统计概率知识点梳理总结

合集下载

统计概率所有知识点总结

统计概率所有知识点总结

统计概率所有知识点总结一、基本概率论概率论是统计学中最基础的部分,它研究的是随机事件的可能性。

随机事件是不确定的事件,而概率就是描述这种不确定性的量。

在概率论中,经常用到的概念包括事件、概率、样本空间等。

事件是指可能发生或者不发生的事物,而概率则是衡量事件发生可能性的大小。

样本空间是所有可能结果的集合,它包括了所有可能的事件。

二、条件概率条件概率是指在已知某些信息的情况下,另一个事件发生的概率。

条件概率的计算方法通常使用乘法法则。

条件概率在许多领域中都有着广泛的应用,比如医学诊断、市场营销、风险管理等。

三、独立性在概率论中,独立性是一个非常重要的概念。

两个事件如果是独立的,那么它们的发生不会互相影响。

独立性的概念在统计推断中有着广泛的应用,比如在抽样调查中,我们通常要求样本之间是独立的,以保证统计推断的准确性。

四、随机变量随机变量是统计学中的一个重要概念,它是对随机事件的量化描述。

随机变量可以是离散的,也可以是连续的。

对于离散的随机变量,我们通常关心的是它的概率分布;而对于连续的随机变量,我们通常关心的是它的密度函数。

五、概率分布概率分布是描述随机变量取值可能性的函数。

常见的概率分布包括均匀分布、正态分布、泊松分布、指数分布等。

概率分布在统计学中有着广泛的应用,比如在假设检验、参数估计等问题中。

六、抽样分布抽样分布是指统计量在重复抽样过程中的概率分布。

常见的抽样分布包括t 分布、F分布、卡方分布等。

抽样分布在统计推断中有着重要的作用,它可以帮助我们理解样本统计量的性质,从而进行参数估计和假设检验。

七、统计推断统计推断是统计学中一个重要的领域,它研究的是如何通过样本数据对总体特征进行推断。

统计推断通常包括参数估计和假设检验两个部分。

参数估计是指在已知总体分布的情况下,通过样本数据估计总体参数的值;而假设检验是指在总体参数未知的情况下,通过样本数据来对总体特征进行检验。

统计推断在医学、经济学、社会学等领域中有着广泛的应用。

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结-CAL-FENGHAI.-(YICAI)-Company One1概率与统计一、普通的众数、平均数、中位数及方差1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。

统计概率知识点梳理总结

统计概率知识点梳理总结

统计概率知识点梳理总结统计概率是统计学中非常重要的一个分支,它研究随机现象的概率规律,为我们处理不确定性的问题提供了一种方法。

在统计概率的学习中,有一些基本概念和方法是必须掌握的。

本文将对统计概率的相关知识进行梳理总结,包括概率基本概念、概率分布、概率密度函数、概率函数、随机变量、概率质量函数、期望、方差等内容。

1.概率基本概念概率是一个介于0-1之间的数,用来度量一个事件发生的可能性。

概率的基本概念包括样本空间、随机事件、事件的概率、事件的互斥和事件的独立性等。

样本空间是指试验中所有可能结果的集合,随机事件是指样本空间中的一个子集,事件的概率是指该事件发生的可能性大小,用P(A)表示。

事件的互斥指两个事件不可能同时发生,事件的独立性指两个事件之间的发生没有关系。

2.概率分布概率分布是描述随机变量所有可能取值及其对应概率的分布情况。

常见的概率分布包括离散型概率分布和连续型概率分布。

离散型概率分布是指随机变量只能取其中的一个值的概率分布,如伯努利分布和泊松分布;连续型概率分布是指随机变量可以取任意实数值的概率分布,如正态分布和指数分布。

3.概率密度函数概率密度函数是描述连续型随机变量的概率分布的函数,用f(x)表示。

概率密度函数具有非负性、非减性和归一性等性质。

通过概率密度函数可以计算随机变量在其中一区间内取值的概率。

4.概率函数概率函数是描述离散型随机变量的概率分布的函数,它给出了随机变量取各个值的概率。

概率函数具有非负性和归一性等性质。

通过概率函数可以计算随机变量取一些特定值的概率。

5.随机变量随机变量是一个实数值函数,它的取值是试验结果的函数。

随机变量可以是离散型的,也可以是连续型的。

离散型随机变量通常用字母大写表示,如X;连续型随机变量通常用字母小写表示,如x。

随机变量可以有多种数学表达方式,如分布函数、概率密度函数和概率函数等。

6.概率质量函数概率质量函数是描述离散型随机变量的概率分布的函数,用p(x)表示。

统计和概率知识点总结

统计和概率知识点总结

统计和概率知识点总结1.概率的基本概念概率是描述事件发生可能性的一种数学工具。

在概率论中,事件可以是任何可能的结果,而概率是描述一个事件发生的可能性大小的数字。

概率的基本概念包括样本空间、事件空间、概率分布、随机变量等等。

样本空间是指所有可能结果的集合,而事件空间是指样本空间中的子集。

概率分布描述了各个事件发生的可能性,而随机变量则描述了事件对应的数值。

2.概率的规则和定理概率的计算有一些基本的规则和定理,如加法法则、乘法法则、条件概率、贝叶斯定理等等。

这些规则和定理可以帮助我们计算事件发生的概率,并且在实际应用中非常重要。

3.统计学的基本概念统计学是研究如何收集、分析、解释和展示数据的科学。

统计学的基本概念包括总体和样本、统计量、抽样、推断等等。

总体是指我们想要研究的一组对象或者变量,而样本是从总体中抽取出来的一部分。

统计量是对总体或者样本的某些特征进行描述的具体数值,而抽样则是从总体中选择样本的过程。

推断是通过对样本进行分析得出对总体的推断。

4.常见的概率分布在概率论和统计学中,有一些常见的概率分布模型,如均匀分布、正态分布、泊松分布、指数分布等等。

这些概率分布具有不同的特性和应用场景,在实际应用中非常重要。

正态分布在实际应用中非常普遍,它描述了许多自然现象和人类行为的分布规律。

5.统计假设检验统计假设检验是统计学中的一项重要方法,它可以帮助我们判断一个假设是否成立。

假设检验的基本步骤包括提出假设、选择检验方法、计算统计量、进行判断等等。

在实际应用中,我们可以利用假设检验来进行医学研究、经济分析、质量控制等等。

6.回归分析和相关性分析在统计学中,回归分析和相关性分析是描述变量之间关系的重要工具。

回归分析可以帮助我们理解一个自变量对因变量的影响程度,而相关性分析可以帮助我们理解变量之间的关系强度。

这些方法在经济学、社会学、医学等领域都有广泛的应用。

总的来说,统计和概率是一门非常重要的学科,它们在实际应用中具有广泛的使用价值。

高中数学概率与统计知识点

高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。

4、对立事件对立事件是指两个事件必有一个发生的互斥事件。

例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。

而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。

对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。

2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。

5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。

相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。

2)必然事件与任何事件都是相互独立的。

3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。

6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。

如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。

统计概率知识点梳理总结

统计概率知识点梳理总结

统计概率知识点梳理总结第一章随机事件与概率一、教学要求1.理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.2.了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.4.理解事件的独立性概念,掌握运用事件独立性进行概率计算.5.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.本章重点:随机事件的概率计算.二、知识要点1.随机试验与样本空间具有下列三个特性的试验称为随机试验:(1) 试验可以在相同的条件下重复地进行;·(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3) 每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用eΩ=.表示,e称为样本空间中的样本点,记作{}e2.随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ)看作特殊的随机事件.3.**事件的关系及运算(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =.(3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12n A A A ⋃⋃⋃(简记为1nii A =).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nAA A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件1,2,,nA A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .(8) 交换律:对任意两个事件A和B 有A B B A ⋃=⋃,AB BA =.(9) 结合律:对任意事件A ,B ,C 有()()A B C A B C ⋃⋃=⋃⋃, ()()A B C A B C ⋂⋂=⋂⋂.(10) 分配律:对任意事件A ,B ,C 有()()()A B C A B A C ⋃⋂=⋃⋂⋃, ()()()A B C A B A C ⋂⋃=⋂⋃⋂.(11) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.4.频率与概率的定义 (1) 频率的定义设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()An n f A n =.(2) 概率的统计定义在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =. (3) **古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型: (i) 试验的样本空间Ω是个有限集,不妨记作12{,,,}n e e e Ω=;(ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即12({})({})({})n P e P e P e ===.在古典概型中,规定事件A 的概率为()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·(5) 概率的公理化定义设随机试验的样本空间为Ω,随机事件A 是Ω的子集,()P A 是实值函数,若满足下列三条公理:公理1 (非负性) 对于任一随机事件A,有()P A ≥0; 公理2 (规范性) 对于必然事件Ω,有()1P Ω=;公理3 (可列可加性) 对于两两互不相容的事件1,2,,,n A A A ,有11()()i i i i P A P A ∞∞===∑,则称()P A 为随机事件A的概率. 5.**概率的性质由概率的三条公理可导出下面概率的一些重要性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3) 对于任意一个事件A :()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) 对于任意一个事件A ,有()1P A ≤. (6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑.6.**条件概率与乘法公式设A 与B 是两个事件.在事件B 发生的条件下事件A 发生的概率称为条件概率,记作(|)P A B .当()0P B >,规定()(|)()P AB P A B P B =.在同一条件下,条件概率具有概率的一切性质.乘法公式:对于任意两个事件A 与B ,当()0P A >,()0P B >时,有()()(|)()(|)P AB P A P B A P B P A B ==.7.*随机事件的相互独立性如果事件A 与B 满足()()()P AB P A P B =,那么,称事件A 与B 相互独立.关于事件A ,月的独立性有下列两条性质:(1) 如果()0P A >,那么,事件A 与B 相互独立的充分必要条件是(|)()P B A P B =;如果()0P B >,那么,事件A 与B 相互独立的充分必要条件是(|)()P A B P A =. 这条性质的直观意义是“事件A 与B 发生与否互不影响”. (2) 下列四个命题是等价的: (i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立; (iv) 事件A 与B 相互独立.对于任意n 个事件1,2,,nA A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,nA A A 总满足11()()()k k i i i i P A A P A P A =,则称事件1,2,,nA A A 相互独立.这里实际上包含了21nn --个等式.8.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,kn k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,称这组概率为二项概率. 9.**全概率公式与贝叶斯公式全概率公式:如果事件1,2,,nA A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 离散型随机变量及其分布一、教学要求1.理解离散型随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poisson)分布、均匀分布、几何分布及其应用.2.理解二维离散型随机变量联合概率函数的概念及性质;会利用二维概率分布计算有关事件的概率.3.理解二维离散型随机变量的边缘分布,了解二维随机变量的条件分布. 4.掌握离散型随机变量独立的条件.5. 会求离散型随机变量及简单随机变量函数的概率分布. 本章重点:离散型随机变量的分布及其概率计算.二、知识要点 1.一维随机变量若对于随机试验的样本空间Ω中的每个试验结果e ,变量X 都有一个确定的实数值与e 相对应,即()X X e =,则称X 是一个一维随机变量.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 2.**离散型随机变量及其概率函数如果随机变量X 仅可能取有限个或可列无限多个值,则称X 为离散型随机变量. 设离散型随机变量X 的可能取值为(1,2,,,)i a i n =,(),1,2,,,.i i p P X a i n ===若11ii p∞==∑,则称(1,2,,,)i p i n =离散型随机变量X 的概率函数,概率函数也可用下列表格形式表示:X12n a a ar P12np p p3.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.由已知的概率函数可以算得概率()i ia SP X S p ∈∈=∑,其中,S 是实数轴上的一个集合. 4.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)in in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4) 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>.(5) 均匀分布,它的概率函数为1()i P X a n ==,其中,0,1,2,,i n =.5.二维随机变量若对于试验的样本空间Ω中的每个试验结果e ,有序变量(,)X Y 都有确定的一对实数值与e 相对应,即()X X e =, ()Y Y e =,则称(,)X Y 为二维随机变量或二维随机向量.6.*二维离散型随机变量及联合概率函数如果二维随机变量(,)X Y 仅可能取有限个或可列无限个值,那么,称(,)X Y 为二维离散型随机变量.二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.7.二维离散型随机变量的边缘概率函数 设(,)X Y 为二维离散型随机变量,ijp 为其联合概率函数(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘概率函数,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘概率函数,记为.jp ,并有.jp =(),1,2,j ij iP Y b p j ===∑.8.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.9.随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为X12n a a ar P12np p p则随机变量函数()Y g X =的概率函数可由下表求得()Y g X = 12()()()n g a g a g ar P1p 2pn p但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布一、教学要求1.理解连续型随机变量及其概率密度的概念,并掌握其性质,掌握均匀分布、指数分布、正态分布及其应用.2.理解二维随机变量的联合分布的概念、性质以及连续型随机变量联合概率密度;会利用二维概率分布计算有关事件的概率.3.理解二维随机变量的边缘分布,了解二维随机变量的条件分布. 4.理解随机变量的独立性概念,掌握连续型随机变量独立的条件.5.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义.(不考)6.会求两个独立随机变量的简单函数的分布,会求两个独立随机变量的简单函数的分布,会求两个随机变量之和的概率分布. (不考)7.会求简单随机变量函数的概率分布.本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算.二、知识要点 1.*分布函数随机变量的分布可以用其分布函数来表示,随机变量X 取值不大于实数x 的概率()P X x ≤称为随机变量X 的分布函数,记作()F x , 即()(),F x P X x x =≤-∞<<∞.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()F x 是非减函数,即当12x x <时,有12()()F x F x ≤;(3) ()0,()1lim lim x x F x F x →-∞→+∞==;(4) ()F x 是右连续函数,即0()()lim x a F x F a →+=.由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率()()();P a X b F b F a <≤=-也可以求得()()(0)P X a F a F a ==--.3.联合分布函数二维随机变量(,)X Y 的联合分布函数规定为随机变量X 取值不大于x 实数的概率,同时随机变量Y 取值不大于实数y 的概率,并把联合分布函数记为(,)F x y ,即(,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞.4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2) (,)F x y 是变量x (固定y )或y (固定x )的非减函数;(3)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,l i m l i mx x y y F x y Fx y→-∞→+∞→-∞→+∞==;(4) (,)F x y 是变量x (固定y )或y (固定x )的右连续函数;(5) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥(2)()1f x dx +∞-∞=⎰;(3)连续型随机变量X 的分布函数为()F x 是连续函数,且在()F x 的连续点处有()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()21(),2x f x ex μσπσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为221(),2x f x e x π-=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dt π--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞;(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;(3) 设(,)X Y 为二维连续型随机变量,则对任意一条平面曲线L ,有((,))0P X Y L ∈=; ’(4) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(5) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212222112112()()()()11(,)exp 22(1)21x x y x f x y μμμμρρσσσσπσσρ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪-⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .如果X 与Y 的联合分布函数等于,X Y 的边缘分布函数之积,即(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.多维随机变量的相互独立性可类似定义.即多维随机变量的联合分布函数等于每个随机变量的边缘分布函数之积,多维连续型随机变量的独立性有与二维相应的结论. 13.随机变量函数的分布 **一维随机变量函数的概率密度设连续型随机变量X 的概率密度为()X f x ,则随机变量()Y g X =的分布函数为()()(())()()yY y XI F y P Y y P g X y P X I fx dx=≤=≤=∈=⎰其中,{}y X I ∈与{()}g X y ≤是相等的随机事件,而{||()}y I x g x y =≤是实数轴上的某个集合.随机变量Y 的概率密度()Y f y 可由下式得到:'()()Y Y f y F y =.连续型随机变量函数有下面两条性质:(i) 设连续型随机变量的概率密度为()X f x ,()Y g X =是单调函数,且具有一阶连续导数,()x h y =是()y g x =的反函数,则()Y g X =的概率密度为()(())|'()|Y f y f h y h y =⋅.(ii) 设2~(,)X N μσ,则当0k ≠时,有22~(,)Y kX b N k b k μσ=++,特别当1,k b μσσ==-时,有~(0,1)Y kX b N =+,~(0,1)X N μσ-.特别有下面的结论:设211~(,)X N μσ,222~(,)Y N μσ,且X 与Y 相互独立,则221212~(,)X Y N μμσσ+++.第四章 随机变量的数字特征一、教学要求1.理解随机变量的数学期望、方差的概念,并会运用它们的基本性质计算具体分布的期望、方差,2.掌握二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望和方差. 3.会根据随机变量X 的概率分布计算其函数()g X 的数学期望[()]E g X ;会根据随机变量(,)X Y 的联合概率分布计算其函数(,)g X Y 的数学期望正[(,)]E g X Y .(不考)4.理解协方差、相关系数的概念,掌握它们的性质,并会利用这些性质进行计算,了解矩的概念。

数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结
数学必修三统计和概率的主要知识点包括:
1. 统计:
- 样本调查与总体推断:样本的选择和调查方法,通过样本推断总体特征;
- 随机变量与概率分布:离散型和连续型随机变量的概念,概率质量函数和概率密度函数;
- 期望与方差:随机变量的期望值和方差;
- 离散型随机变量的分布:二项分布、泊松分布等离散型随机变量的性质;
- 连续型随机变量的分布:均匀分布、正态分布等连续型随机变量的性质;
- 多元随机变量与边缘分布:多个随机变量之间的关系与边缘分布;
- 相关与回归:随机变量之间的相关性和回归分析;
- 统计与误差:抽样误差和非抽样误差。

2. 概率:
- 随机事件与概率:样本空间、随机事件和概率的概念;
- 概率的运算:事件的和、积以及互斥事件的概率;
- 条件概率:在已知一事件发生的条件下,另一事件发生的概率;
- 事件的独立性:事件之间的独立性和联合概率;
- 正态分布的应用:正态分布的特性、标准正态分布的应用;
- 抽样与抽样分布:抽样的概念,样本均值的分布;
- 参数估计:点估计和区间估计;
- 假设检验:零假设和备择假设的提出,检验统计量的构造。

以上是数学必修三统计和概率的主要知识点总结,具体内容可根据教材的要求进行深入学习和了解。

概率 统计知识点总结

概率 统计知识点总结

概率统计知识点总结一、概率统计基本概念1. 随机事件和样本空间在概率统计中,随机事件是指在一次试验中可能发生的结果,例如抛硬币的结果可以是正面或反面。

样本空间是指所有可能的结果的集合,例如抛硬币的样本空间为{正面,反面}。

2. 概率和基本概率公式概率是指某一事件在所有可能事件中发生的频率,通常用P(A)表示。

基本概率公式是P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间的大小。

3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,通常表示为P(A|B)。

4. 独立事件两个事件A和B称为独立事件,意味着事件A的发生不受事件B的影响,其概率关系为P(A∩B)=P(A)×P(B)。

二、概率统计的数据分析方法1. 描述性统计描述性统计是对数据进行总结和描述的方法,包括平均数、中位数、众数、标准差、极差等指标,用来描述数据的集中趋势、离散程度和分布形状。

2. 探索性数据分析探索性数据分析是一种用图表和统计分析方法探索数据背后的规律和结构的方法,通过绘制图表和计算相关指标,发现数据之间的关系、趋势和异常值。

3. 统计推断统计推断是根据样本数据对总体参数进行推断的方法,包括点估计和区间估计,以及假设检验。

三、概率统计的应用1. 随机过程随机过程是研究随机事件随时间或空间变化的规律性的数学模型,包括马尔可夫过程、布朗运动、泊松过程等,广泛应用于金融、电信、生物等领域。

2. 统计建模统计建模是根据数据建立数学模型,预测未来的趋势和规律,包括线性回归模型、时间序列模型、机器学习模型等。

3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的概率统计方法,它将先验信息和样本数据结合起来,进行参数估计和模型推断,常用于医学、生态学、市场营销等领域。

四、概率统计的挑战和发展1. 大数据与统计随着大数据时代的到来,传统的统计方法和模型已经无法满足大规模、高维度、非结构化数据的分析需求,需要发展新的统计方法和算法。

概率与统计 知识点总结

概率与统计 知识点总结

概率与统计知识点总结一、概率论的基本概念1. 随机试验与样本空间随机试验是一种具有随机性质的实验,样本空间是随机试验所有可能结果的集合。

例如,投掷一枚硬币的结果可以是正面或者反面,样本空间为{正面,反面}。

2. 事件与概率事件是样本空间的子集,概率是事件发生的可能性大小。

概率的性质包括非负性、规范性和可列可加性。

3. 条件概率与独立事件条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

两个事件相互独立是指它们的发生不会相互影响。

4. 随机变量与概率分布随机变量是随机试验结果的量化表达,概率分布描述了随机变量各个取值的概率。

常见的概率分布包括均匀分布、正态分布、泊松分布等。

5. 随机变量的期望和方差期望是随机变量平均取值的大小,方差是衡量随机变量取值波动程度的指标。

二、统计学的基本概念1. 总体与样本总体是指研究对象的全体,样本是从总体中选择出来的一部分。

2. 参数与统计量总体的特征量称为参数,样本的特征量称为统计量。

统计量是对参数的估计。

3. 抽样分布当从总体中多次抽取样本,统计量的分布称为抽样分布。

中心极限定理指出,大量独立同分布的随机变量的和的分布近似服从正态分布。

4. 点估计与区间估计点估计是用样本统计量估计总体参数,区间估计是用区间来估计参数的取值范围。

5. 假设检验假设检验是对总体参数的某些假设进行检验,包括原假设和备择假设。

6. 方差分析与回归分析方差分析用于比较多个总体均值是否相等,回归分析用于研究自变量与因变量之间的关系。

三、概率与统计在实际应用中的意义1. 产品质量控制概率与统计的方法可用于产品质量的抽样检验、质量控制图的绘制、质量误差的分析等方面,帮助企业提高产品质量。

2. 金融风险管理在金融行业,概率与统计的方法被广泛应用于风险评估、股票价格预测、投资组合管理等方面,为投资者提供科学的决策依据。

3. 医学研究概率与统计的方法可用于临床试验设计、医学数据分析、疾病发病率估计等领域,为医学研究提供科学的数据支持。

概率和统计知识点总结

概率和统计知识点总结

概率和统计知识点总结1. 概率的基本概念概率是描述随机现象发生可能性的数学工具。

在概率论中,我们研究的对象是随机实验,即是某种条件下可能出现的各种可能和其相应的概率。

概率的基本概念包括样本空间、事件、概率的定义和性质等。

样本空间是指随机实验的所有可能结果的集合。

事件是样本空间的子集,即是样本空间中的某一部分。

事件的概率就是事件发生的可能性。

概率的定义有频率派和贝叶斯派的不同观点,频率派认为概率是频率的极限,贝叶斯派认为概率是主观的相信程度。

概率的性质包括非负性、规范性、可加性等。

2. 常见的概率分布在概率论中,概率分布是表示随机变量取值可能性的函数。

常见的概率分布包括离散型概率分布和连续型概率分布。

离散型概率分布包括伯努利分布、二项分布、泊松分布等。

伯努利分布描述的是一个随机变量只有两个可能取值的概率分布,二项分布表示的是n重伯努利试验的概率分布,泊松分布描述的是单位时间或单位面积内随机事件出现次数的概率分布。

连续型概率分布包括均匀分布、正态分布、指数分布等。

均匀分布描述的是在一定范围内随机变量取值均匀分布的概率分布,正态分布是一种对称的连续型概率分布,指数分布描述的是一个随机事件首次发生的时间间隔的概率分布。

3. 统计参数估计统计参数估计是利用样本数据估计总体参数的方法。

在统计学中,总体参数是描述总体特征的变量,样本是从总体中抽取的一部分数据。

参数估计包括点估计和区间估计。

点估计是用样本数据估计总体参数的具体值。

常见的点估计方法包括最大似然估计、矩估计等。

最大似然估计是通过寻找数据使得似然函数最大化的方法来估计总体参数,矩估计是利用样本矩来估计总体矩。

区间估计是用样本数据估计总体参数的区间范围。

区间估计的原理是通过置信区间来估计总体参数的范围,通常使用样本均值和标准差来构建置信区间。

4. 假设检验假设检验是统计学中用来验证总体参数的方法。

在假设检验中,我们设定一个或者两个关于总体参数的假设,然后利用样本数据进行检验。

统计与概率知识点汇总

统计与概率知识点汇总

统计与概率知识点汇总高中统计与概率知识点汇总一、简单随机抽样1.总体和样本在统计学中,把研究对象的全体叫做总体.把每个研究对象叫作个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,通常从总体中随机提取一部分:,,,研究,我们表示它为样本.其中个体的个数称作样本容量.2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.直观随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在直观随机抽样的样本容量设计中,主要考量:①总体变异情况;②容许误差范围;③概率确保程度。

(1)给调查对象群体中的每一个对象编号;(2)准备工作分组的工具,实行分组(3)对样本中的每一个个体进行测量或调查基准:恳请调查你所在的学校的学生搞讨厌的体育活动情况。

5.随机数表法:基准:利用随机数Amancey所在的班级中提取10十一位同学出席某项活动。

1.系统抽样(等距抽样或机械抽样):把总体的单位展开排序,再排序出来样本距离,然后按照这一紧固的样本距离提取样本。

第一个样本使用直观随机抽样的办法提取。

k(抽样距离)=n(总体规模)/n(样本规模)前提条件:总体中个体的排序对于研究的变量来说,应当就是随机的,即为不存有某种与研究变量有关的规则原产。

可以在调查容许的条件下,从相同的样本已经开始样本,对照几次样本的特点。

如果存有显著差别,表明样本在总体中的原产成某种循环性规律,且这种循环和样本距离重合。

系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

概率和统计知识点梳理

概率和统计知识点梳理

概率和统计知识点梳理
概率知识点
1.实验和事件
实验:进行观察,观察结果不确定的活动。

事件:实验中可能发生的结果,通常用字母表示。

2.样本空间和样本点
样本空间:一个实验的所有可能结果的集合。

样本点:样本空间中的每一个结果。

3.概率
概率:某事件发生的可能性大小。

概率的范围:0 ≤ P(A) ≤ 1.
概率的计算方法:P(A) = 事件A的样本点数 / 样本空间的样本点数。

4.独立事件
独立事件:某事件的发生不受其他事件的影响。

统计知识点
1.调查和统计
调查:收集数据的过程。

统计:对数据进行整理、分析、总结和展示。

2.数据的分类和整理
分类:将数据按照某个特征或属性进行分组。

整理:将数据按照一定的顺序进行排列。

3.数据的分析和总结
分析:通过图表等方式展示数据的规律和特点。

总结:根据数据的分析结果得出结论。

4.图表的使用
直方图:用于表示数据的分布情况。

条形图:用于比较不同类别的数据大小。

折线图:用于表示数据的变化趋势。

饼图:用于表示部分和整体的关系。

5.平均数和范围
平均数:用于表示一组数据的集中趋势。

范围:用于表示一组数据的离散程度。

以上是小学六年级概率和统计知识点的梳理,希望能够帮助到你!。

统计和概率知识点总结_重要知识点汇总

统计和概率知识点总结_重要知识点汇总

统计和概率知识点总结_重要知识点汇总概率与统计在数学当中算是一个比较容易做并且容易理解的知识点了。

下面是小编带来的统计和概率知识点总结_重要知识点汇总,以供大家学习!1、科学记数法:把一个数字写成的形式的记数方法。

2、统计图:形象地表示收集到的数据的图。

3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。

4、条形统计图:清楚地表示出每个项目的具体数目。

5、折线统计图:清楚地反映事物的变化情况。

6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。

7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能*大小不同;不确定。

8、事件的概率:可用事件结果除以所以可能结果求得理论概率。

9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。

10、游戏双方公平:双方获胜的可能*相同。

11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。

13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。

14、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。

15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。

16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表*)。

17、随机调查:按机会均等的原则进行调查,总体中每个个体被调查的概率相同。

18、频数:每次对象出现的次数。

19、频率:每次对象出现的次数与总次数的比值20、级差:一组数据中最大数据与最小数据的差,刻画数据的离散程度21、方差:各个数据与平均数之差的平方的平均数,刻画数据的离散程度22、方差计算公式23、标准方差:方差的算数平方根刻画数据的离散程度。

高中概率统计考点归纳

高中概率统计考点归纳

高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。

概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。

举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。

概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。

举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。

由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。

二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。

举例:抛掷两颗骰子,求点数之和为7的概率。

总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。

因此,点数之和为7的概率为6/36=1/6。

几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。

举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。

样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。

因此,该点位于线段前1/3部分的概率为1/3。

三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。

计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。

举例:一个班级中有40名学生,其中25名男生和15名女生。

已知某学生是女生,求该学生数学成绩优秀的概率。

统计和概率知识点总结

统计和概率知识点总结

第一章数据的收集、整理与描述1、全面调查:考察全体对象的调查方式叫做全面调查。

2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3、总体:要考察的全体对象称为总体。

4、个体:组成总体的每一个考察对象称为个体。

5、样本:被抽取的所有个体组成一个样本。

6、样本容量:样本中个体的数目称为样本容量。

7、样本平均数:样本中所有个体的平均数叫做样本平均数。

8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

10、频率:频数与数据总数的比为频率。

11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

第二章 数据的分析1、平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。

2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里nf f f k =++ 21)。

那么,根据平均数的定义,这n 个数的平均数可以表示为n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。

3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。

5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。

概率与统计基本知识点总结

概率与统计基本知识点总结

概率与统计基本知识点总结1.概率理论:概率的定义:概率是描述随机事件发生可能性的数值,通常用介于0和1之间的数表示。

概率的基本性质:概率值在0到1之间,且所有可能事件的概率之和为1事件的独立性:两个或多个事件相互独立,意味着一个事件的发生不受其他事件发生与否的影响。

加法法则:若A和B是两个事件,则它们联合发生的概率等于它们各自发生的概率之和减去它们同时发生的概率。

乘法法则:对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率之积。

条件概率:事件A在事件B发生的条件下发生的概率,表示为P(A,B)。

贝叶斯定理:根据已知的条件概率,求解另一个条件概率的计算公式。

2.随机变量与概率分布:随机变量:将随机事件的结果映射到实数上的变量。

离散型随机变量:取有限个或可数个值的随机变量。

连续型随机变量:取任意实数值的随机变量。

概率分布:描述随机变量取各个值的概率的函数。

离散型概率分布:包括离散均匀分布、二项分布、泊松分布等。

连续型概率分布:包括连续均匀分布、正态分布、指数分布等。

期望:随机变量的平均值,反映其分布的中心位置。

方差:随机变量偏离其均值的程度,反映其分布的离散程度。

3.统计推断:总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。

参数与统计量:总体的数值特征称为参数,样本的数值特征称为统计量。

抽样分布:样本统计量的概率分布。

中心极限定理:在一定条件下,样本容量足够大时,样本的均值近似服从正态分布。

置信区间:用样本统计量作为总体参数的估计范围。

假设检验:通过对样本数据的分析,判断总体参数是否满足其中一种假设。

概率统计知识点汇总

概率统计知识点汇总

概率统计知识点汇总1.分类加法计数原理完成一件事有n 类不同的方案,在第一类方案中有m 1种不同的方法,在第二类方案中有m 2种不同的方法,……,在第n 类方案中有m n 种不同的方法,则完成这件事情,共有N =m 1+m 2+…+m n 种不同的方法. 2.分步乘法计数原理完成一件事情需要分成n 个不同的步骤,完成第一步有m 1种不同的方法,完成第二步有m 2种不同的方法,……,完成第n 步有m n 种不同的方法,那么完成这件事情共有N =m 1×m 2×…×m n 种不同的方法. 3.两个原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.4.排列与排列数公式 (1)排列与排列数从n 个不同元素中取出m m ≤n 个元素――――――――→按照一定的顺序排成一列排列―――――→所有不同排列的个数排列数(2)排列数公式A mn =n (n -1)(n -2)…(n -m +1)=n !n -m !.(3)排列数的性质 ①A nn =n !; ②0!=1. 5.组合与组合数公式 (1)组合与组合数从n 个不同元素中取出m m ≤n 个元素――――→合成一组组合――――――→所有不同组合的个数组合数(2)组合数公式C m n=A mn A m m=nn -n -n -m +m !=n !m !n -m !.(3)组合数的性质①C 0n =1; ②C mn =C n -mn ; ③C m n +C m -1n =C mn +1.6.排列与组合问题的识别方法7.二项式定理(1)定理: (a +b )n=C 0n a n+C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项:第k +1项为:T k +1=C k n an -k b k.(3)二项式系数:二项展开式中各项的二项式系数为:C kn (k =0,1,2,…,n ). 8.二项式系数的性质9.概率与频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率. (2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 10.事件的关系与运算11.理解事件中常见词语的含义:(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A -B -;(4)A ,B 恰有一个发生的事件为A B -∪A -B ; (5)A ,B 至多一个发生的事件为A B -∪A -B ∪A -B -. 12.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (E )=1. (3)不可能事件的概率:P (F )=0.(4)概率的加法公式:如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ).13.互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 14.基本事件的特点(1)任意两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 15.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①试验中所有可能出现的基本事件只有有限个. ②每个基本事件出现的可能性相等.(2)古典概型的概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.16.几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的概率公式:P (A )=构成事件A 的区域长度面积或体积试验的 所构成的区域长度面积或体积.17.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P AB P A =n ABn A.(2)条件概率具有的性质: ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 18.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立.19.离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示.所有取值可以一一列出的随机变量,称为离散型随机变量. 20.离散型随机变量的分布列及其性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表(2)离散型随机变量的分布列的性质:①p i ≥0(i =1,2,…,n ); ②∑ni =1p i =1. 21.常见离散型随机变量的分布列 (1)两点分布:若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=C kM C n -kN -MC n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称(3①独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.②在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p),并称p 为成功概率.22.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为<1>均值:称E (1122i i n n 它反映了离散型随机变量取值的平均水平.<2>方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D X 为随机变量X 的标准差.<3>均值与方差的性质E aX +b = D aX +b =(a ,b 为常数).<4>两点分布与二项分布的均值、方差23.(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称;(3)曲线在x =μ处达到峰值1σ2π;(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. (7)正态分布的三个常用数据(不需记忆) ① P (μ-σ<X ≤μ+σ)=0.682 6; ② P (μ-2σ<X ≤μ+2σ)=0.954 4; ③ P (μ-3σ<X ≤μ+3σ)=0.997 4. 24.简单随机抽样(1)定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),且每次抽取时各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样. (2)常用方法:抽签法和随机数表法. 25.系统抽样(1)步骤:①先将总体的N 个个体编号;②根据样本容量n ,当N n 是整数时,取分段间隔k =N n; ③在第1段用简单随机抽样确定第一个个体编号l (l ≤k ); ④按照一定的规则抽取样本.(2)适用范围:适用于总体中的个体数较多时. 26.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)适用范围:适用于总体由差异比较明显的几个部分组成时.27.三种抽样方法的比较(1)求极差(即一组数据中最大值与最小值的差). (2)决定组距与组数. (3)将数据分组. (4)列频率分布表. (5)画频率分布直方图. 29.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 30.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指 的一列数,叶是从茎的旁边生长出来的数. 31.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数. (3)平均数:把a 1+a 2+…+a nn称为a 1,a 2,…,a n 这n 个数的平均数.(4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x ,则这组数据 标准差为s =1nx 1-x2+x 2-x2+…+x n -x2]方差为s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]32.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关. 33.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2)回归方程为y ^=b ^x +a ^,其中 ,a ^=y -b ^x .(3)通过求Q = (y i -bx i -a )2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法. (4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r |大于0.75时,认为两个变量有很强的线性相关性. 34.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:K 2=n ad -bc 2a +ba +cb +dc +d(其中n =a +b +c +d 为样本容量).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计概率知识点梳理总结第一章随机事件与概率一、教学要求1•理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.2•了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.4•理解事件的独立性概念,掌握运用事件独立性进行概率计算5•掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.本章重点:随机事件的概率计算.二、知识要点1•随机试验与样本空间具有下列三个特性的试验称为随机试验:(1)试验可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3)每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用门表示,其中的每一个结果用e表示,e称为样本空间中的样本点,记作门二{e}.2•随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某种规律性的事情称为随机事件(简称事件)•通常把必然事件(记作】)与不可能事件(记作)看作特殊的随机事件.3 . **事件的关系及运算(1)包含:若事件A发生,一定导致事件B发生,那么,称事件B包含事件A , 记作A B(或B二A).⑵相等:若两事件A与B相互包含,即A二B且B二A ,那么, 称事件A与B相等,记作A二B .(3)和事件:“事件A与事件B中至少有一个发生”这一事件称为A与B的和事件, 记作A _• B n个事件A A2,山,A中至少有一事件发生”这一事件称为nIJ AA, A2,III,A n 的和,记作A l A2 11( A n (简记为宫).(4)积事件:“事件A与事件B同时发生”这一事件称为A与B的积事件,记作A^B(简记为AB);“n个事件A,A川,A n同时发生”这一事件称为n1AA, A2,川,A n的积事件,记作A i「A2-山-人(简记为AAJHA n或L ).(5)互不相容:若事件A和B不能同时发生,即AB = • •,那么称事件A与B互不相容(或互斥),若n个事件A1,A2,山,A n中任意两个事件不能同时发生,即AA j =(1 < i<j w几),那么,称事件A,A2,川,A n互不相容.(6)对立事件:若事件A和B互不相容、且它们中必有一事件发生,即AB = •且A 一B —,那么,称A与B是对立的•事件A的对立事件(或逆事件)记作A .(7)差事件:若事件A发生且事件B不发生,那么,称这个事件为事件A与B的差事件,记作A-B(或AB)(8) 交换律:对任意两个事件A 和 B 有A .B = B 1 .A , AB = BA .(9) 结合律:对任意事件A , B , C 有Au(BuC) =(Au B).CAc (BcC) = (Ac B)c C> •(10) 分配律:对任意事件A, B, C 有Au(BcC) =(Au B)c (AuC)Ac(B.C) =(Ac B)u (A^C)(11)德U 摩根(De Morgan )法则:对任意事件 A 和B 有A 一B 二 A 一 B , A 一 B 二 A 一 B .4 .频率与概率的定义 (1) 频率的定义设随机事件A 在n 次重复试验中发生了nA次,则比值nA/n 称为随机事件A 发生P({e}) =P({e») =ill = P(g})在古典概型中,规定事件 A 的概率为A 中所含样本点的个数P (A = I ■■中所含样本点的个数(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A 的概率为aA 的长度(或面积、体积)的频率,记作f n (A),即f n (A)£n .(ii)n AP(A)=样本空间的的长度(或面积、体积)•(5)概率的公理化定义设随机试验的样本空间为,随机事件A是门的子集,P(A)是实值函数,若满足下列三条公理:公理1 (非负性)对于任一随机事件A,有P(A)>0;公理2 (规范性)对于必然事件门,有PC)二1;公理3 (可列可加性)对于两两互不相容的事件A'AzjlbAnNl,有cd oOP(U A)八P(A)i 1 i d则称P(A)为随机事件A的概率.5 . **概率的性质由概率的三条公理可导出下面概率的一些重要性质(1)P()".⑵(有限可加性)设n个事件AA,川人两两互不相容,则有P(A _• A ?— 代)八 P(A)i 4.(3) 对于任意一个事件A :P(A) =1 _ P(A)⑷若事件A, B 满足A B ,则有P (B - A) =P(B) - P(A)5P(A)乞 P(B).(5) 对于任意一个事件A ,有P( A)叮.(6) ( 加法公式)对于任意两个事件A , B,有P(A B) =P(A) P(B) - P(AB)对于任意 n 个事件A n ,有nP( A i An\)八 P(AJ-、P(AA j )'p (AA j AQ-|l| (-1)n 」P(A"IA n )i 壬 1巴直 1知6 . **条件概率与乘法公式设A 与B 是两个事件.在事件B 发生的条件下事件 A 发生的概率称为条件概率,记 作 P(A|B) •当P(B) 0,规定在同一条件下,条件概率具有概率的一切性质.乘法公式:对于任意两个事件A 与B,当P(A) 0,P(B) 0时,有P(AB) = P(A)P(B | A) =P(B)P(A| B)7 . *随机事件的相互独立性P(A| B)二P(AB) P(B)如果事件A与B满足P(AB)二P(A)P(B) 那么,称事件A与B相互独立.关于事件A,月的独立性有下列两条性质:(1)如果P(A) 0,那么,事件A与B相互独立的充分必要条件是P(B|A)二P(B);如果P(B) 0,那么,事件A与B相互独立的充分必要条件是P(A|B)r P(A).这条性质的直观意义是“事件A与B发生与否互不影响”.(2)下列四个命题是等价的:(i)事件A与B相互独立;(ii)事件A与B相互独立;(iii)事件A与B相互独立;(iv)事件A与B相互独立.对于任意n个事件A,A2,川,A n相互独立性定义如下:对任意一个k=2」|l,n,任意的1斗汕(:::i k “,若事件AAIHA总满足P(r |l(A k)二P(AJ川P(AJ则称事件AA,山,A n相互独立•这里实际上包含了2n - n-1个等式.8. *贝努里概型与二项概率设在每次试验中,随机事件A发生的概率P(A)二P(°”:p ::1),则在n次重复独立试验中.,事件A恰发生k次的概率为m ) k n kP n (k ) = h p (1—p ) ,k=o,1,|||,n l k 丿称这组概率为二项概率.9 . **全概率公式与贝叶斯公式、P(A)P(B|A)i 4第二章离散型随机变量及其分布一、教学要求1 .理解离散型随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poisson )分布、均匀分布、几何分布及其应用.2 •理解二维离散型随机变量联合概率函数的概念及性质;会利用二维概率分布计 算有关事件的概率.3 .理解二维离散型随机变量的边缘分布,了解二维随机变量的条件分布.4. 掌握离散型随机变量独立的条件.5. 会求离散型随机变量及简单随机变量函数的概率分布.本章重点:离散型随机变量的分布及其概率计算.、知识要点 1 .一维随机变量全概率公式:如果事件i = 12111,n ,则AAlllA 两两互不相容,且P(A) oP(A k |B)二P(AQP(B| AQn若对于随机试验的样本空间 门中的每个试验结果e,变量X 都有一个确定的实数值 与e 相对应,即X =X(e),则称X 是一个一维随机变量.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 2 . **离散型随机变量及其概率函数如果随机变量X 仅可能取有限个或可列无限多个值,则称 X 为离散型随机变量.设离散型随机变量X 的可能取值为a(i“2m, n,HI),P i =P(X =3i ), i =1,2,|l(, n,l|l.QO£ Pi = 1若y ,则称P i (i"2川,n,M)离散型随机变量X 的概率函数,概率函数也可用 下列表格形式表示:3. *概率函数的性质无 Pi =1 ⑵心 .由已知的概率函数可以算得概率P(X S )八 P ia i Ws其中,s 是实数轴上的一个集合.4. *常用离散型随机变量的分布(1) P i 启0 , i =12川,n,HI;⑴0—1分布B(1,P),它的概率函数为P(X =i) *'(1一卩)1」其中,i =0或1, Q P :: 1.(2) 二项分布B(n, p),它的概率函数为⑴i nP(X=i)= . p'(1—p)nU丿其中,i =0,1,2川|, n , 0 c p c1 .(4 )泊松分布P('),它的概率函数为iP(X =i) e_,i!,其中,i =0,1,2川I,n,|||,人>0 .(5 )均匀分布,它的概率函数为1P(X 二a)二n ,其中i =0,1,2,111, n丿、I ? ♦5.二维随机变量若对于试验的样本空间11中的每个试验结果e ,有序变量(X,丫)都有确定的一对实数值与e相对应,即X=X(e) , 丫二丫(e),则称(X,Y)为二维随机变量或二维随机向量.6. *二维离散型随机变量及联合概率函数如果二维随机变量(X,Y)仅可能取有限个或可列无限个值,那么,称(X,Y)为二维离散型随机变量.二维离散型随机变量(X,Y)的分布可用下列联合概率函数来表示:P(X=a i,Y=b j) = p, i,j=1,2,川,P j -0, i, j =1,2, Hl,二P j =1其中,i j•7•二维离散型随机变量的边缘概率函数设(X,Y)为二维离散型随机变量,P ij为其联合概率函数(i,j=12HI ),称概率P(X二a i)(i =1,2JIO为随机变量X的边缘概率函数,记为p L并有p.= P(X =印)=瓦p「i =1,2川j,称概率P(Y = b j )(j二1,2,川)为随机变量Y的边缘概率函数,记为P.j,并有p P(丫=b j)P j, j=1,2」11P.j = i8•随机变量的相互独立性设(X,Y)为二维离散型随机变量,X与Y相互独立的充分必要条件为P j 二P iL P_j ,对一切i, j =1,2,|l|.多维随机变量的相互独立性可类似定义•即多维离散型随机变量的独立性有与二维相应的结论.9.随机变量函数的分布设X是一个随机变量,g(x)是一个已知函数,丫二g(x)是随机变量X的函数,它也是一个随机变量.对离散型随机变量X,下面来求这个新的随机变量Y的分布.(2) 概率的统计定义在进行大量重复试验中,随机事件A发生的频率具有稳定性,即当试验次数n很大时,频率f n(A)在一个稳定的值P(0< P<1)附近摆动,规定事件A发生的频率的稳定值P为概率,即P(A)二p.(3) ** 古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型:(i) 试验的样本空间门是个有限集,不妨记作门二{乳佥,川,弓};在每次试验中,每个样本点e(i =1,2 3^l,n)出现的概率相同,即。

相关文档
最新文档