非线性方程牛顿迭代法与斯特芬森迭代法的研究与比较
非线性方程牛顿迭代法与斯特芬森迭代法的研究与比较讲课教案
非线性方程牛顿迭代法与斯特芬森迭代法的研究与比较非线性方程牛顿迭代法与斯特芬森迭代法的研究与比较申林坚(南昌航空大学 测试与光电工程学院 江西 南昌 330063)摘要:本文针对一个具体的非线性方程032=-x e x 进行研究,首先作出了了函数xe x xf -=23)(的图像,大体判定其零点(即方程解)在(3,4)区间内, 接着用牛顿迭代法和斯特芬森迭代法进行求解分析,牛顿法的迭代公式为)()(1k k k k x f x f x x '-=+, 斯特芬森迭代法公式为),(),(,2)(21k k k k kk k k k k k y z x y x y z x y x x ϕϕ==+---=+记录两种方法求得指定精度解所需迭代次数及所需计算时间,并对其优缺点 进行了分析。
关键词:非线性方程;牛顿迭代法;斯特芬森迭代法引言非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化得到的,为得到更符合实际的解答,往往需要直接研究非线性模型,从而产生非线性科学,它是21世纪科学技术发展的重要支柱。
本论文通过对特定非线性方程032=-x e x 进行求解,介绍了两种常用的迭代法牛顿迭代法和斯特芬森迭代法,详尽阐述了其各自的数学几何原理及优缺点比较,从而更深入的理解非线性方程的迭代法求解。
正文一.作出)(x f 的图像,确定隔根区间 在Matlab 中输入以下指令并回车:x=(-10:0.001:10); y=3*x.^2-exp(x); plot(x,y);grid on ;-10-8-6-4-202468104图1得到图1所示)(x f 的图像,易知,当10-<x 及10>x 时,)(x f 无零点 将y 轴方向放大,输入命令axis([-10 10 -2 2]),得到图2-10-8-6-4-20246810-2-1.5-1-0.500.511.52图2可知函数有三个零点,隔根区间为(-2,0),(0,2),(2,4) 将x 轴方向放大,输入命令axis([-2 4 -2 2]),得到图3-2-101234-2-1.5-1-0.500.511.52图3可将隔根区间进一步缩小为(-1,0),(0,1),(3,4)二.牛顿迭代法求区间(3,4)中的根对于方程0)(=x f ,如果)(x f 是线性函数,则它的求根是容易的。
求解非线性方程的三种新的迭代法
求解非线性方程的三种新的迭代法非线性方程是指未知数的高次幂或三角函数、指数函数等构成的方程。
非线性方程的求解是数值计算中的一个重要问题,常用的方法有迭代法、试位法、牛顿法等。
下面介绍三种新的迭代法。
1. 牛顿法的改进牛顿法是一种求解非线性方程的常用方法,通过选择合适的初始值,可以得到方程的一个根。
在某些情况下,牛顿法的收敛速度较慢,甚至可能发散。
为了克服这个问题,有人提出了牛顿法的改进方法。
改进的思想是在每一步的迭代中引入一个修正因子,使得每一步的迭代都能够加速收敛。
这个修正因子可以选择为方程导数的逆矩阵,或者通过数值计算方法来估计。
通过引入修正因子,可以使得牛顿法的收敛速度更快,提高求解非线性方程的效率。
2. 弦截法弦截法是一种求解非线性方程的迭代法,它可以看作是牛顿法的一种变形。
在牛顿法中,通过选择切线与x轴的交点作为新的逼近解,而在弦截法中,通过选择切线与两个初始逼近解的连线的交点作为新的逼近解。
弦截法的迭代公式为:Xn+1 = Xn - f(Xn) * (Xn - Xn-1) / (f(Xn) - f(Xn-1))在每一步迭代中,选择两个初始逼近解Xn和Xn-1,代入上述迭代公式即可求得新的逼近解Xn+1。
通过不断迭代,可以逐渐接近方程的根。
3. 牛顿-拉夫逊法牛顿-拉夫逊法是一种变步长的牛顿法,它的主要思想是通过动态调整迭代步长的大小来提高求解非线性方程的效率。
在牛顿-拉夫逊法中,首先根据初始解得到牛顿法的逼近解,然后根据逼近解和方程的误差,动态调整迭代步长。
如果逼近解接近方程的根,将步长增加,以加快收敛速度;如果逼近解偏离方程的根,将步长减小,以避免迭代发散。
λ为步长调整因子,可以根据迭代过程中的收敛情况进行动态调整。
牛顿法的改进、弦截法和牛顿-拉夫逊法是三种求解非线性方程的新的迭代法。
这些方法通过引入修正因子、变化逼近解和动态调整步长等方法,可以提高求解非线性方程的效率和收敛速度。
非线性方程组求解方法的比较研究
非线性方程组求解方法的比较研究在数学中,非线性方程组是指其中一个或多个方程不满足线性关系的方程组。
尽管有解析解的一些特殊情况,但大多数非线性方程组需要使用数值方法来计算近似解。
本文将比较介绍几种非线性方程组求解方法,包括牛顿法,拟牛顿法,全局优化方法和粒子群算法。
1. 牛顿法牛顿法是求解非线性方程组最常用的迭代方法之一。
它基于局部线性逼近,每次迭代使用当前解的一阶导数信息来计算下一次迭代的更新方向。
令F(x)表示非线性方程组,J(x)=∇F(x)表示F(x)的雅可比矩阵。
给定一个当前近似解x_k,牛顿法的更新方程可以表示为:x_(k+1) = x_k - J(x_k)^(-1)F(x_k)其中,J(x_k)^(-1)是J(x_k)的逆矩阵。
如果J(x_k)是奇异的,则牛顿法不适用。
与其他迭代方法相比,牛顿法通常收敛更快,因为它基于二次局部逼近,而其他方法通常只适用于一次局部逼近。
但是,牛顿法要求计算和存储雅可比矩阵的逆,这可能是一个瓶颈。
2. 拟牛顿法拟牛顿法是一类不需要精确计算和存储雅可比矩阵逆的牛顿法。
它使用最小化当前近似解和实际解之间差异的信息来逼近Hessian矩阵的逆。
拟牛顿法的基本思想是建立一个称为拟Hessian矩阵的对称正定矩阵B_k,B_k的逆用于计算更新方向。
拟Hessian矩阵通过对不同x_k和x_(k+1)的F(x_k)和F(x_(k+1))差的比较来构建。
在每个迭代步骤k,拟牛顿法将F(x_k)和F(x_(k+1))的差异的值的与相对应的x_k和x_(k+1) 的差异相关联的拟Hessian方程式称为:B_k(x_(k+1) - x_k) = ∇F(x_(k+1))- ∇F(x_k)其中∇F(x) 是F(x)的梯度。
这个拟Hessian方程的解,将给出优化的下降方向。
拟牛顿法不需要计算和存储雅可比矩阵的逆,但它需要存储一个两倍于原始变量数的矩阵B_k。
3. 全局优化方法全局优化方法是一类寻找非线性方程组所有可能解的算法。
非线性方程求解方法的研究与比较分析
非线性方程求解方法的研究与比较分析非线性方程是数学中一类重要的方程,它们的求解对很多实际问题具有重要的意义。
然而,非线性方程由于其非线性特性,使得其求解更加困难和复杂。
本文旨在研究和比较非线性方程的求解方法,通过对不同求解方法的分析和比较,来评估它们的优缺点和适用范围。
首先,我们介绍一些常用的非线性方程求解方法。
目前常用的求解方法主要包括迭代法、牛顿法、二分法等。
迭代法是一种比较简单的求解非线性方程的方法。
其基本思想是通过不断迭代逼近方程的解。
具体的迭代公式可以选择不同的形式,如固定点迭代法、牛顿迭代法等。
迭代法的优点是简单易懂,但是其收敛速度较慢,而且在某些情况下可能无法收敛到解。
牛顿法是一种较为常用的非线性方程求解方法。
它利用函数的一阶导数和二阶导数信息,通过不断的迭代逼近方程的解。
牛顿法的优点是收敛速度快,但是在某些情况下可能会出现迭代发散的情况。
二分法是一种比较简单但是有效的非线性方程求解方法。
其基本思想是通过不断地缩小解的搜索范围,直到找到满足方程的解。
二分法的优点是简单易懂,而且收敛性和精度较好,但是其收敛速度相对较慢。
在对以上几种方法进行比较分析之前,我们需要明确一些评价指标。
首先是收敛性,即方法是否能够收敛到解。
其次是收敛速度,即方法迭代到解所需的时间。
还有精度,即方法得到的解与真实解之间的误差。
最后是稳定性,即方法对初始值的选择是否敏感。
通过对以上几种方法的比较分析,我们可以得出以下结论:首先,迭代法是一种简单但是不稳定的求解方法。
其收敛性和精度较差,而且对初始值的选择较为敏感。
因此,在实际应用中,迭代法通常只适用于简单的非线性方程求解。
其次,牛顿法是一种较为常用的求解方法。
它具有收敛速度快、精度高的优点,但是在某些情况下可能会出现迭代发散的情况。
此外,牛顿法对函数的一阶导数和二阶导数的计算要求较高,所以在某些情况下可能不适用。
最后,二分法是一种简单而有效的求解方法。
它具有收敛性好、精度高的优点,但是其收敛速度相对较慢。
非线性方程的简单迭代法和Steffensen迭代法
《数值计算方法》实验报告实验名称:实验1 非线性方程的简单迭代法和Steffensen 迭代法 实验题目:分别用简单迭代法和Steffensen 迭代法求方程 010423=-+x x在 [1, 2] 的一个实根.实验目的:理解并掌握简单迭代法和Steffensen 迭代法 基础理论:简单迭代法和Steffensen 迭代法1).简单迭代法的原理:将一元非线性方程:0)(=x f 改写成等价方程:)(x x ρ= ,对此,从某个初始值x0开始,对应式)(x x ρ= 构成迭代公式 ,...1,0),(1==+k x x k k ρ ,这样就可以确定序列 {}k x (k=0,1,2…)。
如果 {}k x 有极限*lim x x k k =∞→ ,由式 ,...1,0),(1==+k x x k k ρ 两边取极限可得 )(**x x ρ= ,可知 *x 为方程0)(=x f 的近似解。
2)Steffensen 迭代法的原理:通过把改进的Aitken 方法应用于根据不动点迭代所得到的线性收敛序列,将收敛速度加速到二阶。
()⎪⎪⎪⎩⎪⎪⎪⎨⎧+---===+k k k k k k k k k k k x y z x y x x y z x y 2)()(21ρρ[]x x x x x x x +---=)(2)(()()(2ρρρρψ实验环境:操作系统:Windows 7;实验平台:Turbo C++实验过程:写出算法→编写程序→调试运行程序→计算结果1)简单迭代法的算法:Input:初始近似值x0,精度要求del,最大迭代次数NOutput:近似解x 或失败信息1. n ←12. While n≤N do;3. x ←f(x0);4. if | x-x0|<del then5. | return x;6. end7. n←n+1;8. X0←x;9. End10. return False;// 超出最大迭代次数2)Steffensen迭代法的算法:Input : 区间端点a,b;精度要求del;最大迭代次数N Output:近似解或失败信息1. n←12. while n ≤N do;3. y←f(x0);4.z←f(y);5.x←x0-()202xyzxy+--;6.If |x-x0|<del then;7.| return x;8.end9.n←n+1;10.x0←x;11.end12.return False;实验结果a,用简单迭代法计算的结果结果约为1.365230b.用Steffensen迭代法计算的结果:近似解为:1.365230给出程序:1,简单迭代法的程序(C++)#include "stdio.h"#include "math.h"#define phi(x) 0.5*sqrt(10-x*x*x)void main(){int n=1,N;float x,x0,del;printf("x0="); scanf("%f",&x0); printf("\ndel=:"); scanf("%f",&del); printf("\nN="); scanf("%d",&N);printf("\nk x(k)");printf("\n %2d %f ",0,x0);while (n<N){ x=phi(x0);if(fabs(x-x0)<del){ printf("\n \n=近似解= %f \n",x);return;}printf("\n %2d %f ",n,x0);n=n+1; x0=x;}printf("\n \n%d次迭代后未达到精度要求.\n",N); }2,Steffensen迭代法的程序(C++)#include "stdio.h"#include "math.h"#define phi(x) 0.5*sqrt(10-x*x*x);void main(){int n=1,N;float x,x0,del,y,z,a,b;printf("x0="); scanf("%f",&x0);printf("\ndel=:"); scanf("%f",&del);printf("\na="); scanf("%f",&a);printf("\nb="); scanf("%f",&b);printf("\nN="); scanf("%d",&N);printf("\nk x(k)");printf("\n %2d %f ",0,x0);while (n<N){ y=phi(x0);z=phi(y);x=x0-(y-x0)*(y-x0)/(z-2*y+x0);if(fabs(x-x0)<del){ printf("\n \n=近似解= %f \n",x);return;}printf("\n %2d %f ",n,x0);n=n+1; x0=x;}printf("\n \n%d次迭代后未达到精度要求.\n",N);}结果分析:1.用简单迭代法和Steffensen迭代法都能求出非线性方程的近似解,且用简单迭代法和Steffensen迭代法求出的近似解基本一样。
非线性方程组的求解方法及其应用
非线性方程组的求解方法及其应用非线性方程组是数学中一类非常重要的问题,其中每个方程都不是线性的。
与线性方程组不同,非线性方程组的求解通常需要借助于数值方法。
本文将讨论一些常见的非线性方程组求解方法,并介绍它们在实际应用中的一些应用。
1. 牛顿法牛顿法是一种非常常见的非线性方程组求解方法。
该方法基于牛顿迭代法原理,将非线性方程组转化为一系列的线性问题。
牛顿法的基本思想是:通过不断地使用一阶导数和二阶导数的信息来逼近方程组的解。
具体地说,在每一轮迭代中,求解一个方程组:$$F(x^{k})+J(x^{k})\Delta x^{k} =0$$其中$F(x)$表示非线性方程组,$x^k$表示第$k$轮迭代的解,$J(x^k)$表示$F(x)$在$x^k$处的雅可比矩阵,$\Delta x^k$表示下降方向,满足$\|\Delta x^k\|\rightarrow 0$。
值得注意的是,牛顿法在每轮迭代中都需要求解一次雅可比矩阵,这需要大量的计算资源。
因此,在实际应用中,牛顿法通常只适用于相对较小的方程组。
2. 信赖域方法相比于牛顿法,信赖域方法更具有通用性。
信赖域方法的基本思想是:在每轮迭代中,通过构造二次模型来逼近目标函数,并在一个信赖域内搜索下降方向。
具体地说,我们在每轮迭代中将非线性方程组$F(x)$在$x^k$处转化为二次模型:$$m_k(\Delta x)=F(x^k)+\nabla F(x^k)^\top \Deltax+\frac{1}{2}\Delta x^\top B_k\Delta x$$其中,$\nabla F(x^k)$是$F(x)$在$x^k$处的梯度,$B_k$是二阶导数信息。
在这里我们假设$B_k$为正定矩阵。
显然,我们希望在$m_k(\Delta x)$的取值范围内找到一个适当的$\Delta x$,使得$m_k(\Delta x)$最小。
因此,我们需要设定一个信赖域半径$\Delta_k$,并在$B_k$所定义的椭圆范围内查找最优的$\Delta x$。
求解非线性方程的三种新的迭代法
求解非线性方程的三种新的迭代法随着科技的发展,求解非线性方程逐渐成为了计算数学领域中的热门问题之一。
在日常生活中,我们可能经常会遇到许多非线性方程,例如:x^2 - 3x + 1 = 0、e^x - x - 1 = 0等。
那么,在解决这些方程时,我们通常会采用哪些迭代法呢?下面,我将介绍三种新的迭代法,它们分别是:Halley法、Chebyshev法和Brouncker法。
一、Halley法Halley法是一种高阶迭代法,它能够同时逼近函数的根和导数的值,因此在求解非线性方程时非常有效。
该方法的基本思想是利用牛顿法的基础上,通过引入更高阶的泰勒级数,以加快收敛的速度。
具体来说,假设我们要求解方程f(x) = 0的解,那么可以先利用泰勒级数表示出f(x)的近似:f(x) ≈ f(x0) + f'(x0)(x - x0) + f''(x0)/2(x - x0)^2然后,在此式的基础上,我们可以用以下公式来计算出下一个近似解x1:在实际使用中,如果我们要求解的非线性方程只有单个根,那么该法一般很快就能收敛到准确解。
二、Chebyshev法Chebyshev法(切比雪夫法)是一种基于最小化误差的迭代法,它不需要计算导数,且具有高阶迭代、迭代次数少的优点。
该方法的基本思想是:我们可以将待求解方程转化为一个无穷大的级数,然后利用级数的递推公式来迭代求解。
具体来说,假设我们要求解方程f(x) = 0的解,那么我们可以将其转化为如下形式:x = g(x) = a0 + a1x + a2x^2 + ⋯其中,系数a0、a1、a2等可以通过传统的求根方法(如牛顿法、二分法等)来确定。
然后,我们可以利用以下递推公式来迭代求解:xn+1 = (g(xn)+xn)/2在实际使用中,如果我们要求解的非线性方程满足某些条件(如单峰性、单调性等),那么该法的效果将更加显著。
三、Brouncker法Brouncker法是一种较为简单的迭代法,它基于有理分式逼近的思想,能够高效地求解非线性方程的单根。
牛顿迭代法与其他迭代法
牛顿迭代法与其他迭代法迭代法是一种常见的数值计算方法,用于求解方程的近似解。
其中,牛顿迭代法是一种较为常用且有效的迭代法。
本文将对牛顿迭代法与其他迭代法进行比较和探讨。
一、牛顿迭代法的原理和步骤牛顿迭代法是由英国物理学家牛顿在17世纪提出的一种寻找方程近似解的方法。
其基本思想是通过不断逼近函数的零点,找到方程的根。
牛顿迭代法的步骤如下:1.选择一个初始值x0;2.根据当前的近似解x0,利用函数的导数计算切线的斜率;3.通过切线与x轴的交点得到下一个近似解x1;4.重复步骤2和步骤3,直到满足精度要求为止。
牛顿迭代法的优点在于它通常具有较快的收敛速度,尤其在接近根的地方。
然而,牛顿迭代法可能会收敛到局部极值点,而不是全局极值点,这是其存在的一个不足之处。
二、牛顿迭代法与其他迭代法的比较除了牛顿迭代法,还存在着其他常用的迭代法,比如二分法和割线法。
下面将对牛顿迭代法与这两种方法进行比较。
1. 牛顿迭代法 vs. 二分法二分法是一种简单而广泛使用的迭代法。
它通过不断将搜索区间二分来逐步逼近方程的根。
二分法的步骤如下:- 选择一个初始的搜索区间[a, b],使得方程的根位于[a, b]之间;- 计算搜索区间的中点c=(a+b)/2;- 比较函数在c处的取值与零的关系来确定下一步搜索的区间,即更新[a, b]为[a, c]或者[c, b];- 重复上述步骤,直到满足精度要求。
与牛顿迭代法相比,二分法的收敛速度较慢。
然而,二分法具有简单易懂、稳定可靠的特点,在某些情况下仍然被广泛使用。
2. 牛顿迭代法 vs. 割线法割线法是一种类似于牛顿迭代法的迭代法,它通过直线的割线逼近方程的根。
割线法的步骤如下:- 选择两个初始值x0和x1,使得x0和x1分别位于方程的根的两侧;- 计算通过(x0, f(x0))和(x1, f(x1))两点的直线的方程;- 求解该直线与x轴的交点得到下一个近似解x2;- 重复上述步骤,直到满足精度要求。
非线性方程求解算法比较
非线性方程求解算法比较在数学和计算机科学领域中,非线性方程是一种无法简单地通过代数方法求解的方程。
因此,研究和开发高效的非线性方程求解算法是至关重要的。
本文将比较几种常见的非线性方程求解算法,包括牛顿迭代法、割线法和二分法。
通过对比它们的优缺点和适用范围,可以帮助人们选择最适合的算法来解决特定的非线性方程问题。
一、牛顿迭代法牛顿迭代法是一种常用的非线性方程求解算法。
它基于泰勒级数展开,使用函数的导数信息来逼近方程的根。
具体步骤如下:1. 选择初始近似值$x_0$。
2. 计算函数$f(x_0)$和导数$f'(x_0)$。
3. 根据牛顿迭代公式$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$,计算下一个近似解$x_{n+1}$。
4. 重复步骤2和步骤3,直到达到预设的收敛条件。
牛顿迭代法的收敛速度很快,通常二次收敛。
然而,它对于初始值的选择非常敏感,可能会陷入局部极值点,导致找到错误的根。
因此,在使用牛顿迭代法时,需要根据具体问题选择合适的初始近似值。
二、割线法割线法是另一种常见的非线性方程求解算法。
它是对牛顿迭代法的改进,使用两个近似解来逼近方程的根。
具体步骤如下:1. 选择初始近似值$x_0$和$x_1$。
2. 计算函数$f(x_0)$和$f(x_1)$。
3. 根据割线公式$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$,计算下一个近似解$x_{n+1}$。
4. 重复步骤2和步骤3,直到达到预设的收敛条件。
与牛顿迭代法相比,割线法不需要计算导数,因此更加灵活。
然而,割线法的收敛速度比牛顿迭代法慢,通常是超线性收敛。
与牛顿迭代法一样,割线法也对初始近似值的选择敏感。
三、二分法二分法是一种简单直观的非线性方程求解算法。
它利用函数在根附近的特性,通过不断缩小区间范围来逼近方程的根。
具体步骤如下:1. 选择初始区间$[a,b]$,其中$f(a)$和$f(b)$异号。
非线性方程的求解方法
非线性方程的求解方法一、引言在数学领域中,非线性方程是指未知量与其对自身的各次幂、指数以及任意函数相乘或相加得到的方程。
求解非线性方程是数学中一个重要而又具有挑战性的问题。
本文将介绍几种常见的非线性方程求解方法。
二、牛顿迭代法牛顿迭代法是一种经典的非线性方程求解方法,它利用方程的切线逼近根的位置。
设f(x)为非线性方程,在初始点x0附近取切线方程y=f'(x0)(x-x0)+f(x0),令切线方程的值为0,则可得到切线方程的解为x1=x0-f(x0)/f'(x0)。
重复这个过程直到满足精确度要求或迭代次数达到指定次数。
三、二分法二分法是一种简单而又直观的非线性方程求解方法。
它利用了连续函数的中间值定理,即若f(a)和f(b)异号,则方程f(x)=0在[a, b]之间必有根。
根据中值定理,我们可以取中点c=(a+b)/2,然后比较f(a)和f(c)的符号,若同号,则根必然在右半区间,否则在左半区间。
重复这个过程直到满足精确度要求或迭代次数达到指定次数。
四、割线法割线法是一种基于切线逼近的非线性方程求解方法,它与牛顿迭代法相似。
由于牛顿迭代法需要求解导数,而割线法不需要。
设f(x)为非线性方程,在两个初始点x0和x1附近取一条直线,该直线通过点(x0,f(x0))和(x1, f(x1)),它的方程为y=f(x0)+(f(x1)-f(x0))/(x1-x0)*(x-x0),令直线方程的值为0,则可得到直线方程的解为x2 = x1 - (f(x1)*(x1-x0))/(f(x1)-f(x0))重复这个过程直到满足精确度要求或迭代次数达到指定次数。
五、试位法试位法是一种迭代逼近的非线性方程求解方法。
它利用了函数值的变化率来逼近根的位置。
设f(x)为非线性方程,选取两个初始点x0和x1,然后计算f(x0)和f(x1)的乘积,如果结果为正,则根位于另一侧,否则根位于另一侧。
然后再选取一个新的点作为下一个迭代点,直到满足精确度要求或迭代次数达到指定次数。
非线性方程的求解和分析
非线性方程的求解和分析近年来,随着科技的飞速发展,各个领域中越来越多的问题需要用到求解非线性方程的方法。
这些非线性方程指的是方程中包含有一个或多个未知数的嵌套函数的方程。
解非线性方程是现代数学、物理和工程等领域中获得解析解的一个重要问题。
本文将讨论非线性方程的求解和分析方法。
一、牛顿迭代法牛顿迭代法是一种求解非线性方程的基本方法。
它的原理是利用函数的导数逼近函数的根。
其算法如下:(1) 选一个初始值 $x_0$(2) 迭代公式: $x_{n+1} = x_n-\dfrac{f(x_n)}{f'(x_n)}$其中,$f(x)$ 为非线性方程, $f'(x)$ 表示 $f(x)$ 在 $x$ 处的导数。
(3) 若 $|f(x_{n+1})|<\epsilon$($\epsilon$ 为给定的精度),则停止计算,$x_{n+1}$ 为 $f(x)=0$ 的一个近似解。
否则,令$n=n+1$,返回第(2)步进行迭代。
值得注意的是,在实际计算中,可能存在导数 $f'(x_n)$ 为零,或者非线性函数的导数求解过于复杂的情况。
对于这些问题,可以使用牛顿迭代法的改进方法来解决。
二、牛顿-拉夫逊法牛顿-拉夫逊法是一种解决在牛顿迭代法中遇到的问题的改良方法之一。
它通过在公式中引入一个阻尼系数 $\lambda$ 来避免除以零和产生振荡。
公式如下:$x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)+\lambda f''(x_n)}$其中,$f''(x)$ 表示 $f(x)$ 的二阶导数。
通过引入阻尼系数,可以避免迭代过程中 $f'(x)$ 零点附近的振荡,并且当 $f'(x)$ 接近零时,阻尼系数会变得更大,以减小振荡的影响。
三、拟牛顿法拟牛顿法(Quasi-Newton Method)是一种利用 Broyden-Fletcher-Goldfarb-Shanno(BFGS)公式来近似牛顿法中的 Hessian 矩阵的方法。
非线性方程的求解方法
非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。
然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。
本文将介绍几种非线性方程的求解方法。
一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。
该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。
牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。
牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。
二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。
与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。
割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。
三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。
该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。
二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。
二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。
四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。
它和二分法类似,都是通过缩小根所在的区间来逼近根。
不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。
求解非线性方程的三种新的迭代法
求解非线性方程的三种新的迭代法非线性方程在数学和工程中都有广泛的应用,对非线性方程进行求解是数学分析中的一项重要任务。
在数值分析中,求解非线性方程的方法可以分为直接法和迭代法两种,而迭代法又是非常常用的方法之一。
本文将介绍三种新的非线性方程迭代法,分别是Newton 法、Secant法和Broyden法。
Newton法是最经典的非线性方程迭代法之一,它是通过不断迭代来逼近方程的根。
Newton法的基本思想是在给定初始值的情况下,通过计算方程的导数来获得更接近根的逼近值,然后不断迭代直到满足精度要求为止。
具体的迭代公式为:\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]\(x_n\)是第n次迭代的逼近值,\(f(x)\)是要求解的非线性方程,\(f'(x)\)是\(f(x)\)的导数。
在实际应用中,Newton法通常要求方程的一阶导数存在且连续,同时初始值的选取也对迭代的收敛性有很大的影响。
Secant法是Newton法的一种改进方法,它是通过直线的斜率来近似代替导数的方法来进行迭代。
Secant法的迭代公式为:Secant法相比于Newton法来说更加灵活,因为它不需要求解方程的导数,而直接利用两个相邻点的函数值来进行迭代。
然而Secant法的收敛速度相对较慢,而且在一些特殊情况下可能会出现迭代发散的情况。
Broyden法是一种迭代算法,它是通过不断更新雅各比矩阵的逆来逼近方程的根。
Broyden法的迭代公式为:\(x_n\)是第n次迭代的逼近值,\(J_n\)是第n次迭代的雅各比矩阵。
Broyden法适用于一些特殊情况下,比如方程的雅各比矩阵难以求解的情况,或者求解方程的雅各比矩阵耗时较长的情况。
Newton法、Secant法和Broyden法都是针对非线性方程迭代求解的常用方法,它们各自有着不同的特点和适用范围。
在实际应用中,我们需要根据具体的情况来选择合适的迭代方法,并且在迭代过程中需要考虑其收敛性、稳定性和计算效率等因素。
数学中非线性方程组的求解方法与应用研究
数学中非线性方程组的求解方法与应用研究在数学中,非线性方程组是指其中至少存在一个方程的未知数之间的关系不遵循线性关系的一类方程组。
它们与线性方程组不同,在求解时需要应用更加复杂的方法。
而非线性方程组的求解方法是非常有用的,因为许多实际问题通常不能用线性模型来描述。
本文将讨论非线性方程组的求解方法及其应用研究。
第一种求解方法是牛顿法。
牛顿法是一种迭代方法,其中函数的局部二次近似用于计算每次迭代中的解。
它是一种广泛应用的非线性方程组求解方法,尤其在大型问题中非常有效。
它的主要优点是速度快,并且可以通过使用加速技术来提高其效率。
然而,牛顿法的一些局限性包括它可能会偏离解,它要求可微函数,而且在某些情况下它可能无法收敛。
为了弥补这些不足,人们重点研究牛顿法的变种模型,如加速牛顿法、阻尼牛顿法等,从而提高算法的稳定性和收敛速度。
第二种方法是拟牛顿法。
拟牛顿法跟牛顿法结构类似,只是在牛顿法的基础上做出改进。
拟牛顿法是不计算牛顿法中的海森矩阵,而是逐步构建近似的海森矩阵。
它通过计算基于当前迭代点与上一次迭代点之间的差异的差分来构造该矩阵。
这样可以减少计算量,提高算法的收敛速度。
这种方法广泛应用于许多实际问题中,特别是在机器学习和优化领域。
第三种方法是分枝定界法。
分枝定界法是解决非线性方程组问题的另一种方法。
它也是一种迭代方法,但它通过逐步缩小不满足约束条件的点集合来进行迭代。
分枝定界法的优点是可以在有限的迭代次数内找到可接受的解,而且可以使用在具有更复杂逻辑限制的问题上。
以上是几种常见的非线性方程组求解方法。
但是在实际应用中,这些算法仍然存在一些问题。
例如,在计算机上运行时,这些算法往往需要数值计算,而这些计算往往可能会产生舍入误差,导致算法出现问题。
另一方面,尽管这些算法已经在许多实际问题中成功应用,但是它们在处理某些情况下可能会陷入无法收敛、收敛速度慢等的问题。
因此,人们在继续改进这些算法的基础上,探索新的算法方法和技术来解决这些问题。
非线性方程组求解方法的比较与优化
非线性方程组求解方法的比较与优化非线性方程组的求解在科学计算、工程领域以及其他许多实际问题中扮演着重要的角色。
在实际应用中,往往需要高效准确地求解非线性方程组,以获得所需的结果。
本文将对几种常用的非线性方程组求解方法进行比较,并探讨如何进一步优化这些方法,以提高求解效率。
一、牛顿法(Newton's Method)牛顿法是最常用的非线性方程组求解方法之一。
该方法基于泰勒级数展开,通过迭代逼近非线性方程组的解。
具体而言,给定初始猜测值x0,牛顿法通过以下迭代公式进行求解:x^(k+1) = x^k - [J(x^k)]^(-1) * F(x^k)其中,J(x^k)表示方程组F(x)的雅可比矩阵,F(x^k)表示方程组的值向量。
牛顿法通常具有快速收敛的特点,但在某些情况下可能出现发散或收敛速度慢的问题。
二、拟牛顿法(Quasi-Newton Methods)拟牛顿法是对牛顿法的改进和优化。
由于求解雅可比矩阵的逆矩阵相对困难且计算量大,拟牛顿法通过逼近雅可比矩阵的逆矩阵,避免了对逆矩阵的直接求解。
其中,最著名的拟牛顿法是DFP算法和BFGS算法。
DFP算法通过计算Hessian矩阵的逆矩阵的逼近,不断更新该逼近矩阵,以逼近真实的Hessian矩阵的逆矩阵。
BFGS算法同样通过逼近矩阵的更新来求解方程组,但采用了更加复杂的更新策略,相较于DFP算法在某些问题上具有更好的性能。
拟牛顿法通过避免直接计算逆矩阵,一定程度上提高了计算效率,但其迭代过程中的计算相对复杂,因此在实际问题中需要综合考虑。
三、Levenberg-Marquardt算法Levenberg-Marquardt算法是一种解决非线性最小二乘问题的方法,也可用于求解非线性方程组。
该算法基于牛顿法,利用信赖域思想进行调整,以提高求解的稳定性和收敛性。
Levenberg-Marquardt算法通过在牛顿迭代中引入一个参数,将其视为步长的控制因子,从而在迭代过程中实现步长的自适应调整。
求解非线性方程的三种新的迭代法
求解非线性方程的三种新的迭代法求解非线性方程是数值分析中的一个重要问题,对于复杂的方程往往无法通过解析方法求得精确解。
迭代法成为了求解非线性方程的常用方法之一。
传统的迭代法如牛顿法、割线法等在实际应用中存在着一些问题,近年来研究者提出了一些新的迭代法,以解决传统迭代法的一些缺点。
下面将介绍三种新的迭代法:拟牛顿法、混合法和基因迭代法。
拟牛顿法是一种通过构建迭代更新的矩阵逼近方向导数的方法。
传统的牛顿法每次需要求解并存储Hessian矩阵的逆矩阵,计算复杂度较高。
而拟牛顿法通过不直接计算Hessian矩阵的逆矩阵,而是通过一些迭代更新矩阵来逼近Hessian矩阵的逆矩阵,从而减少了计算复杂度。
其基本思想是通过更新矩阵不断逼近Hessian矩阵的逆矩阵,使得迭代得到的解更加接近最优解。
拟牛顿法在求解非线性方程时具有收敛速度快、计算精度高等优点,在实际应用中得到了广泛的应用。
另一种新的迭代法是混合法,混合法是将不同的迭代方法进行组合,通过不同的方式交替使用各种迭代方法,以期望达到更好的收敛效果。
将牛顿法和割线法进行混合,每次迭代交替使用两种方法,通过对两种迭代方法的优势互相弥补,从而提高收敛速度和稳定性。
混合法在实际应用中表现出了良好的性能,特别是在求解高阶非线性方程或者函数具有复杂结构的情况下,混合法能够更快速地收敛到最优解。
最后一种新的迭代法是基因迭代法,基因迭代法是受到生物进化理论的启发而提出的一种迭代方法。
其基本思想是通过模拟生物进化中的遗传、变异、选择等过程,不断优化迭代的解。
在每一代迭代中,通过交叉、变异等操作产生新的解,并通过适应度函数进行选择,使得优秀的解得以保留并得到进化,从而逐步优化迭代的解。
基因迭代法在求解非线性方程时可以克服局部最优解的问题,找到更接近全局最优解的解。
在求解复杂的非线性方程时,基因迭代法具有明显的优势。
以上介绍了三种新的迭代法:拟牛顿法、混合法和基因迭代法。
这些新的迭代法在求解非线性方程时有着良好的性能,能够更快速地收敛到最优解,具有更好的稳定性和精度。
非线性方程组计算
在科学与工程计算中,经常遇到求解非线性方程组的问题;非线性方程组在收敛速度及收敛性比线性方程组要差,特别对于非凸的非线性方程组,其求解更是困难。
下面简要介绍非线性方程组的三种解法——牛顿法、拟牛顿法、同伦算法,分析三种解法的适用性,并附Matlab 原程序。
(一)、牛顿迭代法迭代公式为:x k+1=x k-f(x k)/f'(x k);牛顿迭代法是解非线性方程组比较经典的方法,在局部收敛点附近是平方收敛的;但其解依赖于初始解,且迭代每一步都要计算f'(x k),不仅计算量大而且有时会发生计算困难。
(二)、拟牛顿迭代法拟牛顿法是为了解决求Jacobi矩阵时带来的困难,现已成为解决非线性方程组和最优化问题的最有效方法之一。
其迭代格式为:x(k+1)=x(k)-A k-1F(x(k))A k+1=A k+[(y k-A k s k)(y k-A k s k)T]/[(y k-A k s k)T s k]在一定条件下,计算H的序列是超收敛的,但稳定性较差,有时迭代效果不理想。
(三)、同伦算法同伦算法基本思想是从容易求解的方程组开始,逐步过渡到原方程组的求解,从而得到问题的解。
非线性方程组为:F(x)=0,其解为X*。
构造泛函 G:[0,1]XR n->R nG定义为:G(λ,x)=λ F(x)+(1-λ)[F(x)-F(x(0))]=F(x)+(λ-1)F(x(0))(其中:x(0)为任意给的初值,假定为λ函数(λ=0))对于λ的方程G(λ,x)=0,当λ=0时,0=G(0,x)=F(x)-F(x(0));x(0)是方程的解;当λ=1时,0=G(1,x)=F(x);x*是方程的解,即x(1)=x*基于这个思想我们最后可以得到如下关系式:x'(λ)=-[J(x(λ))]-1F(x(0)) ( 0<=λ<=1,对初始值x(0) )J为雅可比矩阵,由上面的式子,对λ在[0,1]上积分,就可得到x*=x(1)上面的非线性方程组问题就转化为数值积分问题。
非线性方程求解方法和优化算法的使用技巧
非线性方程求解方法和优化算法的使用技巧随着科学技术的不断发展,非线性问题在各个领域中的应用越来越广泛。
而非线性方程的求解是解决这些问题的关键。
本文将介绍一些常用的非线性方程求解方法和优化算法的使用技巧,帮助读者更好地应对实际问题。
一、牛顿迭代法牛顿迭代法是一种常用的非线性方程求解方法。
它通过不断迭代逼近方程的根,直到满足预设的精度要求。
该方法的核心思想是利用方程的局部线性近似来逼近根的位置,并通过迭代逐步接近真实根。
在使用牛顿迭代法时,需要注意以下几点技巧:1. 初始值的选择:初始值的选择对迭代的效果有很大影响。
一般来说,初始值应该尽量靠近方程的根。
可以通过绘制方程的图像或者利用已知的近似解来选择初始值。
2. 收敛性判断:牛顿迭代法并不总能收敛到方程的根,因此需要对迭代过程进行收敛性判断。
常用的方法是判断迭代值的相对误差是否小于预设的精度要求。
3. 迭代次数的控制:为了避免无限迭代,需要设定最大迭代次数。
如果达到最大迭代次数仍未满足精度要求,则可以考虑调整初始值或者选择其他求解方法。
二、拟牛顿法拟牛顿法是一类利用迭代近似求解非线性方程的方法。
与牛顿迭代法不同的是,拟牛顿法不需要计算方程的导数,而是通过构造一系列近似矩阵来逼近方程的根。
在使用拟牛顿法时,需要注意以下几点技巧:1. 近似矩阵的选择:拟牛顿法的关键是构造合适的近似矩阵。
常用的近似矩阵有DFP算法和BFGS算法等。
选择合适的近似矩阵可以提高算法的收敛速度和稳定性。
2. 步长的确定:拟牛顿法需要确定每一步的迭代步长。
一般来说,步长应该保证在迭代过程中能够逐步逼近方程的根,但又不能过大导致迭代发散。
可以使用线性搜索或者信赖域方法来确定合适的步长。
三、遗传算法遗传算法是一种基于生物进化原理的优化算法。
它通过模拟自然界中的进化过程,不断迭代搜索最优解。
在求解非线性方程时,遗传算法可以用来寻找方程的最优解或者近似解。
在使用遗传算法时,需要注意以下几点技巧:1. 个体编码方式的选择:个体编码方式决定了问题的表示形式。
非线性方程求解算法的性能比较研究
非线性方程求解算法的性能比较研究随着科技的不断发展,非线性方程在数学、物理、工程等领域中得到广泛应用。
然而,求解非线性方程是一个复杂而耗时的过程。
为了提高求解的效率和准确性,研究者们不断探索和开发各种非线性方程求解算法。
本文将对其中几种常用的算法进行性能比较研究,以帮助读者更好地选择和应用非线性方程求解算法。
一、牛顿法 (Newton's Method)牛顿法是一种基于切线的迭代算法,通过不断逼近零点来求解非线性方程。
其基本思想是利用切线的斜率逼近曲线的斜率,从而找到曲线与 x 轴交点的近似解。
牛顿法的迭代公式如下:```x_(n+1) = x_n - f(x_n) / f'(x_n)```牛顿法具有较快的收敛速度和较高的精度,在实际应用中得到广泛使用。
然而,牛顿法也存在一些问题,例如对于某些特殊函数,可能会出现收敛速度慢或者迭代发散的情况。
二、割线法 (Secant Method)割线法是一种基于割线的迭代算法,类似于牛顿法,但割线法不需要计算函数的导数。
其基本思想是通过连接两个点的割线与 x 轴的交点来逼近方程的根。
割线法的迭代公式如下:```x_(n+1) = x_n - f(x_n) * (x_n - x_(n-1)) / (f(x_n) - f(x_(n-1)))```相比于牛顿法,割线法的计算复杂度较低,但在某些情况下可能会出现割线过程与根无交点的问题。
三、二分法 (Bisection Method)二分法是一种简单而直观的求解非线性方程的方法。
它利用中值定理将函数值异号的两个点之间的中点作为下一次迭代的起点,通过逐步缩小区间来求解方程的根。
二分法迭代的公式如下:```x_(n+1) = (x_a + x_b) / 2```二分法的优点是收敛稳定,不易发散,但收敛速度相对较慢。
四、迭代法 (Iterative Method)迭代法是一种常用于非线性方程求解的数值方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性方程牛顿迭代法与斯特芬森迭代法的研究与比较申林坚(南昌航空大学 测试与光电工程学院 江西 南昌 330063)摘要:本文针对一个具体的非线性方程032=-x e x 进行研究,首先作出了了函数xe x xf -=23)(的图像,大体判定其零点(即方程解)在(3,4)区间内,接着用牛顿迭代法和斯特芬森迭代法进行求解分析,牛顿法的迭代公式为)()(1k k k k x f x f x x '-=+, 斯特芬森迭代法公式为),(),(,2)(21k k k k kk k k k k k y z x y x y z x y x x ϕϕ==+---=+记录两种方法求得指定精度解所需迭代次数及所需计算时间,并对其优缺点 进行了分析。
关键词:非线性方程;牛顿迭代法;斯特芬森迭代法引言非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化得到的,为得到 更符合实际的解答,往往需要直接研究非线性模型,从而产生非线性科学,它是21世纪科学技术发展的重要支柱。
本论文通过对特定非线性方程032=-x e x 进行求解,介绍了两种常用的迭代法牛顿迭代法和斯特芬森迭代法,详尽阐述了其各自的数学几何原理及优缺点比较,从而更深入的理解非线性方程的迭代法求解。
正文一.作出)(x f 的图像,确定隔根区间 在Matlab 中输入以下指令并回车:x=(-10:0.001:10); y=3*x.^2-exp(x); plot(x,y);grid on ;-10-8-6-4-202468104图1得到图1所示)(x f 的图像,易知,当10-<x 及10>x 时,)(x f 无零点 将y 轴方向放大,输入命令axis([-10 10 -2 2]),得到图2-10-8-6-4-20246810-2-1.5-1-0.500.511.52图2可知函数有三个零点,隔根区间为(-2,0),(0,2),(2,4) 将x 轴方向放大,输入命令axis([-2 4 -2 2]),得到图3-2-101234-2-1.5-1-0.500.511.52图3可将隔根区间进一步缩小为(-1,0),(0,1),(3,4)二.牛顿迭代法求区间(3,4)中的根对于方程0)(=x f ,如果)(x f 是线性函数,则它的求根是容易的。
牛顿法实质上是一种线性化方法,其基本思想是将非线性方程0)(=x f 逐步归结为某种非线性方程来求解。
设已知方程0)(=x f 有近似根k x (假定0)(≠'k x f ),将函数在点k x 展开,有))(()()(k k k x x x f x f x f -'+≈,于是方程0)(=x f 可近似表示为0))(()(=-'+k k k x x x f x f .这是个线性方程,记其根为1+k x ,则1+k x 的计算公式为,...,1,0,)()(1='-=+k x f x f x x k k k k 这就是牛顿法。
牛顿法有明显的几何解释。
方程0)(=x f 的根*x 可解释为曲线)(x f y =与x 轴的交点的横坐标。
设k x 是根*x 的某个近似值,过曲线)(x f y =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点的横坐标1+k x 作为*x 的新的近似值。
注意到切线方程为))(()(k k k x x x f x f y -'+=这样求得的值1+k x 必满足0))(()(=-'+k k k x x x f x f 。
由于这种几何背景,牛顿法亦称切线法。
下面列出牛顿法的计算步骤:步骤1 准备 选定初始近似值0x ,计算)(00x f f =,)(00x f f '=' 步骤2 迭代 按公式0001f f x x '-= 迭代一次,得到新的近似值1x ,计算)(),(1111x f f x f f '='=步骤3 控制 如果1x 满足哦1εδ<或21ε<f ,则终止迭代,以1x 作为所求的根;否则转步骤4.此处21,εε是允许误差,而时,当时当C x x x x C x x x ≥-<-=111101,,,δ 其中C 是取绝对误差或相对误差的控制常数,一般可取C=1.步骤 4 修改 如果迭代次数达到预先指定的次数N ,或者01='f ,则方法失败;否则以),,(111f f x '代替),,(000f f x '转步骤2继续迭代Matlab 计算程序如下,取初始迭代值0x =3:i=0; y=3; z=1;while (i<=100&&z>=10^(-8)) x=y;y=x-(3*x^2-exp(x))/(6*x-exp(x)); if abs(y)<1 z=abs(y-x); elsez=abs((y-x)/y); end i=i+1; endformat long ; disp(y); disp(i);输出结果为y= 3.733079028632816,i=9可知,使用牛顿迭代法,初值为3时,需迭代9次可使eps<10^-8,近似解为3.73307903三.斯特芬森迭代法求区间(3,4)中的根埃特金方法不管原序列{k x }是怎样产生的,对{k x }进行加速计算,得到序列{k x }。
如果把埃特金加速技巧与不动点迭代结合,可得到如下的迭代法:,...1,0,),(),(2)(12=-===+--+k x x y z x y k k k k k x y z x y k k k k k k ϕϕ称为斯特芬森迭代法。
它可以这样理解,我们要求)(x x ϕ=的根*x ,令x x x -=)()(ϕε,0)()(***=-=x x x ϕε,已知*x 的近似值k x 及k y ,其误差分别为kk k k k kk k k k y z y y y x y x x x -=-=-=-=)()()()(ϕεϕε把误差“外推到零”,即过())(,k k x x ε及())(,k k y y ε两点做线性插值函数,它与x 轴交点就是1+k x ,即方程0)()()()(=---+k kk k k k x x x y x y x εεε的解122)()()()()(+=+---=---=k kk k k k k k k k k k k x x y z x y x x y x y x x x εεε斯特芬森迭代法的另一种表达方式如下:,...,1,0),(1==+k x x k k ψ其中()[].)(2))(()(2xx x x x x x +---=ϕϕϕϕψ实验表明,即便用不动点迭代法不收敛,用斯特芬森迭代法仍可能收敛。
1.取)3ln()(2x x =ϕ,迭代初值为3进行迭代,Matlab 程序如下:i=0; y=3; z=1;while (i<=1000&&z>=10^(-8)) x=y;y1=log(3*x^2);y=x-(y1-x)^2/(log(3*y1^2)-2*y1+x); if abs(y)<1 z=abs(y-x); elsez=abs((y-x)/y); end i=i+1; endformat long ; disp(y); disp(i);输出结果为y= 3.733079028632815,i=4;可知,使用斯特芬森迭代法,取不动点函数为)3ln()(2x x =ϕ,初值为3时,需迭代4次可使eps<10^-8,近似解为3.73307903,与牛顿迭代法结果吻合。
2.取x e x x x +-=23)(ϕ,迭代初值为3进行迭代,Matlab 程序如下:i=0; y=3; z=1;while (i<=1000&&z>=10^(-8)) x=y;y1=3*x^2-exp(x)+x;y=x-(y1-x)^2/(3*y1^2-exp(y1)+y1-2*y1+x); if abs(y)<1 z=abs(y-x); elsez=abs((y-x)/y); end i=i+1; endformat long ; disp(y); disp(i);输出结果为y= 3.733079028632814,i=147;可知,使用斯特芬森迭代法,取不动点函数为x e x x x+-=23)(ϕ,初值为3时,需迭代147次可使eps<10^-8,近似解为3.733079033.取3)(xe x =ϕ,迭代初值为3进行迭代,Matlab 程序如下:i=0; y=3; z=1;while (i<=1000&&z>=10^(-8)) x=y;y1=sqrt(exp(x)/3);y=x-(y1-x)^2/(sqrt(exp(y1)/3)-2*y1+x); if abs(y)<1 z=abs(y-x); elsez=abs((y-x)/y); end i=i+1; endformat long ; disp(y); disp(i);输出结果为y= 3.733079028632815,i=10;可知,使用斯特芬森迭代法,取不动点函数为3)(xe x =ϕ,初值为3时,需迭代10次可使eps<10^-8,近似解为3.73307903由以上三种不同迭代函数可知,迭代函数不同,斯特芬森迭代法的迭代次数不同。
综合比较牛顿法的迭代函数固定,收敛速度较快,但求)(x f '可能比较繁琐斯特芬森迭代法收敛速度快,但要选择合适的迭代函数,因次如何构造一个合适的迭代函数成为关键。
参考文献[1]蔡旭晖 刘卫国 蔡立燕 MATLAB 基础与应用教程 北京:人民邮电出版社 2009 [2]李庆扬 王能超 易大义 数值分析(第5版) 北京:清华大学出版社 2008[3]高成 赖志国 Matlab 图像处理与应用(第2版) 北京:国防工业出版社 2007The research and comparison of Newton's iterative method andSteffen Sen iteration method for nonlinear equationShen Linjian(Nanchang Institute of test and opto electronic engineering, Jiangxi University ofAeronautics and Astronautics, Nanchang 330063)Abstract : In this paper, a specific nonlinear equation is studied, firstly, the function of the image, generally determine its zero (the equation solution) in the (3,4) interval, followed by Newton iterative method and Steffen Sen iteration method for analysis, Newton iterative formula for, Steffen Sen iterative formula for the record of the two methods to obtain the specified accuracy of the required number of iterations and the required calculation time, and its advantages and disadvantages are analyzed.Key words : nonlinear equation; Newton iterative method; Steffen Sen iteration method个人心得体会首先,我觉得课堂教学条件比较差,那么大的一个教室坐满了人,不能保证每个学生能够听清,看清每一个知识点。