解析几何中计算方法与技巧
高中数学学习中的解析几何解题技巧
高中数学学习中的解析几何解题技巧解析几何是数学中的一个重要分支,也是高中数学中的一项重要内容。
在学习解析几何时,很多学生常常会遇到解题困难的情况。
本文将介绍一些高中数学学习中解析几何解题的技巧,帮助学生更好地应对解析几何题目。
一、利用图形性质确定方程解析几何问题常常涉及到图形的方程,而方程又是解题的基础。
在解析几何问题中,我们可以通过观察图形的性质,来确定方程的形式。
例如,当求解过点A和B的直线方程时,我们可以根据直线的斜率来确定方程的形式。
如果我们已知直线经过点A(-3,5)和B(2,4),我们可以利用两点间的斜率公式来求解直线的斜率,即\[k = \frac{{y_2-y_1}}{{x_2-x_1}} = \frac{{4-5}}{{2-(-3)}} = -\frac{1}{5}\]然后可以通过直线的斜率和已知点的坐标,使用点斜式或者斜截式公式得到直线的方程。
二、利用向量运算简化计算在解析几何中,向量是一项重要的工具。
通过向量的加减和数乘等运算,可以简化计算过程。
例如,当求解两条直线的夹角时,我们可以利用向量的点积公式来求解。
设两条直线的方程分别为\[ax+by+c=0\]和\[px+qy+r=0\],则两条直线的夹角\(\theta\)满足:\[\cos{\theta}=\frac{{|ap+bq|}}{{\sqrt{{a^2+b^2}}\sqrt{{p^2+q^2}}}}\]通过向量的点积公式,我们可以利用方程的系数来求解直线的夹角,而无需对方程进行直接求解。
三、利用平移旋转变换简化题目解析几何中的平移、旋转等变换是解题过程中常常用到的工具。
通过适当的变换,可以将复杂的题目转化为简单的形式,便于求解。
例如,我们在求解直线与圆的位置关系时,可以通过平移变换将圆心移到坐标原点,从而简化题目。
设直线的方程为\(ax+by+c=0\),圆的方程为\((x-h)^2+(y-k)^2=r^2\),我们可以通过平移变换将圆的方程转化为\((x-a)^2+(y-b)^2=r^2\),其中\(a\)和\(b\)为圆心的坐标。
(完整版)解析几何大题的解题技巧
目录解析几何大题的解题技巧(只包括椭圆和抛物线) (1)一、设点或直线 (1)二、转化条件 (1)(1)求弦长 (2)(2)求面积 (2)(3)分式取值判断 (2)(4)点差法的使用 (4)四、能力要求 (6)五、补充知识 (6)关于直线 (6)关于椭圆: (7)例题 (7)解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线———————————————一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
直线与曲线的两个交点一般可以设为等。
对于椭圆上的唯一的动点,还可以设为。
在抛物线上的点,也可以设为。
◎还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。
如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时才可以设直线的参数方程。
如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。
(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为或x=my+n联立起来更方便。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
下面列出了一些转化工具所能转化的条件。
向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。
解析几何解答题技巧
解析几何解答题技巧
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
在解析几何的解答题中,需要注意以下几点技巧:
1. 建立坐标系:根据题目的具体情况,选择适当的坐标系,如直角坐标系、极坐标系或参数方程。
坐标系的建立有助于将几何问题转化为代数问题,便于进一步求解。
2. 设点坐标:根据题目要求,设出未知点的坐标。
设点坐标时需要注意,所设的坐标应尽量满足题目的条件,便于求解。
3. 列出方程:根据题目的已知条件和设定的坐标,列出所需的方程。
列方程时需要注意,方程应尽可能简单,便于求解。
4. 解方程:根据所列的方程,解出未知数的值。
解方程时需要注意,解方程的方法应尽可能简单,便于计算。
5. 验证答案:解出答案后,需要进行验证,确保答案符合题目的条件和已知条件。
验证答案时需要注意,答案应尽可能准确,避免出现误差。
6. 总结答案:最后需要对答案进行总结,写出完整的答案。
总结答案时需要注意,答案应尽可能清晰,便于阅读和理解。
总之,在解析几何的解答题中,需要注意建立坐标系、设点坐标、列出方程、解方程、验证答案和总结答案等技巧。
同时还需要注意计算准确、思路清晰、表达简洁等要求。
解析几何求解技巧
解析几何求解技巧解析几何是高等数学的重要分支之一,它主要研究几何图形的性质和相关问题的解法。
解析几何的求解技巧是解决几何问题的关键,下面将介绍几种常用的解析几何求解技巧。
一、坐标法:坐标法是解析几何中最常见的求解技巧。
它利用坐标系和坐标代数的方法,通过确定几何图形上的点的坐标,将几何问题转化为代数方程的求解问题。
具体的求解步骤可以概括为:1. 建立坐标系。
根据题目所给条件,确定适当的坐标系,并选择合适的单位长度。
2. 确定几何图形上的点的坐标。
根据题目所给条件,推导出几何图形上点的坐标关系。
可以运用平面几何中的基本性质和定理,通过代数方法求解。
3. 转化为代数方程。
根据几何图形的性质和定理,将几何问题转化为代数方程的求解问题。
这一步骤需要灵活应用代数方程的解法技巧。
4. 求解代数方程。
根据所得的代数方程,运用代数解法将方程求解。
5. 检验结果。
将求得的解代入原方程中,验证是否满足题目所给条件。
如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。
二、向量法:向量法是解析几何中另一种常用的求解技巧。
它运用向量的概念和运算,通过向量的相等、垂直、平行等性质,推导出几何图形和问题的解法。
具体的求解步骤可以概括为:1. 确定坐标系和向量的表示。
建立适当的坐标系,确定向量的表示方法。
常用的表示方法有坐标表示法、定点表示法和参数表示法等。
2. 利用向量的性质和运算推导条件。
根据题目所给条件,利用向量的性质和运算,推导出几何图形上的条件和关系。
3. 利用向量之间的关系求解。
根据所得的几何图形上的条件,利用向量的关系,运用向量的加减、数量积、向量积等运算进行求解。
4. 检验结果。
将求得的解代入原方程中,验证是否满足题目所给条件。
如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。
三、分析法:分析法是解析几何中辅助性的求解技巧。
它通过对几何图形的分析,将几何问题转化为具有明确几何意义的问题,并通过几何性质和定理的应用,求解问题。
数学学习总结解析几何的基础知识与解题技巧
数学学习总结解析几何的基础知识与解题技巧数学学习总结:解析几何的基础知识与解题技巧数学作为一门普适性很强的学科,在我们生活和学习中起着举足轻重的作用。
而解析几何作为数学中的一个重要分支,运用数学的方法研究几何问题,具有较高的实用性和理论性。
在我们的学习中,解析几何的基础知识和解题技巧是非常关键的。
本文将为大家总结解析几何的基础知识以及解题技巧,希望对大家的学习有所帮助。
解析几何的基础知识:一、直角坐标系直角坐标系是解析几何的基础,它由两个相互垂直的坐标轴组成,分别为x轴和y轴。
我们可以通过坐标来定位平面上的点,x轴上的坐标值表示横坐标,y轴上的坐标值表示纵坐标。
在直角坐标系中,通过两点之间的距离公式和斜率公式,我们能够解决很多与直线、点、图形等相关的问题。
二、直线和曲线的方程解析几何中,直线和曲线的方程是我们研究和解题的关键。
对于一条直线,我们可以通过一般式方程、点斜式方程、两点式方程等不同形式来表示,根据题目给出的条件来确定直线的方程。
对于曲线,如圆、抛物线、椭圆等,我们可以通过对称性、距离公式、焦点等性质来确定其方程。
三、直线和曲线的性质了解直线和曲线的性质是解析几何中的基础知识之一。
例如,我们需要知道直线的斜率和截距与直线方程的关系,直线的斜率为正、负、0或不存在时的特点等。
对于曲线来说,我们需要了解其对称性、切线和法线的性质,以及与坐标系轴交点等。
这些性质的掌握对于解题过程中的分析和推导非常有帮助。
解析几何的解题技巧:一、几何图形的转化在解析几何的解题过程中,我们可以根据题目给出的条件将几何图形转化为直线或曲线的方程,从而利用方程的性质解题。
例如,对于一个三角形,我们可以通过已知的顶点坐标,利用直线的斜截式方程或两点式方程,将其边的关系转化为方程的关系,从而得到所求的结果。
二、适当引入参数在解析几何的解题过程中,我们有时可以适当引入参数,通过参数的设定,使得问题的求解更加简化。
例如,在研究两条直线的关系时,我们可以假设一条直线上的某一点作为参数,从而通过参数方程来表示这条直线,从而简化问题的解答。
高中数学解析几何优化计算6大技巧
解析几何优化计算6大技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.技巧一回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.【例题】如图,F 1,F 2是椭圆C 1:x 24y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是()A.2B.3C.32D.62【解析】由已知,得F 1(-3,0),F 2(3,0),设双曲线C 2的实半轴长为a ,由椭圆及双曲线的定义和已知,1|+|AF 2|=4,2|-|AF 1|=2a ,1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62.【答案】D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是()A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由题意可得S△BCFS △ACF =|BC ||AC |=x B x A =|BF |-p 2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|PA |2=(x P +m )2+y 2P=(x P +m )2+4mx P ,则=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||PA |≥22,所以|PF ||PA |的最小值为22.答案:22技巧二设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.【例题】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为()A.x 245+y 236=1 B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=1【解析】设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=-2,+y 21b 2=1,+y 22b2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.【答案】D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为()A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ),分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka ,由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c,整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2)+y 21b2=1,+y 22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22.答案:22技巧三巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.【例题】设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |>3.【解析】法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).kx 0,+y 20b2=1,消去y 0并整理,得x 20=a 2b2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.法二:依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k2,代入②,得(1+k2)·4a2(1+k2)2<a2,解得k2>3,所以|k|> 3.法三:设P(a cosθ,b sinθ)(0≤θ<2π),则线段OP的中点Qθ,b2sin|AP|=|OA|⇔A Q⊥OP⇔k A Q×k=-1.又A(-a,0),所以k A Q=b sinθ2a+a cosθ,即b sinθ-ak A Q cosθ=2ak A Q.从而可得|2ak A Q|≤b2+a2k2A Q<a1+k2A Q,解得|k A Q|<33,故|k|=1|k A Q|> 3.[关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量.[对点训练]设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,求r的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l的方程为x=ty+m,A(x1,y1),B(x2,y2),代入抛物线y2=4x并整理得y2-4ty-4m=0,则有Δ=16t2+16m>0,y1+y2=4t,y1y2=-4m,那么x1+x2=(ty1+m)+(ty2+m)=4t2+2m,可得线段AB的中点M(2t2+m,2t),而由题意可得直线AB与直线MC垂直,即k MC·k AB=-1,可得2t-02t2+m-5·1t=-1,整理得m=3-2t2(当t≠0时),把m=3-2t2代入Δ=16t2+16m>0,可得3-t2>0,即0<t2<3,又由于圆心到直线的距离等于半径,即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4.故r 的取值范围为(2,4).技巧四数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.【例题】已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.【解析】设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|,则△APF 的周长为|PA |+|PF |+|AF |=|PA |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a ,由于|AF |+2a 是定值,要使△APF 的周长最小,则|PA |+|PF 1|最小,即P ,A ,F 1共线,由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26,所以=12×6×66-12×6×26=12 6.【答案】126[关键点拨]要求△APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是()A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x-4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=()A .4 B.5C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.技巧五妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.【例题】如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.【解析】把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则-32a 而F (c,0),则FB -32a -c FC -c 又∠BFC =90°,故有FB ·FC -32a -c -c c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.【答案】63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练]设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为()A .90° B.60°C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.2-y 22=1,0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 2x 1x 2]=8-2x 203x 20-4+12-x 204-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°.技巧六巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.【例题】已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解析】(1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以-65,(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),k (x +2),y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0.则x A +x M =-16k 21+4k2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为-65,证明如下:因为k MP =y M x M +65=2-8k 21+4k 2+65=5k 4-4k 2,同理可得k PN =5k 4-4k2.所以直线MN 过x 轴上的一定点-65,[关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k2这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c2,b 2=3c 2,将点P c 2=1,故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1,代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0,显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0,则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|)=12r 0·4a =12×8×327=1227所以12t 2+14+3t2=1227,解得t 2=1,因为所求圆与直线l 相切,所以半径r =2t 2+1=2,所以所求圆的方程为(x -1)2+y 2=2.。
初中解析几何解题技巧与实例讲解
初中解析几何解题技巧与实例讲解解析几何是数学的一个重要分支,也是初中数学的一部分。
在学习解析几何时,同学们常常会遇到一些难题,需要一些技巧和方法来解决。
本文将介绍一些初中解析几何解题的技巧,并给出一些实例讲解,帮助同学们更好地掌握解析几何的应用。
一、直线与坐标在解析几何中,直线是一个重要的概念。
通过给定的条件,我们可以确定直线的方程或性质。
下面通过两个实例来说明解析几何中直线的解题技巧:实例1:已知点A(2,3)和点B(5,7),求线段AB的中点坐标。
解析:线段的中点坐标可以通过x坐标和y坐标的平均值来确定。
根据题意,点A的坐标是(2,3),点B的坐标是(5,7)。
所以线段AB的中点坐标为:[(2+5)/2,(3+7)/2],即中点的坐标为(3.5,5)。
实例2:已知直线的斜率为1/2,且经过点(4,3),求直线的方程。
解析:直线的方程可以通过斜率和截距来确定。
根据题意,直线的斜率为1/2,经过点(4,3)。
斜率为1/2说明直线上的任意两点横坐标的差和纵坐标的差的比值都是1/2。
现在取直线上的一点为(x,y),则有(x-4)/(y-3)=1/2。
通过解这个方程可以得到直线的方程。
二、直角三角形与勾股定理直角三角形是解析几何中常见的一个概念,其中最重要的定理就是勾股定理。
下面通过两个实例来说明直角三角形的解题技巧:实例1:已知直角三角形的两条直角边长度分别为3和4,求斜边的长度。
解析:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
所以斜边的长度等于√(3^2+4^2)=5。
实例2:已知直角三角形的斜边长度为5,一直角边长度为3,求另一直角边的长度。
解析:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
所以另一直角边的长度等于√(5^2-3^2)=4。
三、圆与圆的相交解析几何中考察的另一个重要概念是圆与圆的相交。
通过确定圆心和半径,我们可以确定圆的性质与位置关系。
下面通过一个实例来说明圆与圆的相交的解题技巧:实例:已知圆A的圆心为(2,3),半径为4;圆B的圆心为(5,7),半径为3,求圆A和圆B的交点坐标。
数学解析几何题解题技巧
数学解析几何题解题技巧解析几何作为高中数学重要的一部分,是数学中的一门重要学科。
解析几何题目通常涉及到点、线、面等几何元素,并结合数学分析的方法进行求解。
解析几何题解题技巧的掌握对于学生的考试成绩和数学水平有着重要的影响。
本文将介绍一些解析几何题解题的常见技巧和方法。
一、坐标表示法在解析几何中,常常使用坐标表示法来解决问题。
坐标表示法利用数轴上的点与数的对应关系,将几何问题转化为数学问题进行求解。
在解析几何题目中,常用的坐标表示法包括直角坐标系、极坐标系等。
直角坐标系是最常见的坐标表示法之一。
在直角坐标系中,我们用x和y两个坐标轴来表示二维平面上的点。
在解析几何题目中,可以通过设定坐标原点,确定x轴和y轴的正负方向,来表示点的位置。
利用直角坐标系,我们可以计算线的斜率、距离等问题,从而解决解析几何题目。
极坐标系是另一种常用的坐标表示法。
在极坐标系中,我们用极径和极角来表示平面上的点。
极径表示点到坐标原点的距离,极角表示点与极轴的夹角。
利用极坐标系,我们可以更方便地表示圆、曲线等等问题,从而解决解析几何题目。
二、方程表示法方程表示法是解析几何题目中另一个重要的解题方法。
通过建立方程,可以用代数的方法求解几何问题。
在解析几何题目中,常常利用点、线、曲线的方程来表示几何元素的性质和关系。
例如,对于一条直线,可以通过两点式、点斜式、一般式等不同形式的方程来表示。
在解析几何题目中,可以通过已知条件,建立直线的方程,并结合其他几何元素的方程,解得问题的答案。
对于一条曲线,通常可以通过解析几何的知识,建立其方程,并通过求解方程,得到曲线上的点坐标等问题。
在解析几何题目中,方程表示法是解决问题的重要手段之一。
三、向量表示法向量表示法是解析几何题目中另一个常用的技巧。
向量表示法利用向量的性质和运算,可以更方便地表示点、线、面等几何元素,从而解决解析几何问题。
在解析几何题目中,常常通过设立向量的起点和终点,来表示点或线段。
解析几何解答题的答题策略和技巧
解析几何解答题的答题策略和技巧解析几何解答题答题策略和技巧解析几何题目的解答通常涉及到代数和几何原理相结合。
要有效解决这些问题,遵循以下策略和技巧至关重要:理解题意仔细阅读题目,并确保理解要求。
确定您需要找到的内容,例如点的坐标、线的方程或图形的性质。
选择适当的坐标系根据问题中的信息,选择合适的坐标系。
笛卡尔坐标系(直线坐标系)通常用于描述二维空间,而极坐标系则适用于某些涉及角度或极半径的问题。
建立方程或不等式使用代数和几何原理建立方程或不等式。
这可能包括使用点-斜率形式、斜截距形式、点-线距离公式或其他相关概念。
求解方程或不等式运用代数技巧求解方程或不等式。
这可能涉及因子分解、平方、化简或三角函数的使用。
验证解将找到的解代回原始方程或不等式中,以确保其满足问题条件。
几何直觉在求解过程中,运用几何直觉来了解图形的形状和位置。
这可以帮助您做出假设和做出明智的决策。
技巧和注意事项简化问题:如果可能,将复杂的问题分解成更简单的部分,以便更容易解答。
利用对称性:在某些情况下,图形或方程可能具有对称性。
利用这些对称性可以简化问题。
使用图形计算器:图形计算器可以用于可视化图形并检查解。
保持整洁和有条理:使用清晰的数学符号并以有条理的方式显示您的工作步骤。
复查解:在完成解决方案后,花时间复查您的工作,以确保准确性和一致性。
特定类型问题的技巧点和线:使用点-斜率形式、斜截距形式或点-线距离公式求解点的坐标或线的方程。
圆:使用标准圆方程或圆心和半径来确定圆的性质。
双曲线:使用双曲线的标准方程或渐近线来求解焦点、顶点和渐近线。
抛物线:使用抛物线的标准方程来确定顶点、焦点和准线。
椭圆:使用椭圆的标准方程来确定中心、半轴和焦距。
通过遵循这些策略和技巧,您可以大大提高解析几何问题的解答能力。
记住,熟能生巧,因此定期练习和学习相关概念至关重要。
数学几何与解析几何题解题技巧总结
数学几何与解析几何题解题技巧总结数学几何和解析几何是数学中非常重要的分支,它们有着广泛的应用领域,如物理学、工程学、计算机图形学等。
解决数学几何和解析几何问题需要一定的技巧和方法,下面将总结一些常用的解题技巧。
一、数学几何题解题技巧1. 图形的性质分析法在解决数学几何题目时,首先要对给定的图形进行性质分析。
通过观察图形的形状、角度、边长等特征,可以找到一些规律和关系,从而帮助解决问题。
例如,在判断一个四边形是否为矩形时,可以观察其四个角是否都为直角,四条边是否相等等。
2. 利用相似三角形相似三角形是数学几何中常用的重要概念。
当两个三角形的对应角相等,对应边成比例时,可以判断它们为相似三角形。
利用相似三角形的性质,可以求解一些难题。
例如,当两个三角形相似时,可以利用相似比例关系求解未知边长或角度。
3. 利用平行线和垂直线的性质平行线和垂直线是几何中常见的重要概念。
利用平行线和垂直线的性质,可以解决一些几何问题。
例如,当两条直线平行时,它们的对应角相等;当两条直线垂直时,它们的斜率乘积为-1。
4. 利用勾股定理和三角函数勾股定理是解决直角三角形问题的基本工具。
当一个三角形中有一个直角,可以利用勾股定理求解未知边长。
此外,三角函数也是解决三角形问题的重要工具,例如正弦定理、余弦定理等。
二、解析几何题解题技巧1. 坐标系的建立解析几何中,常常需要建立坐标系来描述几何图形。
建立坐标系可以将几何问题转化为代数问题,从而更容易求解。
在建立坐标系时,需要选择合适的原点和坐标轴方向,使得问题的求解更加简便。
2. 利用距离公式和中点公式距离公式和中点公式是解析几何中常用的工具。
距离公式可以求解两点之间的距离,中点公式可以求解线段的中点坐标。
利用这两个公式,可以计算线段的长度、判断三角形是否为等边三角形等。
3. 利用直线和曲线的方程直线和曲线的方程是解析几何中的重要工具。
通过求解直线和曲线的交点,可以解决一些几何问题。
数学解析几何题的解题思路和技巧
数学解析几何题的解题思路和技巧数学是一门抽象而又具体的学科,而解析几何则是数学中的一个重要分支。
解析几何通过运用代数和几何的方法研究几何图形的性质和变换规律,是数学中的一种重要工具。
在解析几何中,我们常常需要解决一些具体的问题,下面将介绍一些解析几何题的解题思路和技巧。
一、直线和平面的交点问题在解析几何中,直线和平面的交点问题是比较常见且基础的问题。
解决这类问题的关键在于找到直线和平面的方程,并求解它们的交点。
以一个具体的例子来说明。
假设有一条直线L:y = 2x + 3和一个平面P:2x + y - z = 1,我们需要求解它们的交点。
首先,我们可以将直线L的方程和平面P的方程联立,得到一个含有两个未知数x和y的方程组:2x + y - z = 1,y = 2x + 3。
然后,我们可以通过代入法或消元法求解这个方程组。
将y = 2x + 3代入平面P的方程中,得到2x + (2x + 3) - z = 1,化简得到4x - z = -2。
接下来,我们可以将这个方程代入直线L的方程中,得到y = 2x + 3,化简得到y = 2x + 5。
最后,我们可以将y = 2x + 5代入平面P的方程中,得到2x + (2x + 5) - z = 1,化简得到4x - z = -4。
综上所述,我们得到了两个方程4x - z = -2和4x - z = -4,它们的解为x = 1,z = 6。
因此,直线L和平面P的交点为(1, 5, 6)。
二、直线与曲线的交点问题除了直线和平面的交点问题,直线与曲线的交点问题也是解析几何中常见的问题。
解决这类问题的关键在于找到直线和曲线的方程,并求解它们的交点。
以一个具体的例子来说明。
假设有一条直线L:y = 2x + 3和一个曲线C:y =x^2,我们需要求解它们的交点。
首先,我们可以将直线L的方程和曲线C的方程联立,得到一个含有一个未知数x的方程:x^2 = 2x + 3。
解析几何解题技巧归纳
解析几何解题技巧归纳解析几何是几何学题目的解答和分析。
它涉及到在给定的几何形状和条件下,用逻辑和推理的方法解决几何问题。
解析几何解题技巧是在解析几何题目中的一些常用方法和技巧,用于快速和准确地解决问题。
下面将总结几个常用的解析几何解题技巧。
1.图形的性质和相似性:在解析几何中,了解图形的性质和相似性是非常重要的。
通过观察图形的属性,可以获得有关图形的重要信息。
例如,对于一道问题,如果已知一个图形是一个直角三角形,那么可以迅速推断出两条边是垂直的。
另外,相似性也是解析几何中常用的技巧。
当一个图形与另一个图形相似时,它们的属性和比例关系也是相似的。
2.平移和旋转:平移和旋转是解析几何中常用的技巧,可以通过改变图形的位置和方向来解决问题。
通过将图形平移或旋转,可以使问题更加易于解决。
例如,如果已知两条直线相交于一个点,可以通过将其中一条直线平移到与另一条直线重合来简化问题,并推导出其他性质。
3.弧和角度:在解析几何中,弧和角度是常见的概念。
了解弧和角度的性质和关系可以帮助我们解决几何问题。
例如,当涉及到圆弧和圆心角时,可以使用圆内外角定理和同弧相等定理来解决问题。
此外,了解其他特殊角度的性质,如直角、锐角和钝角,也有助于解决问题。
4.坐标系和方程:坐标系和方程是解析几何中常用的工具。
通过在坐标系中引入坐标和方程,可以将几何问题转化为代数问题。
通过求解方程,可以确定几何图形的特性。
例如,通过设置适当的坐标系和方程,可以求解两条直线的交点或两个图形的相交区域。
5.矩阵和向量:矩阵和向量是解析几何中的一种数学工具,可以用于表示和转换几何对象。
通过使用矩阵和向量的运算,可以实现图形的平移、旋转、缩放等。
例如,将一个向量乘以一个矩阵可以实现图形的旋转。
此外,矩阵和向量还可以用于解决线性方程组等代数问题。
6.直观推理和逻辑推论:解析几何经常需要进行直观推理和逻辑推论。
通过观察和分析图形的性质,进行逻辑推理,可以得出结论。
破解高中数学中的平面解析几何问题的解题技巧
破解高中数学中的平面解析几何问题的解题技巧解析几何是高中数学的一部分,也是较难掌握的数学分支之一。
在解析几何中,平面解析几何问题是其中的重要组成部分。
为了帮助同学们更好地掌握平面解析几何的解题技巧,本文将介绍一些实用的方法和技巧。
一、建立坐标系在解决平面解析几何问题之前,首先要建立坐标系。
选择一个合适的坐标系有助于简化解题过程,减少冗余计算。
通常,我们可以选择直角坐标系或极坐标系,具体选择取决于问题的特点。
对于直角坐标系,可以将问题中涉及到的点坐标表示为(x, y)的形式,从而将几何问题转化为代数问题。
对于极坐标系,可以通过引入极坐标参数来分析问题,有时候更具优势。
建立坐标系之后,我们就可以根据题目的要求选择合适的方法来解决问题了。
二、利用性质和定理在平面解析几何中,有许多性质和定理可以应用于解题过程中。
熟练掌握这些定理和性质是解决问题的关键。
1. 距离公式:根据两点的坐标,可以用距离公式计算它们之间的距离。
对于直角坐标系,距离公式为:d = √((x2 - x1)² + (y2 - y1)²)。
对于极坐标系,距离公式为:d = √(r1² + r2² - 2r1r2cos(θ2 - θ1))。
2. 中点公式:根据两点的坐标,可以求得它们连线的中点坐标。
对于直角坐标系,中点公式为:(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2)。
3. 斜率公式:根据两点的坐标,可以求得它们连线的斜率。
对于直角坐标系,斜率公式为:斜率k = (y2 - y1) / (x2 - x1)。
但需要注意的是,当(x2 - x1)为0时,斜率不存在或为无穷大。
4. 直线方程:利用点斜式或两点式可以得到直线的方程。
点斜式:y - y1 = k(x - x1);两点式:(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)。
5. 圆的方程:根据圆心和半径的坐标可以得到圆的方程。
解析几何中简化运算的常用技巧
解析几何中简化运算的常用技巧技巧一:弦长公式的“巧用”.①直线AB的方程为,与曲线联立后的一元二次方程为,所以直线与二次曲线相交的弦长公式又可以化为:②1.对于公式①在直线弦长的运用.例题1.已知椭圆C(a>b>0)的离心率为,直线:x+2y=4与椭圆有且只有一个交点T.(I)求椭圆C的方程和点T的坐标;(Ⅱ)O为坐标原点,与OT平行的直线与椭圆C交于不同的两点A,B,直线与直线交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.(1)(2) 由第(1)知 ,设直线与直线:x+2y=4联立得与直线椭圆联立得:点评:该方法在求弦长的时候,巧妙运用了弦长公式,该弦长的一个端点在直线上,另一个端点在曲线上,大大简化了计算量.1.对于公式②在直线弦长的运用.例题2. 设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.(I)().(Ⅱ)当与轴不垂直时,设的方程为,, .由得 .过点且与垂直的直线:,到的距离为,所以 .故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为 .当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为 .点评:该方法在求弦长的时候,巧妙运用了简化后的弦长公式,绕开了韦达定理,大大简化了运算量.技巧二:巧设直线方程在直线与圆锥曲线联立的问题中,设直线的点斜式方程是最常用的一种手段,但具体在已知直线过点设方程的是时候,还是很有讲究.当给定的点不在坐标轴上,最好设直线的斜截式方程,计算完后再代点,可大大简化运算量.当给定的点在坐标轴上的时候,则选择直线的点斜式方程为多.【2014年广东,理20,14分】已知椭圆的一个焦点为,离心率为.(1)求椭圆的标准方程;(2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方程.解:(1),,,,椭圆的标准方程为:.方法二:若一切线垂直轴,则另一切线垂直于轴,则这样的点共4个,它们的坐标分别为,.若两切线不垂直与坐标轴,设切线方程为,将之代入椭圆方程得:即显然,这四点也满足以上方程,点的轨迹方程为.点评:本题采用设直线的斜截式方程,大大简化了计算量.若果才用设直线的点斜式方程,则计算量和计算难度会繁琐很多.技巧三:巧用平面几何性质已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A. B.C. D.【解析】设OE的中点为N,如图,因为MF∥OE,所以有=,=.又因为OE =2ON,所以有=·,解得e==,故选A.【答案】A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算.技巧四:设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E 于A,B两点.若AB的中点坐标为M(1,-1),则E的标准方程为( )A.+=1 B.+=1C.+=1 D.+=1【解析】通解:设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=-2,①-②得+=0,所以kAB==-=.又kAB==,所以=.又9=c2=a2-b2,解得b2=9,a2=18,所以椭圆E的标准方程为+=1.优解:由kAB ·kOM=-得,×=-得,a2=2b2,又a2-b2=9,所以a2=18,b2=9,所以椭圆E的标准方程为+=1.【答案】D本题设出A,B两点的坐标,却不求出A,B两点的坐标,巧妙地表达出直线AB的斜率,通过将直线AB的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧五巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C的离心率为,点A,B,F分别为椭圆的右顶点、上顶点和右焦点,且S△ABF=1-.(1)求椭圆C的方程;(2)已知直线l:y=kx+m与圆O:x2+y2=1相切,若直线l与椭圆C交于M,N两点,求△OMN面积的最大值.【解】(1)由已知椭圆的焦点在x轴上,设其方程为+=1(a>b>0),则A(a,0),B(0,b),F(c,0)(c=).由已知可得e2==,所以a2=4b2,即a=2b,可得c=b①.S△AFB=×|AF|×|OB|=(a-c)b=1-②.将①代入②,得(2b-b)b=1-,解得b=1,故a=2,c=.所以椭圆C的方程为+y2=1.(2)圆O的圆心为坐标原点,半径r=1,由直线l:y=kx+m与圆O:x2+y2=1相切,得=1,故有m2=1+k2③.由消去y,得x2+2kmx+m2-1=0.由题可知k≠0,即(1+4k2)x2+8kmx+4(m2-1)=0,所以Δ=16(4k2-m2+1)=48k2>0.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=.所以|x1-x2|2=(x1+x2)2-4x1x2=-4×=④.将③代入④中,得|x1-x2|2=,故|x1-x2|=.所以|MN|=|x1-x2|=×=.故△OMN的面积S=|MN|×1=××1=.令t=4k2+1,则t≥1,k2=,代入上式,得S=2=====,所以当t=3,即4k2+1=3,解得k=±时,S取得最大值,且最大值为×=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y=ax+b±(a,b,c,d均为常数,且ac≠0)的函数常用此法求解,但在换元时一定要注意新元的取值范围,以保证等价转化,这样目标函数的值域才不会发生变化.。
中考数学解析几何解题技巧
中考数学解析几何解题技巧解析几何是中考数学中的一个重要考点,它涉及到平面几何和空间几何的一些基本概念和解题方法。
在中考中,解析几何的题目通常比较灵活多样,需要我们掌握一些解题技巧,下面将介绍几种常用的解析几何解题技巧。
1. 利用图形的对称性质对称性是解析几何中常见的一个特点,利用图形的对称性质可以简化解题的过程。
例如,在求解线段中点问题时,如果两个点关于某个点对称,那么这个点就是中点;在判断线段垂直问题时,如果两条线段的斜率乘积为-1,那么它们就垂直。
2. 用坐标系建立方程建立坐标系是解析几何中的常用方法,通过引入坐标系,可以将几何问题转化为代数问题,从而更方便地进行求解。
当遇到直线,平面或者圆等图形时,可适当引入坐标,利用坐标系建立方程,然后进行计算。
3. 利用平行和垂直关系平行和垂直是解析几何中常见的关系,利用这些关系可以简化解题的过程。
例如,在判断两条直线是否平行时,可以比较它们的斜率是否相等;在判断两条直线是否垂直时,可以比较它们的斜率乘积是否为-1。
4. 利用相似三角形相似三角形是解析几何中常用的一个概念,利用相似三角形的性质可以推导出一些几何关系,从而解决问题。
例如,在判断两条直线是否平行时,可以利用相似三角形的性质得到结论;在求解线段比例问题时,也可以利用相似三角形的性质进行求解。
5. 利用向量法求解向量法是解析几何中的一种常用方法,通过引入向量,可以更直观地描述几何对象之间的关系,从而解决问题。
例如,在求解线段的长度问题时,可以将线段表示为向量的差,然后计算向量的模即可;在判断三角形是否共面时,可以利用向量的线性相关性进行分析。
6. 利用距离公式求解距离公式是解析几何中的一个基本概念,通过利用距离公式,我们可以计算出几何对象之间的距离,从而解决问题。
例如,在求解点到直线的距离问题时,可以利用点到直线的垂线段长度计算距离;在求解点到平面的距离问题时,可以利用点到平面的垂线长度计算距离。
高中数学解析几何解题技巧
高中数学解析几何解题技巧
高中数学解析几何解题技巧主要包括以下几个方面:
1. 理解基本概念:解析几何的基本概念是解题的基础,包括直线、平面、向量、点、线段等。
在解题过程中,要确保对这些基本概念的理解准确。
2. 熟悉性质定理:解析几何中有许多性质定理,例如平行线性质、垂直线性质、相似三角形性质等。
熟悉这些性质定理,可以帮助理解和解决解析几何题目。
3. 运用向量法解题:向量法是解析几何中常用的一种解题方法。
通过引入向量的概念,可以简化解析几何题目的计算过程,提高解题效率。
4. 利用几何变换:几何变换是解析几何中常用的一种方法,包括平移、旋转、镜像等。
通过利用几何变换,可以将原题转化为更简单的几何问题进行求解。
5. 善用相似性质:相似性质在解析几何中有着重要的应用。
通过发现和利用图形的相似性质,可以得到一些有用的信息,从而解决解析几何题目。
6. 注意特殊情况:解析几何题目中经常会涉及到一些特殊情况,例如对称性、平行四边形、等腰三角形等。
在解题过程中,要特别注意这些特殊情况,以充分利用它们带来的信息。
7. 多画图辅助:在解析几何题目中,通过画图可以更好地理解和分析题目。
因此,解析几何解题过程中,多画图进行辅助,有助于
提高解题的思路和准确性。
8. 注意技巧和方法:解析几何题目中有一些常用的技巧和方法,例如相似比例、平行线截比、垂直线截比等。
要熟悉这些技巧和方法,并在解题过程中加以运用。
最后,解析几何题目的解题技巧需要通过大量的练习和实践来逐渐掌握和提高。
不断总结经验,加强对解析几何知识的理解和掌握,才能在解析几何题目中游刃有余。
解析几何解题技巧归纳
解析几何是数学中的一个重要分支,主要研究平面和空间中的点、直线、曲线以及它们之间的关系。
在解析几何中,解题技巧的掌握对于提高解题效率和准确性至关重要。
下面将从以下几个方面对解析几何解题技巧进行归纳总结。
1. 理解基本概念和性质解析几何的基本概念包括点、直线、曲线等,而基本性质则包括距离、角度、斜率等。
在解题过程中,首先要对题目中涉及的基本概念和性质有清晰的理解,这样才能准确地运用相关公式和方法进行求解。
2. 利用坐标系解析几何中,坐标系是解决问题的重要工具。
通过建立合适的坐标系,可以将问题转化为代数方程或函数的形式,从而利用代数方法进行求解。
在建立坐标系时,要考虑到题目的特点和要求,选择合适的坐标系类型,如直角坐标系、极坐标系等。
3. 利用几何性质解析几何中的几何性质是解题的关键。
通过观察和分析几何图形的性质,可以得出一些结论和关系,从而简化问题的求解过程。
例如,利用平行线的性质可以解决与平行线相关的题目;利用垂直线的性质可以解决与垂直线相关的题目等。
4. 利用相似三角形相似三角形是解析几何中常用的一个工具。
通过构造相似三角形,可以将问题转化为已知条件和未知量之间的关系,从而进行求解。
在构造相似三角形时,要注意选择合适的基准点和基准线,以及利用已知条件和几何性质进行推导。
5. 利用对称性对称性是解析几何中的一个重要性质。
通过利用对称性,可以将问题转化为已知条件和未知量之间的关系,从而进行求解。
在利用对称性时,要注意选择合适的对称轴和对称中心,以及利用已知条件和几何性质进行推导。
6. 利用参数方程参数方程是解析几何中常用的一种表示方法。
通过将问题转化为参数方程的形式,可以简化问题的求解过程。
在利用参数方程时,要注意选择合适的参数和参数范围,以及利用已知条件和几何性质进行推导。
7. 利用三角函数三角函数是解析几何中常用的一个工具。
通过利用三角函数,可以将问题转化为已知条件和未知量之间的关系,从而进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何中计算方法与技巧
高考中解析几何综合题要求具有较强的计算能力,常规的解题方法必须熟练掌握,在此基础上积累计算经验,掌握计算技巧,则解析几何定可得到高分。
一、巧用韦达定理简化运算
1、过二次曲线C 上一点P (x 0,y 0)作直线l ,求l 与C 另一交点。
例1:求直线y=kx+22-k 与椭圆22x +y 2
=1的交点坐标。
2、合二为一的整体运算
例2:过点P (-1,2)作圆C :(x-1)2+y 2=1的两条切线,求两条切线的斜率和。
例3:过点P (x 0,-4
1
)作抛物线y=x 2的两条切线,求证:切点弦过定点。
例4:抛物线y 2=2x 上动点P ,过点P 作⊙C :(x-1)2+y 2=1的切线PM ,PN 分别交y
轴于M ,N 两点,求△PMN 面积的最小值。
例5:过抛物线x 2=2y 的焦点作斜率分别为k 1、k 2的两条直线l 1和l 2,若l 1交抛物线
于A 、B 两点,l 2交抛物线于C 、D 两点。
以线段AB 为直径作圆C 1,以CD 为直 径作圆C 2。
若k 1+k 2=2,求两圆C 1与C 2的公共弦所在直线方程。
二、利用计算的对称性避免重复运算
引例:过原点O 作抛物线y 2=2px 的两条互相垂直的弦OA 与OB ,求证:AB 直线过定点。
例1:设椭圆E :2
2x +y 2=1上一点A (1,22),过A 作两条关于平行y 轴的直线对
称的两条直线AC ,AD 交椭圆E 于另两点C 和D 。
求证:CD 直线的方向确定。
例2:设曲线C 1:4
2x +y 2
=1与曲线C 2:y=x 2-1。
C 2的顶点为M ,过原点O 的直线l 与
C 2相交于A 、B 两点,直线MA 、MB 分别与C 1相交于
D 、
E 。
(1)证明:MD ⊥ME ;
(2)若△MAB ,△MDE 的面积分别为S 1、S 2,问是否存在直线l 使得21S S =32
17?
例3:设椭圆42x +42
y =1的左焦点F ,点A 、B 是椭圆上的两点,满足2 ,
求A 、B 两点距离。
例4:一条斜率为1的直线l 与离心率为3的双曲线E :22a x -22
b
y =1(a>0, b>0)
交于P 、Q 两点,直线l 与y 轴交于R ,且·=-3,=3 (1)求双曲线方程;
(2)若F 是双曲线的右焦点,M 与N 是E 上的两点,且=λ,求实数
λ的取值范围。
例5:设A 、B 是椭圆22a x +22
b
y =1(a > b > 0)上两点,O 为原点,且OA ⊥OB ,
求△AOB 面积的最大值与最小值。
例6:若椭圆22a x +22
b
y =1(a > b > 0)上任两点A 、B ,O 为原点,求AOB 面积S
的最大值。
三、活用图形的几何性质,则计算变得更为轻巧
我们知道解析几何的基本任务之一是用代数的方法讨论图形的几何性质,也就是说曲线的几何性质不明显时必须用计算的办法加以讨论,反之几何性质明显时可大大简化计算。
引例1:若直线y=kx+1与焦点在x 轴上的椭圆52x +m
y 2
=1总有公共点,求m 范围。
引例2:双曲线22a x -22
b
y =1(a>0, b>0)的两焦点为E 、F ,△MEF 为等边三角形。
若线段ME 的中点N 在双曲线上,求双曲线的离心率。
例1:设圆C 与两圆(x+5)2 +y 2=4,(x-5)2 +y 2
=4中的一个内切,另一个外切
(1)求圆心C 的轨迹L 的方程; (2)已知点M (
553,5
5
4),F (5,0),若点P 是L 上的动点,求||MP|-|FP|| 的最大值及此P 点坐标。
例2:设椭圆22a x +22
b
y =1(a> b>0)的右顶点为A ,若椭圆上存在一点P 使∠OPA=90°
(O 为原点),求椭圆离心率的取值范围。
例3:抛物线y 2=4x 与圆(x-a)2+y 2=a 2
有唯一公共点,求a 的取值范围。
例4:已知抛物线C :y 2=4x 的焦点F ,过点K (-1,0)的直线l 与C 相交于A 、B
两点,若点A 关于x 轴的对称点为D
(1)证明:点F 在直线BD 上;
(2)设·=98
,求△BDK 的内切圆方程。
例5:设F 1、F 2分别是椭圆E :22a x +22
b
y =1(a > b > 0)的左、右焦点,过F 1斜率
为1的直线l 交E 于A 、B 两点,且|AF 2|,|AB|,|BF 2|成等差数列 (1)求E 的离心率;
(2)设P (0,-1)满足|PA|=|PB|,求E 的方程。
例6:曲线C 1上的点均在圆C 2:(x-5)2+y 2=9外,且对C 1上任一点M ,M 到直线x=-2
的距离等于该点与圆C 2上点距离的最小值。
(1)求曲线C 1的方程;
(2)设P (x 0,y 0)(y 0≠±3)为C 2外任一点,过P 点作C 2的两条切线,分别
与C 1相交于A 、B 和C 、D ,当P 在直线x=-4上运动时,求证:四点A 、B 、 C 、D 的纵坐标之积为定值。
例7:长为2的木棍的两端在抛物线y 2=X 的上滑动,设棍子的中点为P
(1)求P 点轨迹方程;
(2)求棍子的中点P 到y 轴距离的最小值。