格点多边形内部有且只有n 个格点,它各边上格点的个数和为x .则S =12x +n -1. 【同类拓展】 6.如图,在一个由4×4个小正方形组成的正方形 格中,阴影部分面积与正方形ABCD 面积的比是 ( ) A . 3:4 B .5:8 C .9:16 D .1:2 参考答案1.A 2.A 3.S 3=S 2+S 7+S 8. 4.D 5.S △ABF =S 四边形AFCD . 6.B2019-2020学年数学中考模拟试卷一、选择题1.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=32或t=72,其中正确的结论有()A.1个B.2个C.3个D.4个3.点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.4.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,AB长为半径画弧,交边AD于点F;②再分别以B,F为圆心画弧,两弧交于平行四边形ABCD内部的点G处;③连接AG并延长交BC于点E,连接BF,若3BF=, 2.5AB=,则AE的长为( )A.2B.4C.8D.55.如图,点是边长为1的菱形对角线上的一个动点,点,分别是边,的中点,则的最小值是( )A. B.1 C. D.26.方程组的解是( )A.B. C. D.7.多项式4x-x 3分解因式的结果是( ) A .()2x 4x-B .()()x 2x 2x -+C .()()x x 2x 2-+D .2x(2x)-8.一几何体的三视图如图所示,这个几何体是( )A .四棱锥B .圆锥C .三棱柱D .四棱柱9.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是( )A.B. C.D.10.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是A.12B.1C.23D.1311.分解因式3a2b﹣6ab+3b的结果是()A.3b(a2﹣2a)B.b(3a2﹣6a+1)C.3(a2b﹣2ab)D.3b(a﹣1)212.在整数范围内,有被除数=除数×商+余数,即a=bq+r(a≥b,且b≠0,0≤r<b),若被除数a和除数b确定,则商q和余数r也唯一确定,如:a=11,b=2,则11=2×5+1此时q=5,r=1.在实数范围中,也有a=bq+r(a≥b且b≠0,商q为整数,余数r满足:0≤r<b),若被除数是,除数是2,则q与r的和( )A.﹣4 B.﹣6 C.-4 D.-2二、填空题13.如图,矩形ABCD中,AB=6,AD=,点E是BC的中点,点F在AB上,FB=2,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为_____.14.计算:(﹣12)2=_____.15.如图,扇形纸扇完全打开后,∠BAC=120°,AB=AC=30厘米,则BC的长为_____厘米.(结果保留π)16.若关于x 的一元二次方程2230x x m -+-=有两个相等的实数根,则m 的值是______________.17.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.18.计算:(a+b )(2a ﹣2b )=_____. 三、解答题19.已知:△ABC 的两边AB 、BC 的长是关于x 的一元二次方程x 2﹣(2k+2)x+k 2+2k =0的两个实数根,第三边长为10.问当k 为何值时,△ABC 是等腰三角形?20.如图,已知⊙O 是等边三角形ABC 的外接圆,点D 在圆上,过A 作AE ∥BC 交CD 延长线于E.(1)求证:EA 是⊙O 的切线;(2)若BD 经过圆心O ,其它条件不变,则△ADE 与圆重合部分的面积为_____.(在备用图中画图后,用阴影标出所求面积)21.小张在网上销售一种成本为20元/件的T 恤衫,销售过程中的其他各种费用(不再含T 恤衫成本)总计40(百元),若销售价格为x(元/件),销售量为y(百件),当30≤x≤50时,y 与x 之间满足一次函数关系,且当x =30时,y =5,有关销售量y(百件)与销售价格x(元/件)的相关信息如下:(1)请在表格中直接写出当30≤x≤50时,y与x的函数关系式;(2)求销售这种T恤衫的纯利润w(百元)与销售价格x(元/件)的函数关系式;(3)销售价格定为多少元/件时,获得的利润最大?最大利润是多少?22.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2,CD留π).23.为考察甲、乙两种农作物的长势,研究人员分别抽取了6株苗,测得它们的高度(单位:cm)如下:甲:98,102,100,100,101,99;乙:100,103,101,97,100,99.(1)你认为哪种农作物长得高一些?说明理由;(2)你认为哪种农作物长得更整齐一些?说明理由.24.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.求证:(1)DE=FE;(2)四边形ADCF是菱形.25.已知,抛物线C1:y=- 12x2+mx+m+12(1)①当m=1时,抛物线与x轴的交点坐标为_______;②当m=2时,抛物线与x轴的交点坐标为________;(2)①无论m取何值,抛物线经过定点P________;②随着m的取值的变化,顶点M(x,y)随之变化,y是x的函数,记为函数C2,则函数C2的关系式为:________ ;(3)如图,若抛物线C1与x轴仅有一个公共点时,①直接写出此时抛物线C1的函数关系式;②请在图中画出顶点M满足的函数C2的大致图象,在x轴上任取一点C,过点C作平行于y轴的直线l分别交C1、C2于点A、B,若△PAB为等腰直角三角形,求点C的坐标;(4)二次函数的图象C2与y轴交于点N,连接PN,若二次函数的图象C1与线段PN有两个交点,直接写出m的取值范围.【参考答案】***一、选择题二、填空题14.415.20π16.417.4218.2a 2﹣2b 2三、解答题19.k =8或10【解析】【分析】因为方程有两个实根,所以△>0,从而用k 的式子表示方程的解,根据△ABC 是等腰三角形,分AB =AC ,BC =AC ,两种情况讨论,得出k 的值.【详解】∵△=[﹣(2k+2)]2﹣4(k 2+2k)=4k 2+8k+4﹣4k 2﹣8k=4>0,∴x =()222k --+⎡⎤⎣⎦,∴x 1=k+2,x 2=k ,设AB =k+2,BC =k ,显然AB≠BC,而△ABC 的第三边长AC 为10,(1)若AB =AC ,则k+2=10,得k =8,即k =8时,△ABC 为等腰三角形;(2)若BC =AC ,则k =10,即k =10时.△ABC 为等腰三角形.【点睛】本题考查了一元二次方程的根,公式法,解本题要充分利用条件,选择适当的方法求解k 的值,从而证得△ABC 为等腰三角形.20.(1)见解析;(2)23π.【解析】【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠O AE=90°,可得:AE 是⊙O 的切线;(2)如备用图,根据等边三角形的性质得到BD ⊥AC ,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,根据平行线的性质得到∠AED=∠BCD=90°,解直角三角形得到AD=2,连接OA ,根据扇形和三角形的面积公式即可得到结论.(1)证明:如图1,连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)如备用图,∵△ABC是等边三角形,BD经过圆心O,∴BD⊥AC,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,∵EA是⊙O的切线,∴∠EAD=30°,∵AE∥BC,∴∠AED=∠BCD=90°,∵∴AD=2,∵OA=OB ,∴∠OAB=OBA=30°,∴∠AOD=60°,∴△ADE 与圆重合部分的面积=S 扇形AOD -S △AOD=260212236023ππ⋅⨯-⨯=故答案为:23π【点睛】本题考查了作图-复杂作图,切线的判定和性质,扇形的面积计算,正确的作出图形是解题的关键.21.(1)y =﹣110x+8;(2)见解析;(3)销售价格定为60元/件时,获得的利润最大,最大利润是60百元.【解析】【分析】(1)把x =50代入y =150x得y =3,设y 与x 的函数关系式为:y =kx+b ,把x =30,y =5;x =50,y =3,代入解方程组即可得到结论;(2)根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式;(3)结合(1)中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可.【详解】(1)把x =50代入y =150x得y =3, 设y 与x 的函数关系式为:y =kx+b ,∵当x =30时,y =5,当x =50时,y =3,∴530350k b k b =+⎧⎨=+⎩, 解得:1k 10b 8⎧=-⎪⎨⎪=⎩,∴y 与x 的函数关系式为:y =﹣1x+8;故答案为:y =﹣110x+8; (2)当30≤x≤60时,w =(x ﹣20)(﹣0.1x+8)﹣40=﹣0.1x 2+10x ﹣200;当60<x≤80时,w =(x ﹣20)• 150x ﹣40=﹣3000x+110; (3)当30≤x≤60时,w =﹣0.1x 2+10x ﹣200=﹣0.1(x ﹣50)2+50,∴当x =50时,w 取得最大值50(百元);当60<x≤80时,w =﹣3000x +110, ∵﹣3000<0,∴w 随x 的增大而增大,当x =60时,w 最大=60(百元),答:销售价格定为60元/件时,获得的利润最大,最大利润是60百元.【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.22.(1)见解析;(2)23π-【解析】【分析】(1)欲证明AC 是⊙O 的切线,只要证明OD ⊥AC 即可.(2)证明△OBE 是等边三角形即可解决问题.【详解】(1)证明:连接OD ,如图,∵BD 为∠ABC 平分线,∴∠1=∠2,∵OB =OD ,∴∠1=∠3,∴∠2=∠3,∵∠C =90°,∴∠ODA =90°,∴OD ⊥AC ,∴AC 是⊙O 的切线.(2)过O 作OG ⊥BC ,连接OE ,则四边形ODCG 为矩形,∴GC =OD =OB =2,OG =CD ,在Rt △OBG 中,利用勾股定理得:BG =1,∴BE =2,则△OBE 是等边三角形,∴阴影部分面积为260?2360π⨯﹣12=23π- 【点睛】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.甲组数据的平均数为100cm ;乙组数据的平均数为100cm ;(2)甲种农作物长得比较整齐.【解析】【分析】(1)根据平均数的计算公式分别把这6株农作物的高度加起来,再除以6即可;(2)先算出甲与乙的方差,再进行比较,方差越小的,农作物长势越整齐,即可得出答案.【详解】(1)甲组数据的平均数=16×(98+102+100+100+101+99)=100(cm ); 乙组数据的平均数=16×(100+103+101+97+100+99)=100(cm ); (2)s 2甲=16×[(98﹣100)2+(102﹣100)2+…+(99﹣100)2]=53; s 2乙=16×[(100﹣100)2+(103﹣100)2+…+(100﹣99)2]=103. s 2甲<s 2乙.所以甲种农作物长得比较整齐.【点睛】本题考查了平均数与方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差大,波动性越大,反之也成立.24.(1)详见解析;(2)详见解析.【解析】【分析】(1)由“AAS ”可证AED CEF ∆≅∆,可得DE EF =;(2)由直角三角形的性质可得CD AD =,由对角线互相平分的四边形是平行四边形可证四边形ADCF 是平行四边形,即可证四边形ADCF 是菱形.【详解】(1)证明:∵CF AB ∥ ,∴DAC ACF ∠∠=,又∵AE EC AED CEF ∠∠=,= ,∴AED CEF AAS ≌(), ∴DE EF =.(2)∵90ACB ∠︒=,D 是AB 的中点,∴CD AD =∵DE EF AE EC =,=∴四边形ADCF 是平行边形又∵AD CD =∴四边形ADCF 是菱形.【点睛】本题考查了菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.25.(1)(﹣1,0)(3,0);(﹣1,0)(5,0);(2)(-1,0); y=12 (x+1);(3)点C 的坐标为(1,0)或(-3,0);(4)-12<m≤0 【解析】【分析】(1)①把m=1,y=0分别代入抛物线C1,得到一个一元二次方程,解方程即可求出交点横坐标。

不规则图形面积的计算(方法总结及详解)

不规则图形面积的计算(方法总结及详解)

不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)

2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)

专题22 平面向量的数量积及其应用【考点预测】一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量与b ,我们把数量||||cos θa b 叫做a 与b 的数量积(或内积),记作⋅a b ,即⋅a b =||||cos θa b ,规定:零向量与任一向量的数量积为0. (2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积. 二.数量积的运算律已知向量a 、b 、c 和实数λ,则: ①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ; ③()+⋅⋅+⋅a b c =a c b c . 三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 ①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||=a . ④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤. 四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=. 当0a ≠时,且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠.(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()(),这是因为a b c ⋅()是一个与c 共线的向量,而b c a ⋅()是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅()不一定等于b c a ⋅(),即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅>且(0)a b λλ≠>(或0a b ⋅<,且(0))a b λλ≠< 【方法技巧与总结】(1)b 在a 上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅=,但0a b ⋅=时不能得到0a =或0b =,因为a ⊥b 时,也有0a b ⋅=. (3)根据平面向量数量积的性质:||a a a =⋅,cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅=等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅表示一个与a 共线的向量,而a 与c 不一定共线,因此()a b c ⋅⋅与()a b c ⋅⋅不一定相等.【题型归纳目录】题型一:平面向量的数量积运算 题型二:平面向量的夹角 题型三:平面向量的模长题型四:平面向量的投影、投影向量 题型五:平面向量的垂直问题 题型六:建立坐标系解决向量问题 【典例例题】题型一:平面向量的数量积运算例1.(2022·全国·模拟预测(理))在ABC 中,π3ABC ∠=,O 为ABC 的外心,2BA BO ⋅=,4BC BO ⋅=,则BA BC ⋅=( )A .2B .C .4D .【答案】B 【解析】 【分析】设,AB BC 的中点为D,E ,将2BA BO ⋅=,变为2BD BO ⋅,根据数量积的几何意义可得||1BD =,同理求得||BC ,根据数量积的定义即可求得答案. 【详解】如图,设,AB BC 的中点为D,E ,连接OD,OE ,则,OD AB OE BC ⊥⊥ ,故2BA BO ⋅=,即22||||cos 2BD BO BD BO OBD ⋅=⋅∠= , 即2||1,||1BD BD ==,故||2BA =,4BC BO ⋅=,即22||||cos 4BE BO BE BO OBE ⋅=⋅∠= ,即2||2,||2BE BE ==,故||22BC =故1||||cos 22BA BC BA BC BAC ⋅=⋅∠=⨯=故选:B例2.(2022·河南安阳·模拟预测(理))已知AH 是Rt ABC △斜边BC 上的高,AH =,点M 在线段AH 上,满足()82+⋅=MB MC AH MB MC ⋅=( ) A .4- B .2- C .2 D .4【答案】A 【解析】 【分析】由()82+⋅=MB MC AH 2MH =,由AH 是Rt ABC △斜边BC 上的高,AH =,可得28HC HB AH ⋅==,然后对()()MB MC MH HB MH HC ⋅=+⋅+化简可求得结果因为AH 是Rt ABC △斜边BC 上的高,AH = 所以0,0AH HB AH HC ⋅=⋅=,28HC HB AH ⋅==, 因为()82+⋅=MB MC AH所以()82MH MH A HB HC H +⋅=++ 所以282MH AH HB AH HC AH ⋅+⋅+⋅= 所以42MH AH ⋅=, 所以42MH AH ⋅= 所以2MH =,所以()()MB MC MH HB MH HC ⋅=+⋅+ 2MH MH HC HB MH HC HB =+⋅+⋅+⋅2cos MH HC HB π=+⋅ 228(1)4=+⨯-=-,故选:A例3.(2022·全国·高三专题练习(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2- B .1- C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵222|2|||44-=-⋅+a b a a b b , 又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,故选:C.例4.(2022·四川省泸县第二中学模拟预测(文))如图,正六边形ABCDEF 中,2AB =,点P 是正六边形ABCDEF 的中心,则AP AB ⋅=______.【答案】2 【解析】 【分析】找到向量的模长和夹角,带入向量的数量积公式即可. 【详解】在正六边形中,点P 是正六边形ABCDEF 的中心,60PAB ︒=∴∠,且2AP AB ==, 1cos602222AP AB AP AB ︒∴⋅=⋅⋅=⨯⨯=. 故答案为:2.例5.(2022·安徽·合肥市第八中学模拟预测(理))已知向量,,a b c 满足0,||1,||3,||4a b c a b c ++====,则a b ⋅=_________.【答案】3 【解析】 【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为134a b c ===,,, 所以12916a b +⋅+=,得·3a b =. 故答案为:3.例6.(2022·陕西·模拟预测(理))已知向量()1,a x =,()0,1b =,若25a b +=,则⋅=a b __________ 【答案】0或4-##4-或0. 【解析】 【分析】由向量模长坐标运算可求得x ,由向量数量积的坐标运算可求得结果. 【详解】()21,2a b x +=+,(21a b x ∴+=+0x =或4x =-;当0x =时,()1,0a =,0a b ∴⋅=;当4x =-时,()1,4a =-,044a b ∴⋅=-=-; 0a b ∴⋅=或4-.故答案为:0或4-.例7.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________. 【答案】1或14【解析】 【分析】根据平面向量的线性运算法则,分别把BP CP ,用AB AC ,表示出来,再用1BP CP ⋅=-建立方程,解出λ的值. 【详解】由AP AB AC λ=+,得AP AB AC λ-=,即BP AC λ=, (1)CP AP AC AB AC λ=-=+-,在ABC 中,已知1AB =,2AC =,120A ∠=︒, 所以2((1))(1))BP CP AC AB AC AC AB AC λλλλλ⋅=⋅+-=⋅+-22cos1204(1)451λλλλλ=+-=-=-, 即24510λλ-+=,解得1λ=或14λ= 所以实数λ的值为1或14. 故答案为:1或14. 例8.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====,则AC DB ⋅值为__________. 【答案】94【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ====, 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:94例9.(2022·福建省福州第一中学三模)过点M 的直线与22:(3)16C x y -+=交于A ,B 两点,当M 为线段AB中点时,CA CB ⋅=___________. 【答案】-8 【解析】 【分析】由题意可得M 在C 内,又由M 为线段AB 中点AB CM ⊥,由两点间距离公式得2CM ==12AC ,进而求得120ACB ∠=︒,再由向量的数量积公式计算即可得答案. 【详解】解:因为点M 在22:(3)16Cx y -+=内, 所以当M 为线段AB 中点时,AB CM ⊥,又因为C 的半径为4,2CM ==12AC ,所以60ACM ∠=°, 所以120ACB ∠=︒,所以,CA CB ⋅=||||cos120CA CB ︒=144()82⨯⨯-=-.故答案为:-8.例10.(2022·全国·模拟预测(理))已知向量a 与b 不共线,且()2a a b ⋅+=,1a =,若()()22a b a b -⊥+,则()b a b ⋅-=___________. 【答案】3- 【解析】 【分析】由()2a a b ⋅+=得1a b ⋅=,由()()22a b a b -⊥+得2b =,即可求解结果. 【详解】由()212a a b a a b a b ⋅+=+⋅=+⋅=得1a b ⋅=由()()22a b a b -⊥+得()()222240a b a b a b -⋅+=-=,所以2b = 则()2143b a b b a b ⋅-=⋅-=-=- 故答案为:3-例11.(2022·全国·高三专题练习(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11 【解析】 【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得. 【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=.故答案为:11.例12.(2022·江苏·徐州市第七中学模拟预测)如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q , 故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4. 【方法技巧与总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路. (2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a 在向量b 方向上的投影为||a bb ⋅. (4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±()a b c ab ac +=+公式都可通用 异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角) 22222cos ma nb m a mn a b n b θ±=±+,使用范围广泛,通常是求模或者夹角.ma nb ma nb ma nb -≤±≤+,通常是求ma nb ±最值的时候用. 题型二:平面向量的夹角例13.(2022·甘肃·高台县第一中学模拟预测(文))已知非零向量a →,b →满足a b a →→→-=,a a b →→→⎛⎫⊥- ⎪⎝⎭,则a→与b →夹角为______. 【答案】4π##45 【解析】 【分析】根据已知求出2=a a b →→→,||b a →→,即得解. 【详解】解:因为a b a →→→-=,所以22222,2a b a b a b a b →→→→→→→→+-=∴=.因为a a b →→→⎛⎫⊥- ⎪⎝⎭,所以22=0,=aa b a a b a a b →→→→→→→→→⎛⎫--=∴ ⎪⎝⎭, 所以22=2||b a b a →→→→∴,.设a →与b →夹角为θ,所以22cos =2|||||a ba ba b a θ→→→→→→→==. 因为[0,]θπ∈,所以4πθ=.例14.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________. 【答案】2π##90 【解析】【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 例15.(2022·湖北武汉·模拟预测)两不共线的向量a ,b ,满足3a b =,且t R ∀∈,a tb a b -≥-,则cos ,a b =( )A .12 B C .13D 【答案】C 【解析】 【分析】由a tb a b -≥-两边平方后整理得一元二次不等式,根据一元二次函数的性质可判断0∆≤,整理后可知∆只能为0,即可解得答案. 【详解】 解:由题意得:t R ∀∈,a tb a b -≥-t R ∴∀∈,2222222a t b ta b a b a b +-⋅≥+-⋅即222226cos ,6cos ,0t b t b a b b b a b --+≥ 0b ≠t R ∴∀∈,26cos ,16cos ,0t t a b a b --+≥()221Δ36cos ,46cos ,136cos ,03a b a b a b ⎛⎫∴=--=-≤ ⎪⎝⎭1cos ,03a b ∴-=,即1cos ,3a b =故选:C例16.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1---C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】求出a b +的坐标,求得当a 与a b +共线时12t =,根据向量a 与向量a b +的夹角为钝角,列出相应的不等式,求得答案. 【详解】因为(23)a b t +=--,,又a 与a b +的夹角为钝角, 当a 与a b +共线时,162(2)0,2t t t ---==, 所以()0a a b ⋅+<且a 与a b +的不共线,即2230t t --<且12t ≠, 所以111322t ⎛⎫⎛⎫∈-⋃ ⎪ ⎪⎝⎭⎝⎭,,, 故选:D .例17.(2022·广东深圳·高三阶段练习)已知向量()cos30,sin 210a =︒-︒,(3,1)b =-,则a 与b 夹角的余弦值为_________. 【答案】12-【解析】 【分析】化简向量a ,根据向量的模的公式,数量积公式和向量的夹角公式求解. 【详解】由()cos30,sin210a =︒-︒知31,22a ⎛⎫= ⎪ ⎪⎝⎭,故31(1122a b ⋅=⨯+⨯=-,||1a =,||2b =,记a 与b 的夹角为θ,则11cos 122||||a b a b θ⋅-===-⨯⨯.故答案为:12-.例18.(2022·全国·高三专题练习)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例19.(2022·湖南·长沙市明德中学二模)已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-=,则向量b 与向量a b -夹角的余弦值为( )A .B .0C D 【答案】A 【解析】 【分析】根据0a b ⋅=,设(1,0)a =,(0,)b t =,根据()()0a b a b +⋅-=求出21t =,再根据平面向量的夹角公式计算可得解. 【详解】因为0a b ⋅=,所以可设(1,0)a =,(0,)b t =,则(1,)a b t +=,(1,)a b t -=-, 因为()()0a b a b +⋅-=,所以210t -=,即21t =.则()cos ,||||b a bb a b b a b ⋅-<->=⋅-2==,故选:A.例20.(2022·辽宁·大连市一0三中学模拟预测)已知单位向量a ,b 满足3a b a b -=+,则a 与b 的夹角为( ) A .30° B .60°C .120°D .150°【答案】C【解析】 【分析】根据数量积的运算律及夹角公式计算可得; 【详解】解:因为a ,b 为单位向量,所以1a b ==, 又3a b a b -=+,所以()()223a b a b -=+,即()2222232a a b b a a b b -⋅+=+⋅+,所以()22240a a b b +⋅+=,即()22240a a b b+⋅+=,所以12a b ⋅=-, 所以1cos ,2a ba b a b ⋅==-⋅,因为[],0,a b π∈,所以2,3a b π=;故选:C例21.(2022·北京市大兴区兴华中学三模)已知a 为单位向量,向量()1,2b =,且2a b ⋅=,则,a b a -=( ) A .π6B .π4C .π3D .3π4【答案】B 【解析】 【分析】先根据已知条件求出()a b a ⋅-和b a -,然后利用向量的夹角公式可求出结果 【详解】因为a 为单位向量,向量()1,2b =,且2a b ⋅=, 所以()2211a b a a b a ⋅-=⋅-=-=,222()252b a b a b a b a -=-=-⋅+=-=所以()1cos ,2a b a a b a a b a⋅--===-, 因为[],0,πa b a -∈, 所以π,4a b a -=, 故选:B例22.(2022·全国·模拟预测(理))已知平面向量a b +与a b -互相垂直,模长之比为2:1,若||5a =,则a 与a b +的夹角的余弦值为( )A B C D .12【答案】A 【解析】 【分析】利用向量a b +与a b -互相垂直,模长之比为2:1,利用数量积求得向量,a b 的模长及数量积,然后利用平面向量夹角公式求得结果. 【详解】平面向量a b +与a b -互相垂直,模长之比为2:1,则()()0a b a b +⋅-=且||2||a b a b +=-,得22a b =,又||5a =,则||||5a b ==,将||2||a b a b +=-平方得22222484a a b b a a b b +⋅+=-⋅+,解得=3a b ⋅,222|=216a b a a b b +|+⋅+=,则4a b +=,设a 与a b +的夹角为θ,则()25+3cos =54a ab aa ba a ba a bθ⋅++⋅===⨯++ 故选:A.例23.(多选题)(2022·福建省福州格致中学模拟预测)已知单位向量,a b 的夹角为120︒,则以下说法正确的是( ) A .||1a b += B .(2)a b a +⊥C .3cos ,2a b b 〈-〉= D .2a b +与2a b +可以作为平面内的一组基底【答案】ABD 【解析】 【分析】根据向量的模的公式,数量积的运算,向量的夹角公式,判断向量共线的条件逐项验证即可 【详解】据题意221,1,11cos1202a b a b ︒==⋅=⨯⨯=-因为2221()211212a b a b a b ⎛⎫+=++⋅=++⨯-= ⎪⎝⎭所以||1a b +=,所以A 对因为21(2)21202a b a a a b ⎛⎫+⋅=+⋅=+⨯-= ⎪⎝⎭,所以(2)a b a +⊥,所以B 对.因为222213()1,()2322a b b a b b a b a b a b -⋅=⋅-=--=--=++⋅=所以3()2cos ,||||31a b b a b b a b b --⋅〈-〉===-⋅⨯所以C 错因为2a b +与2a b +不共线,所以可以作为平面内的一组基底,所以D 正确 故选:ABD例24.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( ) A .若(2)a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=- C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞- 【答案】ABC 【解析】 【分析】利用向量的坐标运算及向量垂直的坐标表示判断A ,利用向量坐标的表示可判断B ,利用向量的模长的坐标公式及二次函数的性质可判断C ,利用向量数量积的坐标表示及向量共线的坐标表示可判断D. 【详解】对于A ,因为2(1,4)a b +=,(,1)c λ=-,(2)a b c +⊥,所以14(1)0λ⨯+⨯-=,解得4λ=,所以A 正确. 对于B ,由a tb c =+,得(3,2)(2,1)(,1)(2,1)t t t λλ-=+-=+-,则32,21,t t λ-=+⎧⎨=-⎩解得93t λ=-⎧⎨=⎩,故6t λ+=-,所以B 正确.对于C ,因为(3,2)(2,1)(23,2)a bμμμμ+=-+=-+,所以a b μ+==则当45μ=时,a b μ+取得最小值,为,所以C 正确. 对于D ,因为(1,3)a b +=-,2(4,1)b c λ+=+,向量a b +与向量2b c +的夹角为锐角, 所以()(2)1(4)310a b b c λ⋅+=-⨯+⨯++>,解得1λ<-;当向量a b +与向量2b c +共线时,113(4)0λ-⨯-⨯+=,解得133λ=-, 所以λ的取值范围是1313,,133⎛⎫⎛⎫-∞-⋃-- ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.故选:ABC.例25.(2022·河南·通许县第一高级中学模拟预测(文))已知1e ,2e 是单位向量,122a e e =-,123b e e =+,若a b ⊥,则1e ,2e 的夹角的余弦值为( )A .35B .12C .13D .15【答案】D 【解析】 【分析】根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可. 【详解】由题意知121e e ==,()()22121212122303250a b e e e e e e e e ⋅=-⋅+=⇒--⋅=,即1215e e ⋅=,所以121cos 5e e ⋅=. 故选:D.例26.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=, 所以a b -与a 的夹角为3π. 故选:B例27.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠,则a 与b 的夹角为( ) A .6πB .π3C .π2D .2π3【答案】C 【解析】 【分析】由题干条件平方得到()0a b λ⋅=,从而得到0a b ⋅=,得到a 与b 的夹角. 【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+,因为向量a ,b 为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅=. 因为0λ≠,所以0a b ⋅=,即a 与b 的夹角为π2. 故选:C【方法技巧与总结】 求夹角,用数量积,由||||cos a b a b 得121222221122cos||||x x y y a b a b xyx y ,进而求得向量,a b 的夹角.题型三:平面向量的模长例28.(2022·福建省厦门集美中学模拟预测)已知向量a 、b 、c 满足0a b c ++=,()()0a b a c -⋅-=,9b c -=,则a =______. 【答案】3 【解析】 【分析】由已知条件可得出a b c =--,根据平面向量的数量积可求得22b c +、b c ⋅的值,结合平面向量的数量积可求得a 的值. 【详解】由已知可得a b c =--,则()()()()()()22220a b a c b c b c b c b c -⋅-=--⋅--=+⋅+=, 即222250b c b c ++⋅=,因为9b c -=,则22281b c b c +-⋅=,所以,2245b c +=,18b c ⋅=-,因此,()2222229a a b c b c b c ==--=++⋅=,故3a =.故答案为:3.例29.(2022·辽宁沈阳·三模)已知平面向量,,a b c 满足1,1,0,1a c a b c a b ==++=⋅=-,则b =_______.【解析】【分析】由题意得c a b =--,直接平方即得结果. 【详解】由0a b c ++=可得c a b =--,两边同时平方得2222c a a b b =+⋅+,1,1,1a c a b ==⋅=-,2112b ∴=-+,解得2b =..例30.(2022·全国·高三专题练习(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+a b .故选:D例31.(2022·江苏·扬中市第二高级中学模拟预测)已知a 与b 为单位向量,且a ⊥b ,向量c 满足||2b c a --=,则|c |的可能取值有( )A .6B .5C .4D .3【答案】D 【解析】 【分析】建立平面直角坐标系,由向量的坐标计算公式可得(1,1)c a b x y --=--,进而由向量模的计算公式可得22(1)(1)4x y -+-=,分析可得C 在以(1,1)为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案. 【详解】根据题意,设OA a =,OB b =,OC c =,以O 为坐标原点,OA 的方向为x 轴正方向,OB 的方向为y 轴的正方向建立坐标系, 则(1,0)A ,(0,1)B ,设(,)C x y ,则(1,1)c a b x y --=--,若||2b c a --=,则有22(1)(1)4x y -+-=,则C 在以(1,1)为圆心,半径为2的圆上,设(1,1)为点M ,则||OM =||||||r OM OC r OM -+, 即22||22OC +,则||c 的取值范围为22⎡⎣;故选:D .例32.(2022·江苏·南京市天印高级中学模拟预测)已知平面向量a ,b 满足2a =,1b =,且a 与b 的夹角为3π,则a b +=( )AB C D .3【答案】C 【解析】 【分析】 由()2222a b a ba ab b +=+=+⋅+求解.【详解】解:因为2a =,1b =,且a 与b 的夹角为3π, 所以()2222a b a ba ab b +=+=+⋅+,==,故选:C例33.(2022·河南·开封市东信学校模拟预测(理))已知非零向量a ,b 的夹角为6π,()||3,a a a b =⊥-,则||b =___________. 【答案】2 【解析】 【分析】由平面向量的数量积的运算性质求解即可 【详解】由()a a b ⊥-得22π3()||||||||cos3||062a ab a a b a a b b ⋅-=-⋅=-⋅=-=, 解得||2b =. 故答案为:2例34.(2022·全国·高三专题练习)已知三个非零平面向量a ,b ,c 两两夹角相等,且||1a =,||2b =,||3c =,求|23|a b c -+.9 【解析】【分析】由三个非零平面向量a ,b ,c 两两夹角相等得 ,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0,再分别计算求解即可 【详解】因为三个非零平面向量a ,b ,c 两两夹角相等,所以,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0 .当,,,120a b b a c c 〈〉=〈〉=〈〉=︒时,2|23|(23)a b c a b c -+=-+222||||9||4126a b c b b c a c a =++-⋅+⋅-⋅==当,,,0a b b c c a 〈〉=〈〉=〈〉=︒,即a ,b ,c 共线时. |23|2||||3||2299a b c a b c -+=-+=-+=∣∣.9例35.(2022·全国·高三专题练习)已知2=a ,3b =,a 与b 的夹角为120,求a b +及a b -的值. 【答案】7a b +=,19a b -=. 【解析】 【分析】利用向量数量积定义可求得a b ⋅,由向量数量积的运算律可求得2a b +和2a b -,由此可得结果. 【详解】cos ,6cos1203a b a b a b ⋅=⋅<>==-,22224697a b a a b b ∴+=+⋅+=-+=,222246919a b a a b b -=-⋅+=++=,7a b ∴+=,19a b -=.例36.(2022·福建泉州·模拟预测)已知向量(0,1)=a ,(,3)b t =,若,a b 的夹角为π3,则||b =___________.【答案】【解析】 【分析】根据平面向量的夹角公式可求出结果. 【详解】 由πcos3||||a b a b ⋅=⋅,得132||b ,得||23b =.故答案为:【方法技巧与总结】 求模长,用平方,2||a a .题型四:平面向量的投影、投影向量例37.(2022·新疆克拉玛依·三模(理))设a ,b 是两个非零向量,AB a =,CD b =,过AB 的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为1A ,1B ,得到11A B ,则11A B 叫做向量a 在向量b 上的投影向量.如下图,已知扇形AOB 的半径为1,以O 为坐标原点建立平面直角坐标系,()1,0OA =,12OB ⎛= ⎝⎭,则弧AB 的中点C 的坐标为________;向量CO 在OB 上的投影向量为________ .【答案】12⎫⎪⎪⎝⎭3()4- 【解析】 【分析】由已知,根据给到的OA ,OB 先求解OA 与OB 的夹角,然后再利用点C 是弧AB 的中点,即可求解出AOC ∠,从而求解点C 的坐标;根据前面求解出的点C 的坐标,写出OB 和CO ,先计算向量CO 在OB 上的投影,然后根据OB 即可写出向量CO 在OB 上的投影向量. 【详解】由已知,()1,0OA =,12OB ⎛= ⎝⎭,所以112cos ,112OA OB OA OB OA OB ===⨯, 所以π3AOB ∠=,因为点C 为弧AB 的中点,所以π6AOC ∠=, 扇形AOB 的半径为1,所以弧AB 满足的曲线参数方程为cos π()sin 3xy αααα=⎧≤≤⎨=⎩为参数,0, 所以中点C 的坐标为πcos 6π1sin 62x y ⎧==⎪⎪⎨⎪==⎪⎩,所以C的坐标为12⎫⎪⎪⎝⎭,12CO ⎛⎫=-- ⎪ ⎪⎝⎭,12OB ⎛=⎝⎭, 向量CO 在OB 上的投影为3441CO OB OB-== 因为12OB ⎛= ⎝⎭,所以向量CO 在OB 上的投影向量为3()4-.故答案为:12⎫⎪⎪⎝⎭;3()4- 例38.(2022·江西鹰潭·二模(文))已知向量,,(3,1),||2,(2)3a b a b a b b ==-⋅=,则b 在a 方向上的投影为_________ 【答案】54【解析】 【分析】根据向量数量积性质和向量投影定义求解即可. 【详解】因为(3,1)a =,||2b =,所以2||1(2a =+,22b =,因为(2)3a b b -⋅=,所以222223a b b b a b b a b ⋅-⋅=⋅-=⋅-=,所以52a b ⋅=, 所以b 在a 方向上的投影为5||4a b a ⋅=, 故答案为:54. 例39.(2022·江西·南昌市八一中学三模(理))已知向量()1,2a =-,()3,b t =,且a 在b 上的投影等于1-,则t =___________. 【答案】4 【解析】 【分析】根据投影定义直接计算可得,注意数量积符号. 【详解】因为a 在b 上的投影等于1-,即cos ,1a b a a b b⋅〈〉==-1=-,且320t -<,解得4t =.故答案为:4例40.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C 【解析】 【分析】先利用b 在a 上的投影为1求出a b ⋅,然后可求a b +在a 上的投影. 【详解】因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a aa b a a +⋅+⋅+===;故选:C.例41.(2022·四川成都·三模(理))在ABC 中,已知7π12A ∠=,π6C ∠=,AC =BA在BC 方向上的投影为( ).A .B .2CD .【答案】C 【解析】 【分析】利用三角形内角和及正弦定理求得4B π∠=、2AB =,再根据向量投影的定义求结果.【详解】由题设4B π∠=,则sin sin AB AC C B=,可得122AB ==, 所以向量BA 在BC 方向上的投影为||cos 2BA B ==故选:C例42.(2022·广西桂林·二模(文))已知向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为( ) A .1- B .2- C .1 D .2【答案】B 【解析】 【分析】利用向量的投影公式直接计算即可. 【详解】向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为2||cos ,21||a b a a b b ⋅-<>===-, 故选:B .例43.(2022·内蒙古呼和浩特·二模(理))非零向量a ,b ,c 满足()b a c ⊥-,a 与b 的夹角为6π,3a =,则c 在b 上的正射影的数量为( )A .12-B .C .12D 【答案】D 【解析】 【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答. 【详解】非零向量a ,b ,c 满足()b a c ⊥-,则()·0b a c a b c b -=⋅-⋅=,即c b a b ⋅=⋅,又a 与b 的夹角为6π,3a =, 所以c 在b 上的正射影的数量3||cos ,||cos 62||||c b a b c c b a b b π⋅⋅〈〉====故选:D例44.(2022·辽宁·渤海大学附属高级中学模拟预测)已知单位向量,a b 满足||1a b -=,则a 在b 方向上的投影向量为( )A .12bB .12b -C .12aD .12a -【答案】A 【解析】 【分析】根据投影向量公式,即可求解. 【详解】22221a b a a b b -=-⋅+=,因为1==a b ,所以12a b ⋅=, 所以a 在b 方向上的投影向量为12a b b b b b ⋅⋅=. 故选:A例45.(2022·海南华侨中学模拟预测)已知平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-,则a 在b 方向上的投影向量为( )A .12⎫⎪⎪⎝⎭B .21⎛⎫⎪ ⎪⎝⎭ C .12⎛- ⎝⎭D .12⎛ ⎝⎭【答案】C 【解析】 【分析】利用投影向量的定义求解. 【详解】解:因为平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-, 所以a 在b方向上的投影向量为22cos 13(1,3)(2a b a b b bbπ⋅⋅⋅⋅=⋅-=- ,故选:C题型五:平面向量的垂直问题例46.(2022·海南海口·二模)已知向量a ,b 的夹角为45°,2a =,且2a b ,若()a b b λ+⊥,则λ=______. 【答案】-2 【解析】 【分析】先利用数量积的运算求解b ,再利用向量垂直数量积为0即可求解. 【详解】因为cos 452a b a b ⋅=︒=得2b =, 又因为()a b b λ+⊥,所以()2240a b b a b b λλλ+⋅=⋅+=+=,所以2λ=-. 故答案为:-2.例47.(2022·广东茂名·二模)已知向量a =(t ,2t ),b =(﹣t ,1),若(a ﹣b )⊥(a +b ),则t =_____. 【答案】12±【解析】 【分析】由(a ﹣b )⊥(a +b ),由垂直向量的坐标运算可得出a b =,再由模长的公式即可求出t . 【详解】因为(a ﹣b )⊥(a +b ),所以()()0a b a b -⋅+=,所以220a b -=,则a b =,所以22241t t t +=+,所以12t =±.故答案为:12±.例48.(2022·青海玉树·高三阶段练习(理))已知向量()1,1a =-,()1,b m =,若()3a b a +⊥,则m =______.【答案】13【解析】 【分析】根据向量的坐标运算和数量积的坐标运算即可求解. 【详解】()()23,3030a b a a b a aa b +⊥∴+⋅=⇒+⋅= ,所以()123103m m +-+=⇒=故答案为:13例49.(2022·河南开封·模拟预测(理))已知两个单位向量1e 与2e 的夹角为3π,若122a e e =+,12b e me =+,且a b ⊥,则实数m =( ) A .45-B .45 C .54-D .54【答案】A 【解析】 【分析】由向量垂直及数量积的运算律可得221122(2)20e m e e m e ++⋅+=,结合已知即可求m 的值.【详解】由题意1222121122)()(220()2a b e me m e e m e e e e ⋅=⋅+=++⋅++=, 又1e 与2e 的夹角为3π且为单位向量, 所以22021m m +++=,可得45m =-.故选:A例50.(2022·河南安阳·模拟预测(文))已知向量(22,4),1,cos 2⎛⎫=-= ⎪⎝⎭a b θ,其中(0,π)θ∈,若a b ⊥,则sin θ=___________. 【答案】1 【解析】 【分析】根据平面向量垂直的性质,结合平面向量数量积的运算坐标表示公式、特殊角的三角函数值进行求解即可. 【详解】因为a b ⊥,所以0a b ⋅=,即14cos0cos22θθ-+=⇒=,因为(0,π)θ∈,所以π(0,)22θ∈,因此ππ242θθ=⇒=,所以sin 1θ=, 故答案为:1例51.(2022·全国·模拟预测(文))设向量()2,1a =,()1,b x =-,若()a b a ⊥-,则b =___________.【答案】【解析】 【分析】由平面向量数量积的坐标运算求解 【详解】()3,1b a x -=--,由题意得()0a b a ⋅-=,即610x -+-=,得7x =149b =+=.故答案为:【方法技巧与总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例52.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF =,即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .例53.(2022·贵州贵阳·模拟预测(理))在边长为2的正方形ABCD 中,E 是BC 的中点,则AC DE ⋅=( ) A .2 B .2-C .4-D .4【答案】A 【解析】 【分析】建立直角坐标系,用向量法即可 【详解】在平面直角坐标系中以A 为原点,AB 所在直线为x 轴建立坐标系,则()0,0A ,()0,2D ,()2,2C ,()2,1E ,所以()()2,22,1422AC DE ⋅=⋅-=-=, 故选:A例54.(2022·江苏·模拟预测)如图,在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,(4,1)AB =,(2,3)DC =,(2,)AC m =-,若0E A F C =⋅,则实数m 的值是( )A .3-B .2-C .2D .3【答案】D 【解析】 【分析】根据题意得分别求出AD 和BC 的坐标,再分别求出AE 和BF 的坐标,EF EA AB BF =++,再利用数量积坐标运算求解即可. 【详解】根据题意得:(4,3)AD CD CA AC DC m =-=-=--,(6,1)BC AC AB m =-=--, 因为E ,F 分别为AD ,BC 的中点,所以13(2,)22m AE AD -==-,11(3,)22m BF BC -==-, 所以()3,2EF EA AB BF =++=,又0E A F C =⋅,即()2320m -⨯+⨯=,解得3m =. 故选:D.例55.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D 【解析】 【分析】将三角形放到直角坐标系当中,利用坐标法求向量夹角,即可求解. 【详解】解:建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M , 得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ 故选:D.例56.(多选题)(2022·山东聊城·三模)在平面四边形ABCD 中,1AB BC CD DA DC ===⋅=,12⋅=BA BC ,则( ) A .1AC = B .CA CD CA CD +=-C .2AD BC = D .BD CD ⋅=【答案】ABD 【解析】 【分析】根据所给的条件,判断出四边形ABCD 内部的几何关系即可. 【详解】因为1AB BC CD ===,1cos 2BA BC BA BC B ⋅==,可得3B π=,所以ABC 为等边三角形,则1AC = ,故A 正确;因为1CD =,所以21CD =,又1DA DC ⋅=,所以2CD DA DC =⋅ ,得()20DC DA DC DC DC DA DC AC -⋅=⋅-=⋅=,所以AC CD ⊥,则CA CD CA CD +=-,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误; 建立如上图所示的平面直角坐标系,则1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,12D ⎫⎪⎪⎝⎭,12BD ⎫=⎪⎪⎝⎭,3122CD ⎛⎫= ⎪ ⎪⎝⎭,所以BD CD ⋅=,故D 正确; 故选:ABD.例57.(多选题)(2022·湖南·长郡中学模拟预测)已知向量a b c ,,满足2222a b a b c c =-=-==,则可能成立的结果为( ) A .34b =B .54b =C .34b c ⋅= D .54b c ⋅=【答案】BCD 【解析】 【分析】不妨设()10C ,,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,利用坐标法,即可求解. 【详解】对于选项A 、B ,由题意2=a ,1c =,1a b b c -=-=,设OA a =,OB b =,OC c =,不妨设()10C ,,如图,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,且满足1AB =, 圆C 方程是22(1)1x y -+=.当B 在圆C 上运动时,由AB OB OA +≥,得1OB ≥,当且仅当O ,A ,B 三点共线时取等号,又由图易知2OB ≤,即12b ≤≤,故选项A 不满足,选项B 满足;对于选项C 、D ,设()B x y ,,则()()10b c x y x ⋅=⋅=,,, 由22221(1)1x y x y ⎧+=⎨-+=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,12B x ∴≥, 又2B x ≤.即122x ≤≤. 122b c ⎡⎤∴⋅∈⎢⎥⎣⎦,,选项C ,D 满足.故选:BCD例58.(多选题)(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A .20OB OE OG ++=B .22OA OD ⋅=- C .4AH EH += D .4+=+AH GH 【答案】ABC【分析】分别以,HD BF 所在的直线为x 轴和y 轴,建立的平面直角坐标系,作AM HD ⊥,结合向量的坐标运算,逐项判定,即可求解. 【详解】由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.例59.(2022·江苏南京·模拟预测)在ABC 中,0AB AC ⋅=,3AB =,4AC =,O 为ABC 的重心,D 在边BC 上,且AD BC ⊥,则AD AO ⋅______. 【答案】9625【解析】根据O 为ABC 的重心,得到()13=+AO AB AC ,再由0AB AC ⋅=和AD BC ⊥,利用等面积法求得AD ,进而得到DB ,方法一:利用基底法求解;方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,利用坐标法求解. 【详解】解:因为O 为ABC 的重心, 所以()13=+AO AB AC , 因为0AB AC ⋅=,所以AB AC ⊥,则5BC =,因为AD BC ⊥,所以1122ABC S AB AC AD BC =⋅=⋅△, 即1134522AD ⨯⨯=⨯, 所以125AD =,在Rt ADB 中,95DB =. 方法一:因为925=+=+AD AB BD AB BC , ()9916252525=+-=+AB AC AB AC AB , 所以()191632525⎛⎫⋅=+⋅+ ⎪⎝⎭AD AO AB AC AC AB ,221916963252525⎛⎫=⨯+= ⎪⎝⎭AC AB . 方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,则()4,0AC =,()0,3AB =,由方法一可知9163648,25252525AD AC AB ⎛⎫=+= ⎪⎝⎭,()14,133AO AB AC ⎛⎫=+= ⎪⎝⎭, 所以136489513252525AD AO ⋅=⨯+⨯=.例60.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】解:以A 为原点,AB 为x 轴正方向建立平面直角坐标系, 所以()()()0,0,2,0,2,1A B E ,()0,2D ,设(),P x y ,所以()()(),,2,1,2,0AP x y AE AD ===,因为2AP AE AD =-,所以()()4,0,4,2P PD =-,所以25PD = 又()2,1PE =-,所以10PE PD ⋅=.故答案为:10.例61.(2022·天津市西青区杨柳青第一中学模拟预测)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,E ,F 分别为BC ,CD 上的点,2CE EB =,2CF FD =,若线段EF 上存在一点M ,使得5162AM AB AD =+,则||AM =__________,若点N 为线段BD 上一个动点,则AN MN ⋅的取值范围为__________.【答案】73 371,363⎡⎤-⎢⎥⎣⎦【解析】 【分析】以菱形的对角线为在不在建立平面直角坐标系,通过坐标运算先求M 坐标然后可得||AM ,再用坐标表示出AN MN ⋅,由二次函数性质可得所求范围. 【详解】因为ABCD 为菱形,所以AC BD ⊥,以BD 、AC 所在直线分别为x 、y 轴建立平面直角坐标系,因为2AB =,60BAD ∠=︒,所以1,OB OD OC OA ====则(0,(1,0),(1,0)A B D -,设((,0)M m N n 43(1,3),(1,3),(,),(,3),3AB AD AM m AN n ==-==因为5162AM AB AD =+,所以51((62m =+-解得13m =,所以17||93AM =又1(,3MN n =-所以21137()1()3636AN MN n n n ⋅=--=--因为11n -≤≤,所以当16n =时,AN MN ⋅有最小值3736-, 当1n =-时,AN MN ⋅有最大值13,所以AN MN ⋅的取值范围为371,363⎡⎤-⎢⎥⎣⎦故答案为:73,371,363⎡⎤-⎢⎥⎣⎦。

2023-2024年小学数学五年级上册期末复习第三单元《小数除法》(人教版含详解)

2023-2024年小学数学五年级上册期末复习第三单元《小数除法》(人教版含详解)

期末知识大串讲人教版数学五年级上册期末章节考点复习讲义第三单元小数除法知识点01:小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

知识点02:小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。

商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。

知识点03:除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

知识点04:除法中的变化规律:①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。

知识点05:循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

@ 循环节:一个循环小数的小数部分,依次不断重复出现的数字。

如6.3232……的循环节是32.7、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数考点01:除数是小数的小数除法1.一个小于1(除0外)的数除以0.36,商一定()这个数。

A.大于B.等于C.小于【答案】A【完整解答】解:一个除0外的数除以0.36,商一定大于这个数。

故答案为:A。

【思路引导】一个非0数除以大于1的数,商小于这个数,除以小于1的数,商大于这个数。

2.(2022五上·丹寨期中)下面的商大于被除数的除法算式是()。

A.2.45÷0.25 B.1.97÷5.2 C.8.7÷12【答案】A【完整解答】解:A:2.45÷0.25 >2.45,B:1.97÷5.2 <1.97,C: 8.7÷12 <8.7。

小学数学:12种计算方法详解

小学数学:12种计算方法详解

小学数学:12种计算方法详解随着小学数学的研究,学生需要掌握多种计算方法来解决各种数学问题。

本文将详细介绍小学数学中的12种常见计算方法,帮助学生更好地理解和运用这些方法。

1. 垂直计算法垂直计算法是最基本的计算方法之一。

在竖式计算中,将数字按照位数对齐,通过逐位相加或相减来完成加法和减法运算。

2. 进位计算法进位计算法适用于两位以上的加法运算,当某位相加的结果超过9时,通过向高位进位来完成计算。

3. 借位计算法借位计算法适用于两位以上的减法运算,当被减数的某位小于减数的相应位时,通过向高位借位来完成计算。

4. 乘法竖式计算法乘法竖式计算法适用于两位以上的乘法运算。

将被乘数的每一位与乘数的每一位相乘,并按照位数对齐相加得到最终结果。

5. 除法竖式计算法除法竖式计算法用于除法运算。

将除数和被除数按位对齐,通过试商、试除和下降除数的方法来完成除法计算。

6. 短除法短除法是一种简化的除法计算方法。

通过取出除数的最高位来试商,然后进行减法运算,直到无法继续为止。

7. 加一算法加一算法是一种简便的加法计算方法。

通过在被加数的个位上加一,来快速求得加一后的结果。

8. 减一算法减一算法与加一算法类似,通过减一来快速求得减一后的结果。

9. 十进制转二进制十进制转二进制是一种重要的数制转换方法。

通过不断进行除2取余的运算,将十进制数转换为等值的二进制数。

10. 二进制转十进制二进制转十进制是将二进制数转换为十进制的方法。

通过按权展开法将二进制数转换为对应的十进制数。

11. 进制转换进制转换是指将一个进制的数转换为另一个进制的数。

通过按位展开法来完成不同进制之间的转换。

12. 十进制小数的四则运算十进制小数的四则运算包括加法、减法、乘法和除法。

通过对小数点对齐,然后按照整数计算的方法来进行相应的运算。

以上是小学数学中的12种常见计算方法。

深入了解和掌握这些方法将帮助学生更好地解决数学问题,并提高数学运算的准确性和效率。

第七讲小数四则运算(专项复习讲义)-2023学年小升初专项复习讲义(苏教版)

第七讲小数四则运算(专项复习讲义)-2023学年小升初专项复习讲义(苏教版)

第七讲小数四则运算(专项复习讲义)(知识梳理+专项练习)1、小数加法小数加法的意义与整数加法的意义相同。

是把两个数合并成一个数的运算。

2、小数减法小数减法的意义与整数减法的意义相同。

已知两个加数的和与其中的一个加数,求另一个加数的运算.3小数乘法小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。

4、小数除法小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

一、选择题1.45×0.25的结果比44×0.25大()。

A.一个1B.一个44C.一个0.25D.一个4511二、填空题长( )厘米。

15.上午8:05,一列火车以每小时120千米的速度从甲地开出,行驶90千米到达乙地,这列火车到达乙地的时刻是( )时( )分。

16.在0.4,0.404,0.,0.434中,最大的数是( ),最小的数是( ),有限小数有( ),无限小数有( ).17.有资料表明,某地区高度每增加100米,气温下降0.8℃。

数学兴趣小组的同学由此想出了测量山峰高度的办法:一名同学在山脚,一名同学在山顶,他们在某天上午9时整测得山脚和山顶的气温分别为18℃和15.6℃。

由此可推算出该山峰高( )米。

三、判断题四、计算23.竖式计算.℃50-23.7=℃2.08×1.5=℃2.4×0.86=24.怎样简便就怎样计算28.4×99+28.4 3.6×2010.94×2.5﹣0.454×0.8×12.5×2.516.6+3.4×2.8 5.6÷0.2÷0.5五、解答题25.某市居民燃气收费标准是每户每月用气不超过4m3(含4m3),每立方米1.8元;当超过4m3时,超出部分每立方米3元。

2023届浙江高三物理高考复习微专题模型精讲精练第29讲 变力做功的6种计算方法(含详解)

2023届浙江高三物理高考复习微专题模型精讲精练第29讲 变力做功的6种计算方法(含详解)

第29讲变力做功的6种计算方法一.知识回顾方法举例说法1.应用动能定理用力F把小球从A处缓慢拉到B处,F 做功为W F,则有:W F-mgL(1-cosθ)=0,得W F=mgL(1-cosθ)2.微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=F f·Δx1+F f·Δx2+F f·Δx3+…=F f(Δx1+Δx2+Δx3+…)=F f·2πR3.等效转换法恒力F把物块从A拉到B,绳子对物块做功W=F·⎝⎛⎭⎪⎫hsinα-hsinβ4.平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)6.图像法在F­x图像中,图线与x轴所围“面积”的代数和就表示力F在这段位移上所做的功7.功率法汽车恒定功率为P,在时间内牵引力做的功W=Pt二.例题精析题型一:应用动能定理例1.如图所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,重力加速度为g,现在用力F向上缓慢拉A直到B刚好要离开地面,则这一过程中弹性势能的变化量△E p 和力F 做的功W 分别为( )A .m 2g 2k,m 2g 2kB .m 2g 2k,2m 2g 2kC .0,m 2g 2kD .0,2m 2g 2k题型二:微元法例2.在水平面上,有一弯曲的槽道AB ,槽道有半径分别为R 2和R 的两个半圆构成,现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为( )A .0B .FRC .32πFRD .2πFR题型三:等效转换法例3.如图所示,轻绳一端受到大小为F 的水平恒力作用,另一端通过定滑轮与质量为m 、可视为质点的小物块相连。

开始时绳与水平方向的夹角为θ,当小物块从水平面上的A 点被拖动到水平面上的B 点时,位移为L ,随后从B 点沿斜面被拖动到定滑轮O 处,BO 间距离也为L ,小物块与水平面及斜面间的动摩擦因数均为μ,若小物块从A 点运动到B 点的过程中,F 对小物块做的功为W F ,小物块在BO 段运动过程中克服摩擦力做的功为W f ,则以下结果正确的是( )A .W F =FL (2cos θ﹣1)B .W F =2FLcos θC .W f =μmgLcos θD .W f =FL ﹣mgLsin2θ题型四:平均值法例4.当前,我国某些贫困地区的日常用水仍然依靠井水。

最新小学奥数 分数的速算与巧算(含详解)

最新小学奥数 分数的速算与巧算(含详解)

最新小学奥数 分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

第四单元 万以内的加法和减法(二)(期末复习讲义)三年级数学上册(人教版)

第四单元 万以内的加法和减法(二)(期末复习讲义)三年级数学上册(人教版)

人教版三年级数学上册期末复习重难点知识点第四单元万以内的加法和减法(二)同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。

每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。

加油!知识点一:三位数加三位数(不进位)1.个十百位要对齐;2.相加要从个位起;3.个位相加的和写在个位,以此类推。

知识点二:三位数加三位数(不连续进位)1.个十百位要对齐;2.相加要从个位起;3.哪一位上的数相加满十,就要向前一位进1。

4.列竖式计算加法时,不仅要注意相同数位对齐,还要注意进位的1不要漏加。

知识点三:三位数加三位数(连续进位)1.相同数位要对齐,从个位算起,哪一位上的数相加满十,就向前一位进1。

2.加法的验算,将两个加数的位置进行交换,重新再算一遍,两次相加的结果一致方为正确。

知识点四:三位数减三位数(不退位)1.个、十、百位要对齐;2.相减要从个位起;3.个位相减的差写在个位,以此类推。

知识点五:三位数减三位数(连续退位)列竖式计算减法时,不仅要注意相同数位对齐,还要注意退位的1不要漏减。

知识点六:被减数中间有0的连续退位减法减法验算时可以用差加减数,看结果是不是等于被减数;也可以用被减数减差,看结果是不是等于减数。

知识点七:解决问题解决实际问题时,要认真分析具体情况,再灵活选择解决问题的策略。

重点:1.掌握万以内的加法(不进位加法和进位加法)的计算方法。

2.掌握连续进位加法和连续退位减法的笔算方法和口算方法。

3.掌握被减数中间有0的连续退位减法的计算方法。

难点:1.理解进位加法和退位减法的算理,归纳并灵活运用法则进行计算。

2.探索验算的多种方法,掌握加法的验算方法,理解并掌握加法的两种验算方法。

考点一:万以内的加法的笔算方法:相同数位对齐,从个位算起,哪一位相加满十要向前一位进一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为 f (x*) = 0 所以 Φ ′ (x*) = 0 也即 Φ(x)在根的附近收敛很
(1)局部收敛定理(p30)
设 f ′(x) 存在, 且 f ′(x) 在方程f(x)=0 的根x*附近不为零 ,
| f (x) f "(x) |
若| Φ ′(x) | =
[ f ' (x)2 ] <= L <1 , 则Newton迭代格式收敛
Xi(即a
in+1(i))=(a
(i) in+1
-
)/aii(i)
Gauss列主元消去法
关键步骤
第k次消元时,在系数矩阵A的第k列 元素中选取绝对值最大的元素为主元 素。
意义 对分次数n的计算
n ln(b a) ln 1
ln 2
迭代法
• 基本思想 xn1 (xn )
•收敛条件 '(x) 1 (收敛定理1)
• 收敛阶
记ek x* xk
lim
k
ek 1 ek p
C( 0)
P 阶收敛
迭代法
'(x*) 0
一阶收敛
'(x*) 0 ''(x*) 0 二阶收敛
er*
e* x*
x* x*
x
,
x
0
er*
e* x*
* r
绝对误差、相对误差、有效数字的定义
有效数字的定义 x* ( x110 1 x210 2 xn10 n ) 10 m x* x 1 10 mn
2
x* x 1 10k 2
误差同有效数字的关系
① x x* 1 10mn 2
计算方法
总复习
第一章 误差和有效数字
误差的来源及分类 绝对误差、相对误差、有效数字的定义 误差同有效数字的关系 数值计算中应注意的几个问题
误差的来源及分类
模型误差 观测误差 截断误差 舍入误差
绝对误差、相对误差、有效数字的定义
绝对误差与绝对误差限 e* x* x
e* x* x *
相对误差与相对误差限
y f ( x0 ) f ( x0 )( x x0 )
令 y=0, 则得此切线与x轴
的交点x1, 即
x1
x0
f (x0 ) f ( x0 )

x k 1
xk
f (xk ) f ( xk )
y
f (x0)
x*
x
x1 x0
牛顿迭代法又 称切线法
收敛性 由 Φ(x) 的表达式得:
| Φ′ (x) | = | f (x) f "(x) | [ f '(x)2]
则Newton迭代序列收敛于f(x) =0 在[ a, b]的唯一根
牛顿迭代法
牛顿迭代公式至少二阶收敛
特点
在单根附近具有较高的收敛速度。
公式
xk 1 xk
f (xk ) f '(xk )
牛顿迭代法
m重根
'(x*) 1 1 0
m
xk 1
xk
mf (xk ) f '(xk )
第三章 线性代数方程组的解法
(2) 全局收敛定理(p31大范围收敛定理)
设 f( x) 在[ a ,b] 上满足
① f(a)f(b) <0 ;
------.>保证有根
②f ′ (x) ≠ 0 ;
------.>保证单根
③ f 〞 (x) 存在且不变号; ------.>保证凸凹性不变
④ 取 x0 ∈ (a, b) , 使 f 〞(x0) f(x0) >0 ------.>保证收敛
直接法(快速有效) 迭代方法(节省内存) 向量范数、矩阵范数的定义、性质 条件数及其对相对误差的影响(三个证 明)
直接法
Gauss消去法、Gauss列主元消去法(算 法描述) 追赶法(三对角严格对角占优) 平方根法
Gauss消去法
消元过程
ami(jikk1)
a(k) ik
ai(jk
a(k) kk
) mik
(k ak(kj
)
1,2,, n 1) (i, j k 1,,
n)
bi(k1) bi(k) mik bk(k) (i k 1,, n)
回代过程
xn
xk
bn( n ) (bk(k )
a(n) nn
n
ak(kj ) x j )
a(k) kk
jk 1
(k n 1,,1)
二、算法描述 1、消元
x
小结:
1、什么是舍入误差?什么是截断误差?它们 的来源是什么?
2、什么是绝对误差、相对误差和有效数字? 3、绝对误差、相对误差和有效数字之间的关
系是什么?
4、 п=3.141592654… (1) 若其近似值取5位有效数字,则该近似 值是多少?其绝对、相对误差限是多少?
(2)若其近似值取3.1415, 绝对误差限是什 么?有效数字是什么
5、下列近似值有几位有效数字,其相对误 差限是什么?,绝对误差限是什么?
(1) x1=e= 2.71828=x1*
(2) x2=0.030051 x2*=0.0300
(3)x3=e/100 0.02718=x3*
第二章 非线性方程的解法
对分法 迭代法 牛顿迭代法
对分法
条件
f(x)在[a,b]上连续,f(a)f(b)<0,单调
② x x* x*
1 10(n1) 2x1

* r
1 2(x1 1)
10 (n1)
四舍五入得到
则x*至少具有n位有效数字
如 3.14= 0.314×101
(X * =±0.X1X2…Xn ×10m) n=3,m=1
|п – 3.14| =
|3.1415926… - 3.14| =0.0015926….
对k=1…..n-1
消元因子: C= aik(k)/ akk(k) ( i= k+1….n )
系数变化:
① aij(k+1) = aij(k) (i≤ k) ② aij(k+1) = aij(k) - C. akj(k)
( i > k , j=k+1,…,n+1 )
2、回代 第 i次回代公式 ( i=n,n-1….1)
≤ 0.005
=
10-2 =
101-3 =
10 m-n
数值计算中应注意的几个问题
避免两相近数相减 防止大数“吃”小数 除数不能太小 算法稳定性 简化运算步骤,减少运算次数
x1 x 1 x1 x
类似的:
e x 1 x 1 1 x 1 x2 ...
2 6
ห้องสมุดไป่ตู้
xε x
ε
;
xε x
lnx ε ln x ln1 ε ;
牛顿迭代法
条件
设f(x)在[a,b]上连续,f(a) f(b)<0,且x0为[a,b] 上根x*∈[a, b ]的一个近似值。
几何意义
用切线与x轴的交点近似代替取限于x轴的交 点。
.牛顿迭代法的几何意义: 以f ’(x0)为斜率作过(x0 , f (x0))点的直线,即作f(x)在 点x0 的切线方程:
相关文档
最新文档