数列型不等式放缩技巧
证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]
证明数列不等式之放缩技巧以及不等式缩放在数列中应用大全证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时,(2)12nn n +<. 证法一:令)6(2)2(≥+=n n n c nn ,则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,66831.644n c c ⨯≤==< 于是当6n ≥时,2(2)1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时,66(62)48312644⨯+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)1.2kk k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k k k k k k k k k k k k k k++++++++=⨯<<++g 由(1)、(2)所述,当n ≥6时,2(1)12n n +<. 二、借助数列递推关系 例2.已知12-=n n a .证明:()23111123n n N a a a *++++<∈L . 证明:nn n n n a a 121121212211211111⋅=-⋅=-<-=+++Θ, ∴32])21(1[321)21(...12111112122132<-⋅=⋅++⋅+<+++=-+n n n a a a a a a S Λ. 例3. 已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1) 试比较n a 与54的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。
不等式放缩技巧十法
不等式放缩技巧十法一、Cauchy-Schwarz不等式:Cauchy-Schwarz不等式是不等式放缩的基础。
对于任意实数a1,a2, …, an和b1, b2, …, bn,有如下不等式成立:(a1^2 + a2^2 + … + an^2)(b1^2 + b2^2 + … + bn^2) ≥ (a1b1+ a2b2 + … + anbn)^2Cauchy-Schwarz不等式可以解决很多不等式问题,如证明两个序列的和的平方大于等于两个序列平方的和。
二、Holder不等式:Holder不等式是Cauchy-Schwarz不等式的推广形式。
对于任意实数a1, a2, …, an和b1, b2, …, bn以及p, q满足1/p + 1/q = 1(其中p,q为正实数),有如下不等式成立:(,a1,^p + ,a2,^p + … + ,an,^p)^(1/p) * (,b1,^q + ,b2,^q + … + ,bn,^q)^(1/q) ≥ ,a1b1 + a2b2 + … + anbn Holder不等式是Cauchy-Schwarz不等式的推广形式,不仅适用于实数,也适用于复数,可以使用Holder不等式解决更多类型的不等式问题。
三、Schur不等式:Schur不等式是不等式放缩中的重要不等式。
对于任意非负实数a, b, c和非负实数r,有如下不等式成立:a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b)≥0Schur不等式在证明其他不等式时经常被使用,尤其在三角形不等式的证明中发挥着重要作用。
四、AM-GM不等式:AM-GM不等式是代数平均-几何平均不等式的缩写,对于任意非负实数a1, a2, …, an,有如下不等式成立:(a1 + a2 + … + an)/n ≥ (a1*a2*…*an)^(1/n)AM-GM不等式是解决不等式问题中常用的一种方法,可以将最大化或最小化转化为相加或相乘的形式。
数列不等式放缩技巧
数列不等式放缩技巧何谓放缩?就是当要证明不等式A<B成立时,可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种证法便称为放缩法,简称放缩。
在高考数列不等式中,常常伴随着类似形式的不等式证明,这类式子无法通过求和化简或数学归纳法证明,然而通过适当的放缩技巧,却能快速使问题简单化。
【知识技巧】1、放缩的几种形式:①构造特殊数列求和进行放缩;技巧积累:(1);(2)(3)(4)(5)(6)(7)②应用基本不等式或函数单调性放缩;③加强命题,转化为数学归纳法证明题(注意点:形式、方向、首项)。
2、放缩的注意事项①熟练掌握裂项技巧,如:,这类数列由于可以裂项求和,所以在证明不等式时,大可不必放缩;②放与缩要注意形式、方向和首项,要注意放缩度的把握。
③可以只对数列的一部分进行放缩法,保留一些项不变(多为前几项)。
【例题讲解】1、通项公式的放缩1、(2013广东理)设数列的前项和为.已知,,.(Ⅰ) 求的值;(Ⅱ) 求数列的通项公式;(Ⅲ) 证明:对一切正整数,有.2、求证:3、(2012广东理)设数列{an}的前n项和为Sn,满足,n∈N﹡,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式.(3)证明:对一切正整数n,有.2、递推式的放缩1、已知,求证:当时,2、已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.3、加强命题1、数列中,,对任何,都有。
(1)求通项公式;(2)证明:对任何,4、利用不等式或函数放缩1.设,求证解析: 此数列的通项为,,即2、设,如图,已知直线及曲线:,上的点的横坐标为().从上的点作直线平行于轴,交直线于点,再从点作直线平行于轴,交曲线于点.的横坐标构成数列.(Ⅰ)试求与的关系,并求的通项公式;(Ⅱ)当时,证明;(Ⅲ)当时,证明.解析:(过程略).证明(II):由知,∵,∴.∵当时,,∴.证明(Ⅲ):由知.∴恰表示阴影部分面积,显然④∴.【课后练习】1、(2014广东文)设各项为正数的数列的前和为,且满足(1)求的值;(2)求数列的通项公式;(3)证明:对一切正整数,有2、(2014新课标2理)已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明:.3、已知,,求证:.4、已知数列中,。
放缩法技巧全总结
放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析n35 (12) 11)1()1()1)(1(23--+⋅⎪⎪⎭ ⎝+--=+-<⋅=n n n n n n n n n n n n (13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ (4) 求证:)112(2131211)11(2-+<++++<-+n n n Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(21112131(211)12(112--+>+-+>-∑=n n i nin1+例解所以当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.n++-m k 11]例例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++ΛΛ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ解析例-in i n -取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案题) 例13.证明:)1*,()1(ln 4ln 3ln 2ln >∈-<++++n N n n n n Λ 例解析即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n来放缩:.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明解析:设函数()()(),(0)g x f x f k x k =+->∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减.∴)(x g 的最小值为)2(k g ,即总有).2()(kg x g ≥而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=即.2ln )()()(k k f x k f x f -≥-+令,,b x k a x=-=则.b a k +=例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >⋅在0>x)n x +令2)1(n x n +=,有 所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n nn n ∈++>++++++Λ(方法二)⎪⎭⎫ ⎝⎛+-+=++≥+++>++21114ln )2)(1(4ln )2)(1()1ln()1()1ln(222n n n n n n n n n 所以)2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2122222222+=⎪⎭⎫ ⎝⎛+->++++++n n n n n Λ 又1114ln +>>n ,所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n n n n ∈++>++++++Λ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:121211()511)(311)(11(+>-++++n n Λ和121211()611)(411)(211(+<+---n n Λ也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 ⇒例2)21n n > 例{}n B 满足OA . 解析:(1) 依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得: 2*212,1,n n n b b b n N n +=∴=∈,又直线nnA B 在x 轴上的截距为n a 满足 显然,对于1101nn >>+,有*14,nn a a n N +>>∈(2)证明:设*11,n n nb c n N b +=-∈,则设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,212311112222222k k k -->⋅+⋅++⋅=L 。
证明数列求和不等式的两种放缩技巧
求和(Sum)不等式是数学中一种有用的工具,用来估计数列的总和。
这种不等式经常被用来证明一些性质,比如收敛性、最大最小值等等。
在解决一些复杂的问题时,求和的不等式经常要求使用特殊的技巧,如放缩。
本文将介绍两种求和不等式的放缩技巧:前项放缩和后项放缩。
前项放缩指的是一种能够让前n项值成比例证明一个求和不等式的技巧。
例如,假设我们有如下的求和不等式:S = x <sub>1 </sub> + x <sub>2 </sub> + ... + x <sub>n </sub> ≤ A那么我们可以用前项放缩的技巧来证明这个不等式:首先,假定 n 个x <sub>i<sub> (i=1,2,…,n) 的值分别为 a<sub>i </sub>,则有S = a<sub>1 </sub> + a<sub>2 </sub> + ... + a<sub>n </sub> ≤ A其次,将所有的x <sub>i </sub>(i=1,2,…,n) 都放缩至 b<sub>i </sub>值,意思是你将每一项都扩展或缩小一倍(例如,a<sub>1 </sub> 会放缩至2a<sub>1 </sub>)。
此时有 S = b<sub>1 </sub> + b<sub>2 </sub> + ... + b<sub>n </sub> ≤ A(由此可见,前 n 项值放缩后,左边的总和 S 仍小于右边的 A,因此原来的不等式:S≤A 成立)另一种求和不等式的放缩技巧是后项放缩。
此时我们可以将最后一项x<sub>n</sub> 放缩成 b<sub>n</sub>(通常要求b<sub>n</sub> ≤a<sub>n</sub>),这样就有实数范围[a<sub>n</sub>, b<sub>n</sub>]了。
数列不等式证明中的几种典型“放缩”策略
( 1 ) 由已知易得 b1 = 4 , b2 =
( 2 ) 因为 a n + 2 = 4 a n + 1 + a n . 所以 an + 2 an =4 + . an + 1 an + 1 1 . bn
所以( 例2
2
即 bn + 1 = 4 +
an >
n ( a - 1) 2 . 4 证明
n 0 n
一、 二项式展开放缩 若所证数列不等式中含有幂式特征, 则往往可考 虑利用二项式定理, 舍去展开式中的部分项, 达到放 缩的目的. 例1 ( 已知 n∈N 且 n≥2 , 求证ʒ
*
点评
解答以上两题的关键是构建二项式并恰
到好处地保留部分项. 二、 递推放缩 若已知 a n 与 f ( n ) 或 a n 与 g ( a n ) 之间的大小关 系, 则可尝试通过逐层递推放缩, 得到一个可求和的 等比数列, 必要时可对求和结果再一次放缩 . 例3 a2 = 4 , an + 2 = 4an + 1 + an , bn = 已知 a1 = 1 , an + 1 , n ∈N * . an ( 1 ) 求 b1 , b2 , b3 的值; ( 2 ) 设 cn = b n b n + 1 , S n 为数列 { c n }的前 n 项和, 求 证ʒ S n ≥17 n; ( 3 ) 求证ʒ 解析 b2n - b n < 1 1 ˑ . 64 17 n - 2 17 72 , b = . 4 3 17
作者简介:何志雄( 1963 - ) , 男, 四川资阳人, 本科, 中学高级教师, 研究方向: 中学数学教育教学.
· 16· 故 b2n - b n ≤ b n + 1 - b n + + b2n - b2n - 1 ≤ 1 1 ( ) 4 17
不等式放缩法
利用放缩法证明数列型不等式一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。
例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =。
设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑。
点评: 关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。
(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。
例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。
点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+的和,从而找到了解题的突破口。
2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。
用于解决积式问题。
例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。
若3*3log 2(),n n c a n N =-∈证明对任意的*n ∈N ,不等式12111(1)(1+)(1+)nc c c +⋅⋅>点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。
33131(1+)()32n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131()323231332n n n n n n n n n n --++>⋅⋅=----,而通项式为31{}32n n +-的数列在迭乘时刚好相消,从而达到目标。
数列放缩技巧
数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:nn412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++ΛΛ(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到 nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n nΛΛ当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnna a a T +++=Λ212,求证:23321<++++nT T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T ΛΛ例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++Λ.解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn +++--<++++ΛΛ因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ 例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
大学中常用不等式放缩技巧资料
大学中常用不等式放缩技巧资料
1、放大法:乘上常数,如将 2a + 3b(均为正数)转换为4a + 6b,方法是将右边乘以2。
3、交换法:将左右两边的系数等号反转,如将3x + 4y = 5z + 6d转换为4y - 3x = 6d - 5z,方法是将等号两边的变量的系数交换。
4、拆分法:将不等式中的变量拆成独立的项,如将2a + 3b ≥ 5c + 6d转换为2a - 5c ≥ -3b + 6d,方法是将不等式中的变量拆分为独立的项进行处理。
5、比例法:若某不等式中有2个变量,可求出它们之间的比例,如将x/y ≥ 7转换为x ≥ 7y,方法是将不等式中的x和y求出比例关系。
二、最大值问题求解
1、累加法:累加法是渐进地求出朳各变量的最大值,如求取最大值时,其中的一个
变量m的最大值可以通过以下算式求得:m =∑1/(a1 + a2 +a3 + …+ am)(均为正数)。
2、减法法:根据有减有得的原则,在求取最大值时,往往可以通过限定最小值,使
得最大值受到一定程度的制约,然后综合来寻找最大值,如在最大值问题中,求得一个变量m的最大值时,可以将其它变量x、y、z之一最小话,使得m最大。
高中数学讲义:放缩法证明数列不等式
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
高考数学难点---数列放缩法技巧总结
高考数学备考之一 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk技巧积累:(1)⎪⎭⎫⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21≥---=--=--<--=--n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n kn k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ , 所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k-+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m k km 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n nn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nnT⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---n例 例11.例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知11111,(1).2n n a a a n n +==+++证明2n a e <.解析:n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+nn an n a ln )2111ln(ln 1nn n n a 211ln 2+++≤。
数列中不等式放缩的两种常见类型
数列中不等式放缩的两种常见类型数列与不等式相结合的问题,屡次作为高考题的压轴题出现。
常见的形式是形如“证明某个数列n a 的和(或积)大于(或小于)一个常数”的问题,需要利用多种技巧进行放缩,学生普遍感觉困难。
本文尝试对两种最常见的类型与技巧进行总结说明。
一、拆项型大家熟知的结构是,1111)111()1(111<+-=+-=+∑∑==n k kk k nk nk ,推广而言,只要分母是某个等差数列两项,都可用这种思路,当然,有时需要乘以某个系数,也有时相消后剩余多于两项。
它的一个变形是,)2()1(11112∑∑==≥-<nk nk k k k k。
事实上,只要分母是同一个数列中的两项乘积的分式形式的数列,都可以考虑这一思路。
例1、(改编自2009深圳一模)已知121-=n n a ,求证: 21)1)(1(26111<++≤∑=+-nk k k ka a .分析:=+++)1)(1(11k k a a(21)121)(121(11kkk =++--+1211k)12111+-k ∑∑==+--+=++∴nk knk kt k k a a 1111211()1)(1(2)12111+-k 21122-+=kk再利用函数=+=122xxy 1211+x在),1[∞+∈x 上为增函数可得证。
例2.(改编自2006年全国卷I ) 已知22624232+⨯-⨯⨯=nnnn T ,求证:231<∑=ni i T 。
分析:)22)(12(232262423112--⨯=+⨯-⨯⨯=++n n n nnnn T =)222222(3)122222(321111---=---+++++n n n nn nn n,所以,23)221(3)2221(321211=-<--=++++=∑n n n n ni i T 。
对于有些关于积的不等式,也可以借鉴这种拆项相消的思维。
例3.(改编自08年福建) ①如果对一切n ,不等式22+-+<n c n n 恒成立,求实数c 的取值范围;②求证:112)2(42)12(31423121-+<⨯⨯⨯-⨯⨯⨯++⨯⨯+n n n分析:对于①易得1≥c 。
数列型不等式的放缩技巧九法
数列型不等式的放缩技巧九法1.上凸性法:如果数列满足$a_{n+1}-a_n>0$,则可放缩为$a_n>a_1+(n-1)d$或$a_n>a_1+n(n-1)d$,其中$d$为常数。
2.下凸性法:如果数列满足$a_{n+1}-a_n<0$,则可放缩为$a_n<a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
3.奇偶性法:如果数列满足$a_{n+1}-a_n$的奇偶性与$n$的奇偶性相同,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
4.整除性法:如果数列满足$a_{n+1}-a_n$能整除$n$,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
5.线性递增法:如果数列满足$a_{n+1}-a_n$为常数$d$,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
6.线性递减法:如果数列满足$a_{n+1}-a_n$为常数$d$,则可放缩为$a_n<a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
7.最值法:如果数列满足$a_{n+1}-a_n$为一组有界变量,且$a_n$有最大或最小值,则可通过对最大或最小值进行放缩得到不等式。
8. 平均值大小法:如果数列满足$a_1,a_2,\ldots,a_n$的平均值满足一些条件,则可借助平均值大小的不等式进行放缩。
9.乘积法:如果数列满足相邻项的乘积满足一些条件,则可通过对乘积进行放缩得到不等式。
举个例子来说明这些放缩技巧的应用:问题:证明数列$a_n=\frac{1}{2n-1}$是递减的。
解答:我们可以使用上凸性法进行放缩。
由$a_{n+1}-a_n=\frac{1}{2(n+1)-1}-\frac{1}{2n-1}=\frac{1}{2n+1}-\frac{1}{2n-1}=\frac{2n-1-(2n+1)}{(2n+1)(2n-1)}=-\frac{2}{(2n+1)(2n-1)}<0$所以$a_n>a_{n+1}$,即数列$a_n$是递减的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列型不等式放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n Λ求证.2)1(2)1(2+<<+n S n n n解析 此数列的通项为.,,2,1,)1(n k k k a k Λ=+=2121)1(+=++<+<k k k k k k Θ,)21(11∑∑==+<<∴nk n nk k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2b a ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nn nnn n22111111++≤++≤≤++ΛΛΛΛ其中,3,2=n 等的各式及其变式公式均可供选用。
例 2 已知函数bx a x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题)简析 )2211()()1()0(22114111414)(⨯->++⇒≠•->+-=+=n f f x x f xx x x Λ .2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n ΛΛ 例3 已知b a ,为正数,且111=+ba ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n nb a b a .(88年全国联赛题)简析 由111=+b a 得b a ab +=,又42)11)((≥++=++a bb a b a b a ,故4≥+=b a ab ,而nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(,令nnnb a b a n f --+=)()(,则)(n f =1111----++++n n n r r n r n n n ab C b a C b aC ΛΛ,因为in n i n C C -=,倒序相加得)(2n f =)()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n-------+++++++ΛΛ, 而1211112422+------=⋅≥≥+==+==+n nnn n n rn r r rn n n b a b aabba b aabb aΛΛ,则)(2n f =))(22())((11r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ⋅-≥)22(n 12+n ,所以)(n f ⋅-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .例4 求证),1(221321N n n n C C C C n n nnnn∈>⋅>++++-Λ.简析 不等式左边=++++nn n n n C C C C Λ32112222112-++++=-n n Λn n n 122221-⋅⋅⋅⋅⋅>Λ=212-⋅n n ,原结论成立.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>-++++n n Λ简析 本题可以利用的有用结论主要有:法1 利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得>-⋅⋅122563412n n Λ=+⋅⋅n n 212674523Λ)12(212654321+⋅-⋅⋅n nn Λ⇒12)122563412(2+>-⋅⋅n n n Λ即.12)1211()511)(311)(11(+>-++++n n Λ法2 利用贝努利不等式)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例12121)1211(2-⋅+>-+k k (此处121,2-==k x n )得 =-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k注:例5是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。
如理科题的主干是:证明.13)2311()711)(411)(11(3+>-++++n n Λ(可考虑用贝努利不等式3=n 的特例)例6 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+-++++=*n N n a n n a n x f xx x x 给定Λ求证:)0)((2)2(≠>x x f x f 对任意*∈N n 且2≥n 恒成立。
(90年全国卷压轴题)简析 本题可用数学归纳法证明,详参高考评分标准;这里给出运用柯西(Cauchy )不等式∑∑∑===≤ni ini ini ii bab a 121221])([的简捷证法:⇔>)(2)2(x f x f >⋅+-++++n n a n x x x x 2222)1(321lg Λnn a n x x x x ⋅+-++++)1(321lg2Λ 2])1(321[x x x x n a n ⋅+-++++⇔Λ])1(321[2222x x x x n a n n ⋅+-++++•<Λ而由Cauchy 不等式得2))1(1312111(x xxxn a n ⋅+-⋅++⋅+⋅+⋅Λ•++<)11(22Λ])1(321[22222x x x x n a n ⋅+-++++Λ(0=x 时取等号)≤])1(321[2222x x x xn a n n ⋅+-++++•Λ(10≤<a Θ),得证!例7 已知112111,(1).2n n na a a n n +==+++)(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L )(05年辽宁卷第22题)解析 )(II 结合第)(I 问结论及所给题设条件ln(1)x x +<(0x >)的结构特征,可得放缩思路:⇒+++≤+n n n a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21 n n n n a 211ln 2+++≤。
于是n n n n n a a 211ln ln 21++≤-+,.22112211)21(111ln ln )211()ln (ln 11211111<--=--+-≤-⇒++≤---=+-=∑∑n n n in i i i n i n n a a i i a a 即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n 来放缩:⇒-+-+≤+)1(1))1(11(1n n a n n a n n ⇒+-+≤++)1)()1(11(11n n a n n a .)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例8 已知不等式].[log 2,],[log 211312122n n N n n n >∈>+++*Λ表示不超过n 2log 的最大整数。
设正数数列}{n a 满足:.2,),0(111≥+≤>=--n a n na a b b a n n n求证.3,][log 222≥+<n n b ba n (05年湖北卷第(22)题)简析 当2≥n 时na a a n a a n na a n n n n n n n 11111111+=+≥⇒+≤-----,即n a a n n 1111≥--.1)11(212k a a nk k k n k ∑∑=-=≥-⇒ 于是当3≥n 时有⇒>-][log 211121n a a n .][log 222n b b a n +< 注:①本题涉及的和式n13121+++Λ为调和级数,是发散的,不能求和;但是可以利用所给题设结论][log 21131212n n >+++Λ来进行有效地放缩; ②引入有用结论在解题中即时应用,是近年来高考创新型试题的一个显著特点,有利于培养学生的学习能力与创新意识。
例9 设nn na )11(+=,求证:数列}{n a 单调递增且.4<n a解析 引入一个结论:若0>>a b 则)()1(11a b b n a bn n n -+<-++(证略)整理上式得].)1[(1nb a n b a n n -+>+(⊗)以n b n a 11,111+=++=代入(⊗)式得>+++1)111(n n .)11(n n+ 即}{n a 单调递增。
以nb a 211,1+==代入(⊗)式得.4)211(21)211(12<+⇒⋅+>n n n n此式对一切正整数n 都成立,即对一切偶数有4)11(<+n n,又因为数列}{n a 单调递增,所以对一切正整数n 有4)11(<+n n。