福建高考理科数学试卷和答案理工农医类

合集下载

高考福建理科数学试题及答案(高清版)

高考福建理科数学试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题,满分150分.第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足z i =1-i ,则z 等于()A .-1-iB .1-iC .-1+iD .1+i A .3+4i B .5+4i C .3+2i D .5+2i2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为() A .1 B .2 C .3 D .4 3.下列命题中,真命题是()A .x 0∈R ,0e 0x≤ B .x ∈R ,2x >x 2 C .a +b =0的充要条件是1ab=- D .a >1,b >1是ab >1的充分条件4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A .球 B .三棱锥 C .正方体 D .圆柱 5.下列不等式一定成立的是()A .lg(x 2+14)>lg x (x >0) B .sin x +1sin x≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R )D .2111x >+(x ∈R ) 6.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为()A .14 B .15C .16 D .177.设函数1,()0,x D x x ⎧=⎨⎩为有理数,为无理数,则下列结论错误的是()A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数8.已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于()AB..3 D .59.若函数y =2x 图象上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为()A .12 B .1 C .32D .2 10.函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有()()12121()22x x f f x f x +≤[+],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题:①f (x )在[1,3]上的图象是连续不断的;②f (x 2)在[1P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3]; ④对任意x 1,x 2,x 3,x 4∈[1,3],有12341()44x x x x f +++≤[f (x 1)+f (x 2)+f (x 3)+f (x 4)]. 其中真命题的序号是()A .①②B .①③C .②④D .③④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.(文科)本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.11.(a +x )4的展开式中x 3的系数等于8,则实数a =________.12.阅读右图所示的程序框图,运行相应的程序,输出的s 值等于________. 13.已知△ABC的等比数列,则其最大角的余弦值为________.14.数列{a n }的通项公式πcos12n n a n =+,前n 项和为S n ,则S 2012=________. 15.对于实数a 和b ,定义运算“*”:22*.a ab a b a b b ab a b ⎧-≤=⎨->⎩,,,设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是__________.三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(文科)本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.17.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°;③sin 218°+cos 212°-sin18°cos12°;④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 18.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1.(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.19.如图,椭圆E :22221x y a b +=(a >b >0)的左焦点为F 1,右焦点为F 2,离心率12e =.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M的坐标;若不存在,说明理由.20.已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.21.(1)选修4-2:矩阵与变换设曲线2x2+2xy+y2=1在矩阵1ab⎛⎫= ⎪⎝⎭A(a>0)对应的变换作用下得到的曲线为x2+y2=1.①求实数a,b的值;②求A2的逆矩阵.(2)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),π2⎫⎪⎪⎝⎭,圆C的参数方程为22cos,2sinxyθθ=+⎧⎪⎨=⎪⎩(θ为参数).①设P为线段MN的中点,求直线OP的平面直角坐标方程;②判断直线l与圆C的位置关系.(3)选修4-5:不等式选讲已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].①求m的值;②若a,b,c∈R+,且11123ma b c++=,求证:a+2b+3c≥9.22.(文)已知函数f(x)=ax sin x-32(a∈R),且在[0,π2]上的最大值为π32-.(1)求函数f(x)的解读式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.1.A由z i=1-i,得221i(1i)i i i i+11ii i11z---=====----.2.B∵a1+a5=10=2a3,∴a3=5.故d=a4-a3=7-5=2.3.D∵a>1>0,b>1>0,∴由不等式的性质得ab>1,即a>1,b>1⇒ab>1.4.D∵圆柱的三视图中有两个矩形和一个圆,∴这个几何体不可以是圆柱.5.C∵x2+1≥2|x|⇔x2-2|x|+1≥0,∴当x≥0时,x2-2|x|+1=x2-2x+1=(x-1)2≥0成立;当x<0时,x2-2|x|+1=x2+2x+1=(x+1)2≥0成立.故x2+1≥2|x|(x∈R)一定成立.6.C ∵由图象知阴影部分的面积是31220121211)d ()032326x x x x =⋅-=-=⎰,∴所求概率为11616=.7.C ∵D (x )是最小正周期不确定的周期函数, ∴D (x )不是周期函数是错误的.8.A 由双曲线的右焦点与抛物线y 2=12x 的焦点重合,知32pc ==,c 2=9=4+b 2,于是b 2=5,b =2y x =±20y ±=.故该双曲线的焦点到其渐近线的距离为d == 9.B 由约束条件作出其可行域如图所示:由图可知当直线x =m 经过函数y =2x的图象与直线x +y -3=0的交点P 时取得最大值,即得2x =3-x ,即x =1=m .10.D ①如图1,图1在区间[1,3]上f (x )具有性质P ,但是是间断的,故①错.②可设f (x )=|x -2|(如图2),当x ∈[1,3]时易知其具有性质P ,但是f (x 2)=|x 2-2|=222,1x x x x ⎧-≤≤⎪⎨-≤⎪⎩P (如图3). 故②错.图2图3③任取x 0∈[1,3],则4-x 0∈[1,3], 1=f (2)=004()2x x f +-≤12[f (x 0)+f (4-x 0)]. 又∵f (x 0)=1,f (4-x 0)≤1, ∴12[f (x 0)+f (4-x 0)]≤1. ∴f (x 0)=f (4-x 0)=1.故③正确.④3412123422()()42x x x x x x x x f f ++++++= ≤34121()+()222x x x x f f ++⎡⎤⎢⎥⎣⎦≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],故④正确.11.答案:2解读:∵T r +1=4C ra r x 4-r ,∴当4-r =3,即r =1时,T 2=14C ·a ·x 3=4ax 3=8x 3.故a =2.12.答案:-3解读:(1)k =1,1<4,s =2×1-1=1; (2)k =2,2<4,s =2×1-2=0; (3)k =3,3<4,s =2×0-3=-3; (4)k =4,直接输出s =-3. 13.答案:4-解读:设△ABC 的最小边长为a (m >0),2a ,故最大角的余弦值是2222cos 4θ===-. 14.答案:3018 解读:∵函数πcos2n y =的周期2π4π2T ==,∴可用分组求和法:a 1+a 5+…+a 2009=50311+1=503++个…;a 2+a 6+...+a 2010=(-2+1)+(-6+1)+...+(-2010+1)=-1-5- (2009)503(12009)2--=-503×1005;a 3+a 7+…+a 2011=50311+1=503++个…;a 4+a 8+…+a 2012=(4+1)+(8+1)+…+(2012+1)=503(52013)2⨯+=503×1009;故S 2012=503-503×1005+503+503×1009 =503×(1-1005+1+1009)=3018. 15.答案:,0) 解读:由已知,得()22200x x x f x x x x ⎧≤⎪⎨⎪⎩-,,=-+,>,作出其图象如图,结合图象可知m 的取值范围为0<m <14,当x >0时,有-x 2+x =m ,即x 2-x +m =0, 于是x 1x 2=m .当x <0时,有2x 2-x -m =0,于是3x =.故123x x x =设h (m )=m (1,∵h ′(m )=(1+[m()]=10<,∴函数h (m )单调递减. 故x 1x 2x 3的取值范围为,0). 16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A , 则231()5010P A +==. (2)依题意得,X 1的分布列为X 2的分布列为(3)由(2)得,E (X 1)=1×125+2×50+3×10=50=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车. 17.解:方法一:(1)选择②式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=13144-=. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+2sin αcos α+14sin 2α-2sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34. 方法二:(1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1cos21cos(602)22αα-+︒-+-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°·cos2α+sin60°sin2α)-2sin αcos α-12sin 2α=12-12cos2α+12+14cos2α+4sin2α-4sin2α-14(1-cos2α)=11131cos2cos24444αα--+=.18.解:(1)以A 为原点,AB ,AD ,1AA 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E (2a,1,0),B 1(a,0,1),故1AD =(0,1,1),1B E =(2a -,1,-1),1AB =(a,0,1),AE =(2a,1,0).∵1AD ·1B E =2a-×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0), 使得DP ∥平面B 1AE . 此时DP =(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ). ∵n ⊥平面B 1AE ,∴n ⊥1AB ,n ⊥AE ,得00.2ax z ax y +=⎧⎪⎨+=⎪⎩,取x =1,得平面B 1AE 的一个法向量n =(1,2a-,-a ). 要使DP ∥平面B 1AE ,只要n ⊥DP ,有2a -az 0=0,解得012z =. 又DP 平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时12AP =.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD 是平面A 1B 1E 的一个法向量,此时1AD =(0,1,1).设1AD 与n 所成的角为θ,则11·cos ||||a aAD AD θ--==n n .∵二面角A -B1E -A 1的大小为30°, ∴|cos θ|=cos30°32a=, 解得a =2,即AB 的长为2.19.解:方法一:(1)因为|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 所以4a =8,a =2. 又因为12e =,即12c a =,所以c =1. 所以b故椭圆E 的方程是22143x y +=. (2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且∆=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0, 化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+,y 0=kx 0+m =3m , 所以P (4k m -,3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ). 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上. 设M (x 1,0),则0MP MQ ⋅=对满足(*)式的m ,k 恒成立.因为MP =(14k x m --,3m),MQ =(4-x 1,4k +m ), 由0MP MQ ⋅=,得211141612430kx k k x x m m m-+-+++=,整理,得(4x 1-4)km+x 12-4x 1+3=0.(**)由于(**)式对满足(*)式的m ,k 恒成立,所以1211440,430,x x x -=⎧⎨-+=⎩解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M . 方法二:(1)同方法一.(2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且∆=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0, 化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+,y 0=kx 0+m =3m , 所以P (4k m -,3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ). 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上. 取k =0,m =此时P (0,Q (4,以PQ 为直径的圆为(x -2)2+(y2=4,交x 轴于点M 1(1,0),M 2(3,0);取12k =-,m =2,此时P (1,32),Q (4,0),以PQ 为直径的圆为225345()()2416x y -+-=,交x 轴于点M 3(1,0),M 4(4,0).所以若符合条件的点M 存在,则M 的坐标必为(1,0).以下证明M (1,0)就是满足条件的点:因为M 的坐标为(1,0),所以MP =(41k m --,3m ),MQ =(3,4k +m ), 从而1212330k k MP MQ m m⋅=--++=, 故恒有MP MQ ⊥,即存在定点M (1,0),使得以PQ 为直径的圆恒过点M .20.解:(1)由于f ′(x )=e x +2ax -e ,曲线y =f (x )在点(1,f (1))处切线斜率k =2a =0, 所以a =0,即f (x )=e x -e x .此时f ′(x )=e x -e ,由f ′(x )=0得x =1.当x ∈(-∞,1)时,有f ′(x )<0;当x ∈(1,+∞)时,有f ′(x )>0.所以f (x )的单调递减区间为(-∞,1),单调递增区间为(1,+∞).(2)设点P (x 0,f (x 0)),曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), 令g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),故曲线y =f (x )在点P 处的切线与曲线只有一个公共点P 等价于函数g (x )有唯一零点.因为g (x 0)=0,且g ′(x )=f ′(x )-f ′(x 0)=e x -e x 0+2a (x -x 0).(1)若a ≥0,当x >x 0时,g ′(x )>0,则x >x 0时,g (x )>g (x 0)=0;当x <x 0时,g ′(x )<0,则x <x 0时,g (x )>g (x 0)=0.故g (x )只有唯一零点x =x 0.由P 的任意性,a ≥0不合题意.(2)若a <0,令h (x )=e x -e x 0+2a (x -x 0),则h (x 0)=0,h ′(x )=e x +2a .令h ′(x )=0,得x =ln(-2a ),记x ′=ln(-2a ),则当x ∈(-∞,x *)时,h ′(x )<0,从而h (x )在(-∞,x *)内单调递减;当x ∈(x *,+∞)时,h ′(x )>0,从而h (x )在(x *,+∞)内单调递增.①若x 0=x *,由x ∈(-∞,x *)时,g ′(x )=h (x )>h (x *)=0;x ∈(x *,+∞)时,g ′(x )=h (x )>h (x *)=0,知g (x )在R 上单调递增.所以函数g (x )在R 上有且只有一个零点x =x *.②若x 0>x *,由于h (x )在(x *,+∞)内单调递增,且h (x 0)=0,则当x ∈(x *,x 0)时有g ′(x )=h (x )<h (x 0)=0,g (x )>g (x 0)=0;任取x 1∈(x *,x 0)有g (x 1)>0.又当x ∈(-∞,x 1)时,易知g (x )=e x +ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)=ax 2+bx +c ,其中b =-[e +f ′(x 0)],c =e x 1-f (x 0)+x 0f ′(x 0).由于a <0,则必存在x 2<x 1,使得ax 22+bx 2+c <0.所以g (x 2)<0.故g (x )在(x 2,x 1)内存在零点,即g (x )在R 上至少有两个零点.③若x0<x*,仿②并利用3e6xx>,可证函数g(x)在R上至少有两个零点.综上所述,当a<0时,曲线y=f(x)上存在唯一点P(ln(-2a),f(ln(-2a))),曲线在该点处的切线与曲线只有一个公共点P.21.(1)选修4-2:矩阵与变换解:①设曲线2x2+2xy+y2=1上任意点P(x,y)在矩阵A对应的变换作用下的像是P′(x′,y′).由1x ay b'⎛⎫⎛⎫=⎪ ⎪'⎝⎭⎝⎭x axy bx y⎛⎫⎛⎫=⎪ ⎪+⎝⎭⎝⎭,得,.x axy bx y'=⎧⎨'=+⎩又点P′(x′,y′)在x2+y2=1上,所以x′2+y′2=1,即a2x2+(bx+y)2=1,整理得(a2+b2)x2+2bxy+y2=1.依题意得222,22,a bb⎧+=⎨=⎩解得1,1,ab=⎧⎨=⎩或1,1,ab=-⎧⎨=⎩因为a>0,所以1,1. ab=⎧⎨=⎩②由①知,1 01 1⎛⎫= ⎪⎝⎭A,21 0 1 0 1 01 1 1 12 1⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A,所以|A2|=1,(A2)-1=1 02 1⎡⎤⎢⎥-⎣⎦.(2)选修4-4:坐标系与参数方程解:①由题意知,M,N的平面直角坐标分别为(2,0),(0,3).又P为线段MN的中点,从而点P的平面直角坐标为(1,3),故直线OP的平面直角坐标方程为3y x=.②因为直线l上两点M,N的平面直角坐标分别为(2,0),(0,3),所以直线l30y+-=.又圆C的圆心坐标为(2,),半径r=2,圆心到直线l的距离32d r==<,故直线l与圆C相交.(3)选修4-5:不等式选讲解:①因为f(x+2)=m-|x|,f(x+2)≥0等价于|x|≤m,由|x|≤m有解,得m≥0,且其解集为{x|-m≤x≤m}.又f(x+2)≥0的解集为[-1,1],故m=1.②由①知111123a b c++=,又a,b,c∈R+,由柯西不等式得a+2b+3c=(a+2b+3c)(11123a b c ++)=.≥29。

普通高等学校招生国统一考试数学理试题福建卷,含答案 试题

普通高等学校招生国统一考试数学理试题福建卷,含答案 试题

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学理试题〔卷,含答案〕本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部,第一卷1至2页,第二卷第3至6页。

第二卷第21题为选考题,其他题为必考题。

总分值是150分。

本卷须知:1.“ 2. 第一卷每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第二卷用0.5毫米黑色签字笔在答题卡上书写答题,在试题卷上答题,答案无效。

3. 在考试完毕之后,考生必须将试题卷和答题卡一起交回。

参考公式:样本数据x 1,x 2,…,x a 的HY 差锥体体积公式 其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的外表积,体积公式 V=Sh 2344,3S R V R ππ== 其中S 为底面面积,h 为高其中R 为球的半径第一卷〔选择题一共50分〕一、选择题:本大题一一共10小题,每一小题5分,一共50分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。

1. i 是虚数单位,假设集合S=}{ 1.0.1-,那么 A.i S ∈ B.2i S ∈ C.3i S ∈ D.2S i∈∈R ,那么a=2是〔a-1〕〔a-2〕=0的 A.充分而不必要条件B 必要而不充分条件α=3,那么2sin 2cos a α的值等于A.2B.3 C4.如图,矩形ABCD 中,点E 为边CD 的中点,假设在矩形ABCD 内部随机取一个点Q ,那么点Q 取自△ABE 内部的概率等于 A.14B.13C.12D.23 5.10⎰〔e 2+2x 〕dx 等于 -1 C.eD.e+16.(1+2x)3的展开式中,x 2的系数等于 A.80B.40 C1,F 2,假设曲线r 上存在点P 满足1122::PF F F PF =4:3:2,那么曲线r 的离心率等于 A.1322或 B.23或者2 C.12或2D.2332或 8.O 是坐标原点,点A 〔-1,1〕假设点M 〔x,y 〕为平面区域,上的一个动点,那么OA ·的取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-]9.对于函数f 〔x 〕=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f 〔1〕和f 〔-1〕,所得出的正确结果一定不可能.....是 1 Cf(x)=e+x ,对于曲线y=f 〔x 〕上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形②△ABC 可能是直角三角形③△ABC 可能是等腰三角形④△ABC 不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④2021年普通高等招生全国统一考试〔卷〕数学(理工农医类)本卷须知:用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上答题,答案无效。

高考福建理科数学试题及答案(高清版)

高考福建理科数学试题及答案(高清版)

2019年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题, 其他题为必考题, 满分150分.第Ⅰ卷一、选择题:(理科)本大题共10小题, 每小题5分, 共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.(文科)本大题共12小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.下列命题中, 真命题是( )A .x 0∈R , 0e 0x≤ B .x ∈R , 2x >x 2 C .a +b =0的充要条件是1ab=- D .a >1, b >1是ab >1的充分条件2.一个几何体的三视图形状都相同、大小均相等, 那么这个几何体不可以是( ) A .球 B .三棱锥 C .正方体 D .圆柱3.若复数z 满足z i =1-i , 则z 等于( )A .-1-iB .1-iC .-1+iD .1+i A .3+4i B .5+4i C .3+2i D .5+2i4.等差数列{a n }中, a 1+a 5=10, a 4=7, 则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 5.下列不等式一定成立的是( )A .lg(x 2+14)>lg x (x >0) B .sin x +1sin x≥2(x ≠k π, k ∈Z )C .x 2+1≥2|x |(x ∈R )D .2111x >+(x ∈R ) 6.如图所示, 在边长为1的正方形OABC 中任取一点P , 则点P 恰好取自阴影部分的概率为( )A .14 B .15 C .16 D .177.设函数1,()0,x D x x ⎧=⎨⎩为有理数,为无理数,则下列结论错误的是( )A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数8.已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合, 则该双曲线的焦点到其渐近线的距离等于( )AB. C .3 D .59.若函数y =2x 图象上存在点(x , y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为( )A .12 B .1 C .32D .2 10.函数f (x )在[a , b ]上有定义, 若对任意x 1, x 2∈[a , b ], 有()()12121()22x x f f x f x +≤[+], 则称f (x )在[a , b ]上具有性质P .设f (x )在[1,3]上具有性质P , 现给出如下命题:①f (x )在[1,3]上的图象是连续不断的;②f (x 2)在[1,]上具有性质P ;③若f (x )在x =2处取得最大值1, 则f (x )=1, x ∈[1,3]; ④对任意x 1, x 2, x 3, x 4∈[1,3], 有12341()44x x x x f +++≤[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是( )A .①②B .①③C .②④D .③④第Ⅱ卷二、填空题:(理科)本大题共5小题, 每小题4分, 共20分.把答案填在答题卡的相应位置.(文科)本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.11.(a+x)4的展开式中x3的系数等于8,则实数a=________.12.阅读右图所示的程序框图,运行相应的程序,输出的s值等于________.13.已知△ABC的等比数列,则其最大角的余弦值为________.14.数列{a n}的通项公式πcos12nna n=+,前n项和为S n,则S2 012=________.15.对于实数a和b,定义运算“*”:22*.a ab a ba bb ab a b⎧-≤=⎨->⎩,,,设f(x)=(2x-1)*(x-1),且关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是__________.三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(文科)本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.17.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.18.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1.(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(3)若二面角A-B1E-A1的大小为30°,求AB的长.19.如图,椭圆E:22221x ya b+=(a>b>0)的左焦点为F1,右焦点为F2,离心率12e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.20.已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.21.(1)选修4-2:矩阵与变换设曲线2x2+2xy+y2=1在矩阵1ab⎛⎫= ⎪⎝⎭A(a>0)对应的变换作用下得到的曲线为x2+y2=1.①求实数a,b的值;②求A2的逆矩阵.(2)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),π2⎫⎪⎪⎝⎭,圆C的参数方程为22cos,2sinxyθθ=+⎧⎪⎨=⎪⎩(θ为参数).①设P为线段MN的中点,求直线OP的平面直角坐标方程;②判断直线l与圆C的位置关系.(3)选修4-5:不等式选讲已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].①求m的值;②若a,b,c∈R+,且11123ma b c++=,求证:a+2b+3c≥9.22.(文)已知函数f(x)=ax sin x-32(a∈R),且在[0,π2]上的最大值为π32-.(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.1.A由z i=1-i,得221i(1i)i i i i+11ii i11z---=====----.2.B∵a1+a5=10=2a3,∴a3=5.故d=a4-a3=7-5=2.3.D∵a>1>0,b>1>0,∴由不等式的性质得ab>1,即a >1, b >1⇒ab >1.4. D ∵圆柱的三视图中有两个矩形和一个圆, ∴这个几何体不可以是圆柱.5. C ∵x 2+1≥2|x |⇔x 2-2|x |+1≥0,∴当x ≥0时, x 2-2|x |+1=x 2-2x +1=(x -1)2≥0成立; 当x <0时, x 2-2|x |+1=x 2+2x +1=(x +1)2≥0成立. 故x 2+1≥2|x |(x ∈R )一定成立.6. C ∵由图象知阴影部分的面积是31220121211)d ()032326x x x x =⋅-=-=⎰,∴所求概率为11616=.7. C ∵D (x )是最小正周期不确定的周期函数, ∴D (x )不是周期函数是错误的.8. A 由双曲线的右焦点与抛物线y 2=12x 的焦点重合, 知32pc ==, c 2=9=4+b 2, 于是b 2=5,b =.因此该双曲线的渐近线的方程为2y x =±,即20y ±=.故该双曲线的焦点到其渐近线的距离为d ==.9. B 由约束条件作出其可行域如图所示:由图可知当直线x =m 经过函数y =2x的图象与直线x +y -3=0的交点P 时取得最大值, 即得2x=3-x , 即x =1=m .10. D ①如图1,图1在区间[1,3]上f (x )具有性质P , 但是是间断的, 故①错.②可设f (x )=|x -2|(如图2), 当x ∈[1,3]时易知其具有性质P , 但是f (x 2)=|x 2-2|=222,1x x x x ⎧-≤≤⎪⎨-<≤⎪⎩P (如图3).故②错.图2图3③任取x 0∈[1,3], 则4-x 0∈[1,3], 1=f (2)=004()2x x f +-≤12[f (x 0)+f (4-x 0)]. 又∵f (x 0)=1, f (4-x 0)≤1, ∴12[f (x 0)+f (4-x 0)]≤1. ∴f (x 0)=f (4-x 0)=1.故③正确.④3412123422()()42x x x x x x x x f f ++++++= ≤34121()+()222x x x x f f ++⎡⎤⎢⎥⎣⎦≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)], 故④正确.11.答案:2解析:∵T r +1=4C r a r x 4-r , ∴当4-r =3, 即r =1时, T 2=14C ·a ·x 3=4ax 3=8x 3.故a =2.12.答案:-3解析:(1)k =1,1<4, s =2×1-1=1; (2)k =2,2<4, s =2×1-2=0; (3)k =3,3<4, s =2×0-3=-3; (4)k =4, 直接输出s =-3.13.答案:4-解析:设△ABC 的最小边长为a (m >0),, 2a , 故最大角的余弦值是2222cos 4θ===-. 14.答案:3 018 解析:∵函数πcos 2n y =的周期2π4π2T ==,∴可用分组求和法:a 1+a 5+…+a 2 009=50311+1=503++14243个…; a 2+a 6+…+a 2 010=(-2+1)+(-6+1)+…+(-2 010+1)=-1-5-…-2 009=503(12009)2--=-503×1 005;a 3+a 7+…+a 2 011=50311+1=503++14243个…; a 4+a 8+…+a 2 012=(4+1)+(8+1)+…+(2 012+1)=503(52013)2⨯+=503×1 009;故S 2 012=503-503×1 005+503+503×1 009 =503×(1-1 005+1+1 009)=3 018. 15.答案:, 0) 解析:由已知, 得()22200x x x f x x x x ⎧≤⎪⎨⎪⎩-,,=-+,>,作出其图象如图, 结合图象可知m 的取值范围为0<m <14,当x >0时, 有-x 2+x =m , 即x 2-x +m =0,于是x 1x 2=m .当x <0时, 有2x 2-x -m =0,于是314x =.故123(14m x x x =.设h (m )=m (1,∵h ′(m )=(1+[m()]=10<,∴函数h (m )单调递减.故x 1x 2x 3的取值范围为(116, 0). 16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A , 则231()5010P A +==. (2)依题意得, X 1X 2的分布列为(3)由(2)得, E (X 1)=1×125+2×50+3×10=50=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2), 所以应生产甲品牌轿车.17.解:方法一:(1)选择②式, 计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=13144-=. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α) =sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+2sin αcos α+14sin 2α-2sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34. 方法二:(1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1cos21cos(602)22αα-+︒-+-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°·cos2α+sin60°sin2α)sin αcos α-12sin 2α=12-12cos2α+12+14cos2ααα-14(1-cos2α)=11131cos2cos24444αα--+=.18.解:(1)以A 为原点, AB u u u r , AD u u ur, 1AA u u u r 的方向分别为x 轴, y 轴, z 轴的正方向建立空间直角坐标系(如图).设AB =a , 则A (0,0,0), D (0,1, 0), D 1(0,1,1), E (2a, 1,0), B 1(a,0,1), 故1AD u u u u r =(0,1,1), 1B E u u u r =(2a -, 1, -1), 1AB u u u r =(a,0,1), AE u u u r =(2a, 1,0).∵1AD u u u u r ·1B E u u u r =2a -×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0, z 0), 使得DP ∥平面B 1AE .此时DP u u u r=(0, -1, z 0).又设平面B 1AE 的法向量n =(x , y , z ). ∵n ⊥平面B 1AE ,∴n ⊥1AB u u u r , n ⊥AE u u u r , 得00.2ax z ax y +=⎧⎪⎨+=⎪⎩,取x =1, 得平面B 1AE 的一个法向量n =(1, 2a-, -a ). 要使DP ∥平面B 1AE , 只要n ⊥DP u u u r , 有2a -az 0=0, 解得012z =.又DP 平面B 1AE , ∴存在点P , 满足DP ∥平面B 1AE , 此时12AP =.(3)连接A 1D , B 1C , 由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1, 得AD 1⊥A 1D .∵B 1C ∥A 1D , ∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1, 且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD u u u u r 是平面A 1B 1E 的一个法向量, 此时1AD u u u u r=(0,1,1).设1AD u u u u r 与n 所成的角为θ, 则1212·2cos ||||214a a AD AD aa θ--==++u u u u r u u u u r n n . ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,3a=, 解得a =2, 即AB 的长为2.19.解:方法一:(1)因为|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 所以4a =8, a =2. 又因为12e =, 即12c a =, 所以c =1.所以b故椭圆E 的方程是22143x y +=. (2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0, y 0), 所以m ≠0且∆=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0, 化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+, y 0=kx 0+m =3m , 所以P (4k m -, 3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ). 假设平面内存在定点M 满足条件, 由图形对称性知, 点M 必在x 轴上.设M (x 1,0), 则0MP MQ ⋅=u u u r u u u u r对满足(*)式的m , k 恒成立.因为MP u u u r =(14k x m --, 3m ), MQ u u u u r =(4-x 1,4k +m ),由0MP MQ ⋅=u u u r u u u u r,得211141612430kx k k x x m m m-+-+++=,整理, 得(4x 1-4)km+x 12-4x 1+3=0.(**)由于(**)式对满足(*)式的m , k 恒成立, 所以1211440,430,x x x -=⎧⎨-+=⎩解得x 1=1.故存在定点M (1,0), 使得以PQ 为直径的圆恒过点M . 方法二:(1)同方法一.(2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0, y 0), 所以m ≠0且∆=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+, y 0=kx 0+m =3m , 所以P (4k m -, 3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ).假设平面内存在定点M 满足条件, 由图形对称性知, 点M 必在x 轴上.取k =0,m =, 此时P (0,, Q (4,, 以PQ 为直径的圆为(x -2)2+(y2=4, 交x 轴于点M 1(1,0), M 2(3,0);取12k =-, m =2, 此时P (1, 32), Q (4,0),以PQ 为直径的圆为225345()()2416x y -+-=, 交x 轴于点M 3(1,0), M 4(4,0).所以若符合条件的点M 存在, 则M 的坐标必为(1,0).以下证明M (1,0)就是满足条件的点:因为M 的坐标为(1,0), 所以MP u u u r =(41k m --, 3m), MQ u u u u r =(3,4k +m ),从而1212330k k MP MQ m m ⋅=--++=u u u r u u u u r ,故恒有MP MQ ⊥u u u r u u u u r, 即存在定点M (1,0), 使得以PQ 为直径的圆恒过点M .20.解:(1)由于f ′(x )=e x +2ax -e , 曲线y =f (x )在点(1, f (1))处切线斜率k =2a =0, 所以a =0, 即f (x )=e x -e x .此时f ′(x )=e x -e , 由f ′(x )=0得x =1.当x ∈(-∞, 1)时, 有f ′(x )<0;当x ∈(1, +∞)时, 有f ′(x )>0. 所以f (x )的单调递减区间为(-∞, 1), 单调递增区间为(1, +∞).(2)设点P (x 0, f (x 0)), 曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), 令g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 故曲线y =f (x )在点P 处的切线与曲线只有一个公共点P 等价于函数g (x )有唯一零点.因为g (x 0)=0, 且g ′(x )=f ′(x )-f ′(x 0)=e x -e x 0+2a (x -x 0).(1)若a ≥0, 当x >x 0时, g ′(x )>0, 则x >x 0时, g (x )>g (x 0)=0; 当x <x 0时, g ′(x )<0, 则x <x 0时, g (x )>g (x 0)=0. 故g (x )只有唯一零点x =x 0.由P 的任意性, a ≥0不合题意.(2)若a <0, 令h (x )=e x -e x 0+2a (x -x 0), 则h (x 0)=0, h ′(x )=e x +2a .令h ′(x )=0, 得x =ln(-2a ), 记x ′=ln(-2a ), 则当x ∈(-∞, x *)时, h ′(x )<0, 从而h (x )在(-∞, x *)内单调递减;当x ∈(x *, +∞)时, h ′(x )>0, 从而h (x )在(x *, +∞)内单调递增.①若x 0=x *, 由x ∈(-∞, x *)时, g ′(x )=h (x )>h (x *)=0;x ∈(x *, +∞)时, g ′(x )=h (x )>h (x *)=0, 知g (x )在R 上单调递增.所以函数g (x )在R 上有且只有一个零点x =x *.②若x 0>x *, 由于h (x )在(x *, +∞)内单调递增, 且h (x 0)=0, 则当x ∈(x *, x 0)时有g ′(x )=h (x )<h (x 0)=0, g (x )>g (x 0)=0;任取x 1∈(x *, x 0)有g (x 1)>0.又当x ∈(-∞, x 1)时, 易知g (x )=e x +ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)=ax 2+bx +c ,其中b =-[e +f ′(x 0)], c =e x 1-f (x 0)+x 0f ′(x 0). 由于a <0, 则必存在x 2<x 1, 使得ax 22+bx 2+c <0.所以g (x 2)<0.故g (x )在(x 2, x 1)内存在零点,即g(x)在R上至少有两个零点.③若x0<x*,仿②并利用3e6xx>,可证函数g(x)在R上至少有两个零点.综上所述,当a<0时,曲线y=f(x)上存在唯一点P(ln(-2a),f(ln(-2a))),曲线在该点处的切线与曲线只有一个公共点P.21.(1)选修4-2:矩阵与变换解:①设曲线2x2+2xy+y2=1上任意点P(x,y)在矩阵A对应的变换作用下的像是P′(x′,y′).由1x ay b'⎛⎫⎛⎫=⎪ ⎪'⎝⎭⎝⎭x axy bx y⎛⎫⎛⎫=⎪ ⎪+⎝⎭⎝⎭,得,.x axy bx y'=⎧⎨'=+⎩又点P′(x′,y′)在x2+y2=1上,所以x′2+y′2=1,即a2x2+(bx+y)2=1,整理得(a2+b2)x2+2bxy+y2=1.依题意得222,22,a bb⎧+=⎨=⎩解得1,1,ab=⎧⎨=⎩或1,1,ab=-⎧⎨=⎩因为a>0,所以1,1. ab=⎧⎨=⎩②由①知,1 01 1⎛⎫= ⎪⎝⎭A,21 0 1 0 1 01 1 1 12 1⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A,所以|A2|=1,(A2)-1=1 02 1⎡⎤⎢⎥-⎣⎦.(2)选修4-4:坐标系与参数方程解:①由题意知,M,N的平面直角坐标分别为(2,0),(0,).又P为线段MN的中点,从而点P的平面直角坐标为(1,),故直线OP的平面直角坐标方程为y x=.②因为直线l上两点M,N的平面直角坐标分别为(2,0),(0,),所以直线l30y+-=.又圆C的圆心坐标为(2,),半径r=2,圆心到直线l的距离32d r==<,故直线l与圆C相交.(3)选修4-5:不等式选讲解:①因为f(x+2)=m-|x|,f(x+2)≥0等价于|x|≤m,由|x|≤m有解,得m≥0,且其解集为{x|-m≤x≤m}.又f(x+2)≥0的解集为[-1,1],故m=1.②由①知111123a b c++=,又a,b,c∈R+,由柯西不等式得a+2b+3c=(a+2b+3c)(11123a b c ++)≥29=.。

福建高考数学理科卷带详解

福建高考数学理科卷带详解

2009年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)一. 选择题:本小题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数()sin cos f x x x =最小值是 ( )A .1-B . 12-C . 12D .1 【测量目标】二倍角,三角函数的值域.【考查方式】给出三角函数解析式,利用二倍角公式化简求解.【难易程度】容易【参考答案】B 【试题解析】∵1()sin 22f x x =∴min 1()2f x =-.故选B. 2.已知全集U =R ,集合2{|20}A x x x =->,则U A ð等于 ( )A .{}02x x 剟B .{}02x x <<C .{0x x <或}2x >D .{0x x …或}2x …【测量目标】集合的基本运算(补集).【考查方式】给出集合,求其补集.【难易程度】容易【参考答案】A 【试题解析】∵计算可得{0A x x =<或}2x >∴}{02U A x x =剟ð.故选A.3.等差数列{}n a 的前n 项和为n S ,且36S =,14a =, 则公差d 等于 ( )A .1B .53C .2-D .3 【测量目标】等差数列的通项公式,等差数列的前n 项和,等差数列的性质.【考查方式】给出数列首项与前三项的和,根据等差数列通项公式与前n 项和求解公差.【难易程度】容易【参考答案】C 【试题解析】∵31336()2S a a ==+且3112, 4a a d a =+=, 2d ∴=-.故选C .4. π2π2(1cos )x dx -+⎰等于 ( )A .πB . 2C . π2-D . π2+【测量目标】微积分基本定理求定积分.【考查方式】给出定积分,利用微积分基本定理求解.【难易程度】容易【参考答案】D 【试题解析】∵原式πππππ2sin (sin )[sin()]π2π22222x x =+=+--+-=+-.故选D 5.下列函数()f x 中,满足“对任意1x ,2x (0,)∈+∞,当1x <2x 时,都有1()f x >2()f x的是 ( )A .()f x =1xB . ()f x =2(1)x -C .()f x =e xD ()ln(1)f x x =+ 【测量目标】函数单调性的判断.【考查方式】分析四个函数关系式,判断单调递减的函数.【难易程度】容易【参考答案】A【试题解析】依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确.6.阅读右图所示的程序框图,运行相应的程序,输出的结果是 ( )第6题图A .2B .4C . 8D .16【测量目标】循环结构的程序框图.【考查方式】给出循环结构的程序框图,根据程序框图求结果.【难易程度】容易【参考答案】C【试题解析】由算法程序图可知,在n =4前均执行“否”命令,故n =2×4=8. 故选C .7.设m ,n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则αβ∥的一个充分而不必要条件是 ( )A .m β∥且l α∥B . 1m l ∥且2n l ∥C . m β∥且n β∥D . m β∥且2n l ∥【测量目标】充分、必要条件,线线、线面平行的判定.【考查方式】给出两直线平行,判断其充分不必要条件.【难易程度】中等【参考答案】B【试题解析】若1212,,,,,m l n l m n αλλβ⊂⊂∥∥,则可得αβ∥.若αβ∥则存在1221,,m l n l λλ∥∥8.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为 ( )A .0.35B .0.25C .0.20D .0.15【测量目标】随机事件与概率.【考查方式】给出随机数,求其概率.【难易程度】容易【参考答案】B 【试题解析】由随机数可估算出每次投篮命中的概率242605p ≈=则三次投篮命中两次为223C (1)P P ⨯⨯-≈0.25故选B9.设a b c ,,为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,⊥a c ,=a c ,则b c 的值一定等于 ( )A .以a ,b 为两边的三角形面积B .以b ,c 为两边的三角形面积C .以a ,b 为邻边的平行四边形的面积D .以b ,c 为邻边的平行四边形的面积【测量目标】平面向量的数量积运算,三角形面积.【考查方式】通过对平面向量的数量积的运算转化成三角形的面积.【难易程度】容易【参考答案】C 【试题解析】依题意可得cos(,)sin(,)S ===b c b c b c b a a c ,故选C . 10.函数2()(0)f x ax bx c a =++≠的图象关于直线2b x a =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程[]2()()0m f x nf x p ++=的解集都不可能是 ( )A . {}1,2B .{}1,4C .{}1,2,3,4D .{}1,4,16,64【测量目标】函数的定义域.【考查方式】利用特例法带入求解得出结果.【难易程度】中等【试题答案】D【试题解析】本题用特例法解决简洁快速,对方程2[()]()0m f x nf x p ++=中,,m n p 分别赋值求出()f x 代入()0f x =求出检验即得.第二卷 (非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.若2i 1ia b =+-(i 为虚数单位,,a b ∈R )则a b +=_________ 【测量目标】复数代数形式的四则运算.【考查方式】给出复数表达式,进行四则运算,求出实部与虚部.【难易程度】容易【参考答案】2【试题解析】由22(1i)i 1i 1i (1i)(1i)a b +=+⇒=+--+,所以1,1,a b ==故2a b +=. 12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.若记分员计算无误,则数字x 应该是___________第12题图【测量目标】茎叶图.【考查方式】给出茎叶图,求其平均数,逆向求解x .【难易程度】容易【参考答案】1【试题解析】观察茎叶图,可知8889899293909291949119x x +++++++++=⇒=. 13.过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =____________.【测量目标】抛物线的简单几何性质,直线与抛物线的位置关系.【考查方式】联立直线与抛物线的方程,根据抛物线上焦半径的长度求出p 的值.【难易程度】中等【参考答案】2 【试题解析】由题意可知过焦点的直线方程为2p y x =-,联立有22223042y px p x px p y x ⎧=⎪⇒-+=⎨=-⎪⎩,又222(11)(3)4824p AB p p =+-⨯=⇒=. 14.若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________.【测量目标】导数的几何意义.【考查方式】给出函数解析式,根据导数的几何意义,求解参数a 的取值范围.【难易程度】容易【参考答案】(,0)-∞ 【试题解析】由题意可知21()2f x ax x '=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 15.五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为3的倍数,则报该数的同学需拍手一次已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.【测量目标】已知递推关系求通项.【考查方式】根据实际问题列出递推关系,由递推关系得出第100次的拍手总数.【难易程度】中等【参考答案】5【试题解析】由题意可设第n 次报数,第1n +次报数,第2n +次报数分别为n a ,1n a +,2n a +,所以有12n n n a a a +++=,又121,1,a a ==由此可得在报到第100个数时,甲同学拍手5次.三、解答题16.(13分)从集合{}1,2,3,4,5的所有非空子集....中,等可能地取出一个. (1)记性质r :集合中的所有元素之和为10,求所取出的非空子集满足性质r 的概率;(2)记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学期望E ξ【测量目标】组合,古典概型,离散型随机变量的分布列与期望.【考查方式】给出事件,算出总体事件数与所求事件数,根据古典概型求解;列出ξ的取值,分别算出概率求解.【难易程度】容易【试题解析】(1)记“所取出的非空子集满足性质r ”为事件A .基本事件总数n =123555C C C +++4555C C +=31(步骤1)事件A 包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4},(步骤2)事件A 包含的基本事件数m =3,(步骤3) 所以3()31m P A n ==.(步骤4) (2)依题意,ξ的所有可能取值为1,2,3,4,5 又15C 5(1)3131P ξ===, 25C 10(2)3131P ξ===, 35C 10(3)3131P ξ===, 45C 5(4)3131P ξ===, 55C 1(5)3131P ξ===.(步骤5) 故ξ的分布列为:(步骤6) ξ1 2 3 4 5 P 531 1031 1031 531131 从而E 1ξ=⨯531+21031⨯+31031⨯+4531⨯+51803131⨯=.(步骤7) 17.(13分)如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD , NB ⊥ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段A S 的长;若不存在,请说明理由第17题图【测量目标】异面直线所成的角,线面垂直的判定,空间直角坐标系,空间向量及其运算.【考查方式】建立适当空间直角坐标系,应用空间向量的知识求异面直线所成角的余弦值和找出垂线并求线段长.【难易程度】中等【试题解析】(1)在如图,以D 为坐标原点,建立空间直角坐标D xyz -.(步骤1) 依题意,得1(0,0,0),(1,0,0),(0,0,1),(0,1,0),(1,1,0),(1,1,1),(,1,0)2D A M C B NE . 1(,0,1),(1,0,1)2NE AM ∴=--=-(步骤2) 10cos ,10NE AMNE AM NE AM <>==-⨯, 所以异面直线NE 与AM 所成角的余弦值为1010.(步骤3) (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN .(步骤4) (0,1,1)AN =,可设(0,,)AS AN λλλ==,又11(,1,0),(,1,)22EA ES EA AS λλ=-∴=+=-.(步骤5) 由ES ⊥平面AMN ,得0,0ES AM ES AN ⎧∙=⎪⎨∙=⎪⎩即10,2(1)0λλλ⎧-+=⎪⎨⎪-+=⎩故12λ=,此时112(0,,),222AS AS ==.(步骤6) 经检验,当22AS =时,ES ⊥平面AMN .(步骤7) 故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时22AS =.(步骤8)第17题图18.(本小题满分13分)如图,某市在长为8km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数sin (0,0)y A x A ωω=>>,[0,4]x ∈的图象,且图象的最高点为S (3,23);赛道的后一部分为折线段MNP ,为保证参赛运动员的安全,限定120MNP ∠=(1)求A ,ω的值和M ,P 两点间的距离;(2)应如何设计,才能使折线段赛道MNP 最长?第18题图【测量目标】三角函数的图象、周期性、最值,求函数解析式,两点之间的距离,正弦定理,基本不等式.【考查方式】给出三角函数的部分图象与折线图象的复合图象,找出有用的信息求解析式,并求两点之间的距离;由三角函数的最值或利用基本不等式求解.【难易程度】较难【试题解析】解法一(1)依题意,有23A =,34T =,(步骤1) 又2πT ω=,π6ω∴=.π23sin 6y x ∴=.(步骤2) 当4x =时,2π23sin 33y ∴==.(4,3)M ∴.(步骤3) 又(8,3)P ,22435MP ∴=+=.(步骤4)(2)在MNP △中,120MNP ∠=,5MP =,设∠PMN =θ,则060θ<<(步骤5) 由正弦定理得sin120sin sin(60)MP NP MN θθ==-, 103sin 3NP θ∴=,103sin(60)3MN θ∴=-.(步骤6) 故10310310313sin sin(60)(sin cos )33322NP MN θθθθ+=+-=+103sin(60)3θ=+.(步骤7) 060θ∴<<,∴当30θ=时,折线段赛道MNP 最长.亦即,将∠PMN 设计为30时,折线段道MNP 最长.(步骤8)第18题图解法二:(1)同解法一.(2)在MNP △中,120MNP ∠=,MP =5,由余弦定理得2222cos MN NP MN NP MNP MP +-∠=,即2225MN NP MN NP ++=, 故22()25()2MN NP MN NP MN NP ++-=….(步骤5) 从而23()254MN NP +…,即1033MN NP +….(步骤6) 当且仅当MN NP =时,折线段道MNP 最长.(步骤7)注:本题第(Ⅱ)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方式,还可以设计为:①123943(26N ++,);②123943(26N --,);③点N 在线段MP 的垂直平分线上等.19、(本小题满分13分) 已知A ,B 分别为曲线C : 2221(0,0)x y y a a+=>…与x 轴的左、右两个交点,直线l 过点B ,且与x 轴垂直,S 为l 上异于点B 的一点,连结AS 交曲线C 于点T .(1)若曲线C 为半圆,点T 为圆弧AB 的三等分点,试求出点S 的坐标;(2)如图,点M 是以SB 为直径的圆与线段TB 的交点,试问:是否存在a ,使得O ,M ,S 三点共线?若存在,求出a 的值,若不存在,请说明理由.第19题图【测量目标】圆锥曲线中的定点问题、探索性问题.【考查方式】给出椭圆、圆、直线的图象,判断之间的关系,分类讨论探索发现得出结果.【难易程度】较难【试题解析】解法一:(1)当曲线C 为半圆时,1,a =如图,由点T 为圆弧AB 的三等分点得60BOT ∠=或120.(步骤1)①当60BOT ∠=时,30SAE ∠=.又AB =2,故在SAE △中,有tan 30,(,);SB AB S t 2323==∴33(步骤2) ②当120BOT ∠=时,同理可求得点S 的坐标为(1,23),(步骤3)综上,23(1,)3S 或(1,23)S .(步骤4) (2)假设存在(0)a a >,使得O ,M ,S 三点共线.由于点M 在以SB 为直线的圆上,故BT OS ⊥.(步骤5)显然,直线AS 的斜率k 存在且k >0,可设直线AS 的方程为()y k x a =+.由2221()x y a y k x a ⎧+=⎪⎨⎪=+⎩得,22222422(1)20a k x a k x a k a +++-=.设点32222(,),(),1T T T a k a T x y x a a k-∴-=+ 故32221T a a k x a k -=+,从而222()1T T ak y k x a a k=+=+.亦即3222222(,).11a a k ak T a k a k -++ 32222222(,0),(,)11a k ak B a BT a k a k-∴=++. 由()x a y k x a =⎧⎨=+⎩得(,2),(,2).S a ak OS a ak ∴=由BT OS ⊥,可得4222222401a k a k BT OS a k-+==+即4222240a k a k -+=. 0,0,2k a a >>∴=. 经检验,当2a =时,O ,M ,S 三点共线.故存在2a =,使得O ,M ,S 三点共线. 解法二:(1)同解法一.(2)假设存在a ,使得O ,M ,S 三点共线.由于点M 在以SO 为直径的圆上,故SM BT ⊥.显然,直线AS 的斜率k 存在且k >0,可设直线AS 的方程为()y k x a =+.由2221()x y a y k x a ⎧+=⎪⎨⎪=+⎩得22222222(1)20a b x a k x a k a +++-=.设点(,)T T T x y ,则有42222().1T a k a x a a k --=+ 故3222T a a k x a a k -=+,从而222()1T T ak y k x a a k=+=+,亦即2322222(,)11a a k ak T a k a k -++. 21(,0),T BT T y B a k x a a k∴==--,故2SM k a k =. 由,()x a y k x a =⎧⎨=+⎩,得(,2)S a ak ,所直线SM 的方程为22()y ak a k x a -=-. O ,S ,M 三点共线当且仅当O 在直线SM 上,即22()ak a k a =-. 0,0,2a k a >>∴=.故存在2a =,使得O ,M ,S 三点共线.20、(本小题满分14分) 已知函数321()3f x x ax bx =++,且(1)0f '-= (1)试用含a 的代数式表示b ,并求()f x 的单调区间;(2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x ,1()f x ),N (2x ,2()f x ),P (,()m f m ),12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势,并解释以下问题:(I )若对任意的12(,)m x x ∈,线段MP 与曲线f (x )均有异于M ,P 的公共点,试确定t 的最小值,并证明你的结论;(II )若存在点Q(n ,f (n )), x n m <…,使得线段PQ 与曲线f (x )有异于P 、Q 的公共点,请直接写出m 的取值范围(不必给出求解过程)【测量目标】利用导数求函数单调区间、极值,导数的几何意义,函数零点的应用.【考查方式】给出含参的三次函数的解析式及在1x =-处的导数值,利用导数求解其单调性;利用导数判断单调区间,应用函数零点求取值范围.【难易程度】较难【试题解析】解法一:(1)依题意,得2()2f x x ax b '=++,由(1)120f a b '-=-+=,得21b a =-. 从而321()(21)3f x x ax a x =++-,故()(1)(21)f x x x a '=++-. 令()0f x '=,得1x =-或12x a =-,①当a >1时, 121a -<-,当x 变化时,()f x '与()f x 的变化情况如下表: x (,12)a -∞-(12,1)a -- (1,)-+∞ ()f x ' +- + ()f x单调递增 单调递减 单调递增 由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②当1a =时,121a -=-此时有()0f x '>恒成立,且仅在1x =-处()0f x '=,故函数()f x 的单调增区间为R③当1a <时,121a ->-同理可得,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --综上所述,当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --; 当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.(2)由1a =-得321()33f x x x x =--. 令2()230f x x x '=--=,得121,3x x =-=由(1)得()f x 增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在处121,3x x =-=取得极值,故M (51,3-),N (3,9-). (I )观察()f x 的图象,有如下现象:①当m 从1-(不含1-)变化到3时,线段MP 的斜率与曲线()f x 在点P 处切线的斜率()f x 之差()MP k f m '-的值由正连续变为负.②线段MP 与曲线是否有异于H ,P 的公共点与()MP k f m '-的m 正负有着密切的关联; ③()MP k f m '-对应的位置可能是临界点,故推测:满足()MP k f m '-的m 就是所求的t 最小值,下面给出证明并确定的t 最小值.曲线()f x 在点(,())P m f m 处的切线斜率2()23f m m m '=--,线段MP 的斜率2453MP m m k --=. 当()0MP k f m '-=时,解得1m =-或2m =直线MP 的方程为2245433m m m m y x ---=+,令22454()()()33m m m m g x f x x ---=-+, 当2m =时,2()2g x x x '=-在(1,2)-上只有一个零点0x =,可判断()f x 函数在(1,0)-上单调递增,在(0,2)上单调递减,又(1)(2)0g g -==,所以()g x 在(1,2)-上没有零点,即线段MP 与曲线()f x 没有异于M ,P 的公共点. 当(]2,3m ∈时,24(0)03m m g -=->,2(2)(2)0g m =--<. 所以存在(]0,2m ∈使得()0g δ=即当(]2,3,m ∈时MP 与曲线()f x 有异于M ,P 的公共点.综上,t 的最小值为2.(II )类似(I )于中的观察,可得m 的取值范围为(]2,3解法二:(1)同解法一.(2)由1a =-得321()33f x x x x =---,令2()230f x x x '=--=,得121,3x x =-= 由(1)得的()f x 单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数在处取得极值.故M (51,3-),N (3,9-) (I )直线MP 的方程为22454.33m m m m y x ---=+ 由223245433133m m m m y x y x x x ⎧---=+⎪⎪⎨⎪=--⎪⎩得32223(44)40x x m m x m m ---+-+=线段MP 与曲线()f x 有异于M ,P 的公共点等价于上述方程在(1,)m -上有根,即函数 3222()3(44)4g x x x m m x m m =---+-+在(1,)m -上有零点.因为函数()g x 为三次函数,所以()g x 至多有三个零点,两个极值点.又(1)()0g g m -==.因此, ()g x 在(1,)m -上有零点等价于()g x 在(1,)m -内恰有一个极大值点和一个极小值点,即22()36(44)0(1,)g x x x m m m '=---+=在内有两不相等的实数根.等价于2222236124403(1)6(44)036(44)01m m m m m m m m m ⎧∆+-+⎪-+--+>⎪⎨---+>⎪⎪>⎩=()>, 即15,21,1m m m m -<<⎧⎪><-⎨⎪>⎩或解得25m << 又因为13m -<…,所以m 的取值范围为(2,3)(II )从而满足题设条件的t 的最小值为2.21、本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,(1)(本小题满分7分)选修4—4:矩阵与变换 已知矩阵M 2311-⎛⎫ ⎪-⎝⎭所对应的线性变换把点A (x ,y)变成点A (13,5),试求M 的逆矩阵及点A 的坐标.(2)(本小题满分7分)选修4—4:坐标系与参数方程已知直线:34120l x y +-=与圆C :12cos 22sin x y θθ=-+⎧⎨=+⎩(θ为参数 )试判断他们的公共点个数.(3)(本小题满分7分)选修4—5:不等式选讲 解不等式211x x -<+.【测量目标】矩阵与行列式初步,坐标系与参数方程,不等式选讲.【考查方式】给出矩阵进行变换求逆矩阵;给出直线方程与圆的参数方程判断交点个数;给出不等式求解.【难易程度】中等【试题解析】(1)由 2 3,1 1-⎛⎫= ⎪-⎝⎭M 得1=M ,故1 1 3,1 2--⎛⎫= ⎪-⎝⎭M 从而由 2 3131 15x y -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭得 1 3131133521 25113253x y --⨯+⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪ ⎪ ⎪--⨯+⨯-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故2,3x y =⎧⎨=-⎩,即(2,3)A -为所求.(2)圆的方程可化为22(1)(2)4x y ++-=.其圆心为(1,2)C -,半径为2,22381272534d -+-==+<,有两交点. (3)当x <0时,原不等式可化为211x x -+<-+,解得0x >又0,x x <∴不存在; 当102x <…时,原不等式可化为211x x -+<+,解得0x >. 又110,022x x <∴<<…; 当11,222x x ∴<厔 综上,原不等式的解集为{}02x x <<.。

福建高考数学试卷理工农医类

福建高考数学试卷理工农医类

【经典资料,WORD文档,可编辑修改】【经典考试资料,答案附后,看后必过,WORD文档,可修改】福建数学试题(理工农医类)参考答案一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分. 1.D 2.B 3.C4.B5.A6.A7.C8.D9.D10.B11.B12.D二、填空题:本大题考查基础知识和基本运算,每小题4分,满分16分. 13.[57]-,14115.2316.答案不唯一,如“图形的全等”、“图形的相似”、“非零向量的共线”、“命题的充要条件”等等. 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力,满分12分. 解:(Ⅰ)π()C A B =-+,1345tan tan()113145C A B +∴=-+=-=--⨯. 又0πC <<,3π4C ∴=.(Ⅱ)34C =π,AB ∴边最大,即AB =又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭,,,,2sin AB C=正三棱柱2=sin AFG ∴∠133A BD S d =△,在正三棱柱23),,,(003)A ,,,1B 1200AB BD =-+=,114AB BA =-+-1AB BD ∴⊥,AB1AB ⊥平面1A BD .AD ⊥n 1AA ,令1z =得(301)=-,,n 为平面cos <n ,113222AB AB AB -==n n B 的大小为6arccos.100)AB =,,,1 12 2BC AB AB-=.本小题考查函数、导数及其应用等知识,考查运用数学知识分析和解决实际问题的能力,满分在263 x=+QF FP FQ =得:(2)(1)(2)y x y y -=--,,,,化简得2:4C y x =.(Ⅱ)设直线AB 的方程为:112y m λ+=-,2222y y mλ+=-,整理得:QF FP FQ =得:(FQ PQ PF +()0PQ PF +=,220PQ PF -=,PQ PF =.所以点P 的轨迹C 是抛物线,由题意,轨迹Q20λ<.1MA AF MBBFλλ=-.…………①A B ,分别作准线l 的垂线,垂足分别为1MA AA AF MBBB BF ==.…………②由①②得:1AF AF BFBFλ-=,即.本小题考查数列的基本知识,考查等差数列的概念、通项公式与前2q pr ⎧-∴⎨12)()x F x =n。

2020年普通高等学校招生全国统一考试数学理试题(福建卷,含答案)

2020年普通高等学校招生全国统一考试数学理试题(福建卷,含答案)

2020年普通高等学校招生全国统一考试数学理试题(福建卷,含答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。

第Ⅱ卷第21题为选考题,其他题为必考题。

满分150分。

注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。

考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

3. 考试结束,考生必须将试题卷和答题卡一并交回。

参考公式:样本数据x 1,x 2,…,x a 的标准差 锥体体积公式13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 是虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 2.若a ∈R ,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件 3.若tan α=3,则2sin 2cos aα的值等于 A.2 B.3 C.4 D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A.14B.13 C.12 D.235.10⎰(e 2+2x )dx 等于A.1B.e-1C.eD.e+16.(1+2x)3的展开式中,x 2的系数等于A.80B.40C.20D.107.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A.1322或B.23或2C.12或2 D.2332或 8.已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域,上的一个动点,则OA u u u r ·的取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-1.2]9.对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能.....是 A.4和6 B.3和1 C.2和4 D.1和210.已知函数f(x)=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④2020年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项:用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。

2019年高考真题——理科数学(福建卷)解析版

2019年高考真题——理科数学(福建卷)解析版

2019年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)第Ⅰ卷(选择题 共50分)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25 B .45CD【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d=. 4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和 C .计算数列{}21n -的前10项和 D .计算数列{}21n -的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC =,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点. B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A N B N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C .{|01},A x x B R =<<= D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,2412R S R ππ∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,sin 3BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD +-∠=∙BD ==14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________1【解析】由直线方程)y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c F M c F M ===∴由椭圆的第一定义可得21c a c a =∴==-15.当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n nn C C C C +⨯+⨯+⨯++⨯=+【答案】113[()1]12n n +-+ 【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X ∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x. (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分. 解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x ii y x 得:2110=y x ,即210=x y ,∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥ 1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD uu u r uuu r uuur的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-uuu r ,1(0,3,1)AB k =uuu r ,1(0,0,1)AA =uuu r设平面1AB C 的法向量(,,)n x y z =,则由100AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数; 若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解 设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x , 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin x a x =-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin x h x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞当x π<且x 趋近于π时,()h x 趋向于-∞当x π>且x 趋近于π时,()h x 趋向于+∞当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点 由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点。

高考理科数学试卷及答案解析(文字版)

高考理科数学试卷及答案解析(文字版)

普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)一.选择题:本小题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数()sin cos f x x x =最小值是A .-1 B.12-C.12D.12.已知全集U=R ,集合2{|20}A x x x =->,则C U A 等于A .{x ∣0≤x ≤2}B {x ∣0<x<2}C .{x ∣x<0或x>2}D {x ∣x ≤0或x ≤2}3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于A .1B53C.-2D 34.22(1cos )x dx ππ-+⎰等于A .π B.2C.π-2D.π+25.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB.()f x =2(1)x -C .()f x =xe D()ln(1)f x x =+6.阅读右图所示的程序框图,运行相应的程序,输出的结果是A .2B .4C.8D .167.设m ,n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则α//β的一个充分而不必要条件是A.m //β且l //α B.m //l 且n //l 2C.m//β且n //βD.m//β且n //l 28.已知某运动员每次投篮命中的概率低于40%。

现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。

经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为A .0.35B 0.25C 0.20D 0.159.设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,若a ⊥c 且∣a∣=∣c∣,则∣b •c∣的值一定等于A .以a ,b 为两边的三角形面积B 以b ,c 为两边的三角形面积C .以a ,b 为邻边的平行四边形的面积D 以b ,c 为邻边的平行四边形的面积10.函数()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称。

福建高考理科数学试卷与答案7

福建高考理科数学试卷与答案7

2018 年一般高等学校招生全国一致考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1 至2 页,第Ⅱ卷第3 至 6 页。

第Ⅱ卷第 21 题为选考题,其余题为必考题。

满分 150 分。

注意事项:1. 答题前,考生务必在试卷卷、答题卡规定的地方填写自己的准考据号、姓名。

考生要仔细查对答题卡上粘贴的条形码的“准考据号,姓名”与考生自己准考据号,姓名能否一致。

2. 第Ⅰ卷每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号,第Ⅱ卷用 0.5 毫 M 黑色署名笔在答题卡上书写作答,在试卷卷上作答,答案无效。

3. 考试结束,考生一定将试卷卷和答题卡一并交回。

参照公式:样本数据 x 1 , x 2 , , x n 的标准差锥体体积公式s1[ ( x 1 x)2( x 2 x)2+ +(x nx)2] V1Shn3此中 x 为样本均匀数 此中 S 为底面面积, h 为高柱体体积公式球的表面积,体积公式VSh S4 R 2,V4 R 33此中 R 为球的半径此中 S 为底面面积, h 为高第Ⅰ卷(选择题 共 50 分)一、选择题:本大题共10 小题,每题5 分,共 50 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1.i 是虚数单位,若会合S ={ -1,0,1} ,则2∈ SA. i ∈ SB.i 2 ∈ SC.i 3 ∈ SD.2. 若 a R ,则 a =2 是 (a 1)(a2) 0i的A. 充足而不用要条件B必需而不充足条件 C. 充要条件 C.既不充足又不用要条件3. 若 tan=3,则sin 2的值等于cos 24. 如图,矩形 ABCD 中,点 E 为边 CD 的中点,若在矩形 ABCD 内部随机取一个点 Q ,则点 Q 取自△ ABE 内部的概率等于A.1B.1C.1 D.2 43235.1 2x)dx 等于(e xB. e 1C.eD.e 16. (1 2x)5 的睁开式中, x 2 的系数等于7. 设圆锥曲线E 的两个焦点分别为F 1 , F 2 ,若曲线 E 上存在点 P 知足 | PF 1 |: | F 1F 2 | : | PF 2 |=4:3:2 ,则曲线 E 的离心率等于A.1或3B.2或 2C.1或2D.2 或3 22323 2x y 28.已知 O 是坐标原点,点 A (-1,1 ),若点 M (x, y) 为平面地区 x 1 上的一个动点,则OA OM 的y 2取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-1.2]9. 对于函数 f ( x) = a sin x bx c ( 此中 a , b R , c Z ), 选用 a , b , c 的一组值计算f (1) 和 f ( 1) ,所得出的正确结果必定不行能 是.....和6 和1 和4和210. 已知函数 f (x) =e xx , 对于曲线 y f ( x) 上横坐标成等差数列的三个点 A , B , C ,给出以下判断:① ABC 必定是钝角三角形 ② ABC 可能是直角三角形 ③ ABC 可能是等腰三角形④ ABC 不行能是等腰三角形此中,正确的判断是 A. ①③ B. ①④ C.②③ D. ②④注意事项:用 0.5 毫 M 黑色署名笔在答题卡上书写答案,在试卷卷上作答,答案无效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试数学(理工农医类)(福建卷) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21(1i)+等于( )A .12B .12-C .1i 2D .1i 2-2.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( )A .1B .56C .16D .1303.已知集合{}{12}A x x a B x x =<=<<,,且()A B =R R U ð,则实数a 的取值范围是( ) A .1a ≤ B .1a < C .2a ≥ D .2a > 4.对于向量,,a b c 和实数λ,下列命题中真命题是( ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若22=a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c5.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A .关于点0π⎛⎫ ⎪3⎝⎭,对称B .关于直线x π=4对称 C .关于点0π⎛⎫ ⎪4⎝⎭,对称D .关于直线x π=3对称 6.以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++=D .221090x y x +++=7.已知()f x 为R 上的减函数,则满足1(1)f f x ⎛⎫<⎪⎝⎭的实数x 的取值范围是( )A .(11)-,B .(01),C .(10)(01)-U ,,D .(1)(1)-∞-+∞U ,,8.已知m n ,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是( ) A .m n m n ααββαβ⊂⊂⇒,,∥,∥∥ B .m n m n αβαβ⊂⊂⇒∥,,∥ C .m m n n αα⇒⊥,⊥∥ D .n m n m αα⇒∥,⊥⊥9.把21(1)(1)(1)nx x x +++++++L 展开成关于x 的多项式,其各项系数和为n a ,则21lim1n n na a ∞-+→等于( )A .14B .12C .1D .210.顶点在同一球面上的正四棱柱ABCD A B C D ''''-中,1AB AA '==,则A C ,两点间的球面距离为( ) A .π4B .π2C.4π D.2π 11.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,12.如图,三行三列的方阵中有9个数(123123)ij a i j ==,,;,,,从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .37B .47C .114D .1314第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的取值范围是________.14.已知正方形ABCD ,则以A B ,为焦点,且过C D ,两点的椭圆的离心率为______. 15.两封信随机投入A B C ,,三个空邮箱,则A 邮箱的信件数ξ的数学期望E ξ= .16.中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合A 中元素之间的一个关系“-”满足以下三个条件: (1)自反性:对于任意a A ∈,都有a a -;(2)对称性:对于a b A ∈,,若a b -,则有b a -;(3)传递性:对于a b c A ∈,,,若a b -,b c -,则有a c -. 则称“-”是集合A 的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出三个等价关系:______.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若ABC △18.(本小题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.19.(本小题满分12分)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元(35a ≤≤)的管理费,预计当每件产品的售价为x 元(911x ≤≤)时,一年的销售量为2(12)x -万件.(Ⅰ)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(Ⅱ)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值()Q a .ABCD1A1C1B20.(本小题满分12分)如图,已知点(10)F ,, 直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ =u u u r u u u r u u u r u u u rgg . (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M ,已知1MA AF λ=u u u r u u u r,2MB BF λ=u u u r u u u r,求12λλ+的值;21.(本小题满分12分)等差数列{}n a 的前n项和为1319n S a S ==+, (Ⅰ)求数列{}n a 的通项n a 与前n 项和n S ; (Ⅱ)设()nn S b n n*=∈N ,求证:数列{}n b 中任意不同的三项都不可能成为等比数列. 22.(本小题满分14分) 已知函数()e xf x kx x =-∈R ,(Ⅰ)若e k =,试确定函数()f x 的单调区间;(Ⅱ)若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围; (Ⅲ)设函数()()()F x f x f x =+-,求证:12(1)(2)()(e 2)()n n F F F n n +*>+∈N L .福建数学试题(理工农医类)参考答案一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分. 1.D 2.B 3.C 4.B 5.A 6.A 7.C 8.D 9.D 10.B11.B 12.D二、填空题:本大题考查基础知识和基本运算,每小题4分,满分16分. 13.[57]-,14115.2316.答案不唯一,如“图形的全等”、“图形的相似”、“非零向量的共线”、“命题的充要条件”等等.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力,满分12分. 解:(Ⅰ)π()C A B =-+Q ,1345tan tan()113145C A B +∴=-+=-=--⨯. 又0πC <<Q ,3π4C ∴=.(Ⅱ)34C =πQ ,AB ∴边最大,即AB =又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭Q ,,,,∴角A 最小,BC 边为最小边.由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin 17A =.由sin sin AB BC C A =得:sin sin A BC AB C==g所以,最小边BC =18.本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)取BC 中点O ,连结AO . ABC Q △为正三角形,AO BC ∴⊥.Q 正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点,1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥,1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥,AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB ==Qsin 4AG AFG AF ∴===∠. 所以二面角1A A D B --的大小为arcsin4. (Ⅲ)1A BD △中,111A BD BD A D A B S ===∴=△1BCD S =△. 在正三棱柱中,1A 到平面11BCC B. 设点C 到平面1A BD 的距离为d . 由11A BCD C A BD V V --=得11133BCD A BD S S d =g △△, ABC D1A 1C1BOF12BCD A BD d S ∴==△△. ∴点C 到平面1A BD的距离为2. 解法二:(Ⅰ)取BC 中点O ,连结AO . ABC Q △为正三角形,AO BC ∴⊥.Q 在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB uuu r ,1OO u u u u r ,OA u u ur 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A,(00A ,1(120)B ,,,1(12AB ∴=u u u r ,,(210)BD =-u u u r ,,,1(12BA =-u u u r.12200AB BD =-++=u u u r u u u r Q g ,111430AB BA =-+-=u u u r u u u rg , 1AB BD ∴u u u r u u u r ⊥,11AB BA u u u r u u u r ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =-u u u r ,,,1(020)AA =u u u r ,,.AD u u u r Q ⊥n ,1AA u u u r ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩u u u r g u u u r g ,,nn 020x y y ⎧-+-=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,.令1z =得(1)=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴u u u r为平面1A BD 的法向量.cos <n,111AB AB AB >===u u u ru u u r g u u u r g n n . ∴二面角1A A D B --的大小为arccos(Ⅲ)由(Ⅱ),1AB u u u r为平面1A BD 法向量,1(200)(12BC AB =-=u u u r u u u rQ ,,,,.∴点C 到平面1A BD的距离11BC AB d AB ===u u u r u u u r g u u u r 19.本小题考查函数、导数及其应用等知识,考查运用数学知识分析和解决实际问题的能力,满分12分. 解:(Ⅰ)分公司一年的利润L (万元)与售价x 的函数关系式为:2(3)(12)[911]L x a x x =---∈,,.(Ⅱ)2()(12)2(3)(12)L x x x a x '=-----(12)(1823)x a x =-+-.令0L '=得263x a =+或12x =(不合题意,舍去). 35a Q ≤≤,2288633a ∴+≤≤.在263x a =+两侧L '的值由正变负.所以(1)当28693a +<≤即932a <≤时,2max (9)(93)(129)9(6)L L a a ==---=-.(2)当2289633a +≤≤即952a ≤≤时, 23max2221(6)63126433333L L a a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=+=+---+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以399(6)32()1943532a a Q a a a ⎧-<⎪⎪=⎨⎛⎫⎪- ⎪⎪⎝⎭⎩, ≤,, ≤≤ 答:若932a <≤,则当每件售价为9元时,分公司一年的利润L 最大,最大值()9(6)Q a a =-(万元);若952a ≤≤,则当每件售价为263a ⎛⎫+ ⎪⎝⎭元时,分公司一年的利润L 最大,最大值31()433Q a a ⎛⎫=- ⎪⎝⎭(万元).20.本小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分.解法一:(Ⅰ)设点()P x y ,,则(1)Q y -,,由QP QF=u u u r u u u r u u u r u u u rg(10)(2)(1)(2)x y x y y +-=--g g ,,,,,化简得2:4C y x =(Ⅱ)设直线AB 的方程为:1(0)x my m =+≠.设11()A x y ,,22()B x y ,,又21M m ⎛⎫-- ⎪⎝⎭,, 联立方程组241y x x my ⎧=⎨=+⎩,,,消去x 得:2440y my --=,2(4)120m ∆=-+>,故121244y y m y y +=⎧⎨=-⎩,. 由1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r得: 1112y y m λ+=-,2222y y mλ+=-,整理得: 1121my λ=--,2221my λ=--, 12122112m y y λλ⎛⎫∴+=--+ ⎪⎝⎭121222y y m y y +=--g 2424m m =---g 0=.解法二:(Ⅰ)由QP QF FP FQ =u u u r u u u r u u u r u u u r g g 得:()0FQ PQ PF +=u u u r u u u r u u u rg , ()()0PQ PF PQ PF ∴-+=u u u r u u u r u u u r u u u rg ,220PQ PF ∴-=u u u r u u u r , PQ PF ∴=u u u r u u u r .所以点P 的轨迹C 是抛物线,由题意,轨迹C 的方程为:24y x =.(Ⅱ)由已知1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,得120λλ<g. 则:12MA AF MB BFλλ=-u u u r u u u r u u u r u u u r .…………①过点A B ,分别作准线l 的垂线,垂足分别为1A ,1B ,则有:11MA AA AFMB BB BF==u u u r u u u r u u u r u u u r u u u r u u u r .…………②由①②得:12AF AFBF BFλλ-=u u u r u u u r u u u r u u u r ,即120λλ+=.21.本小题考查数列的基本知识,考查等差数列的概念、通项公式与前n 项和公式,考查等比数列的概念与性质,考查化归的数学思想方法以及推理和运算能力.满分12分解:(Ⅰ)由已知得111339a a d ⎧=⎪⎨+=+⎪⎩,2d ∴=,故21(n n a n S n n =-=.(Ⅱ)由(Ⅰ)得nn S b n n==+ 假设数列{}n b 中存在三项p q r b b b ,,(p q r ,,互不相等)成等比数列,则2q p r b b b =.即2((q p r +=++.2()(20q pr q p r ∴-+--=p q r *∈N Q ,,,2020q pr q p r ⎧-=∴⎨--=⎩,,22()02p r pr p r p r +⎛⎫∴=-=∴= ⎪⎝⎭,,. 与p r ≠矛盾.所以数列{}n b 中任意不同的三项都不可能成等比数列.22.本小题主要考查函数的单调性、极值、导数、不等式等基本知识,考查运用导数研究函数性质的方法,考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力.满分14分.解:(Ⅰ)由e k =得()e e x f x x =-,所以()e e xf x '=-.由()0f x '>得1x >,故()f x 的单调递增区间是(1)+∞,,由()0f x '<得1x <,故()f x 的单调递减区间是(1)-∞,. (Ⅱ)由()()f x f x -=可知()f x 是偶函数. 于是()0f x >对任意x ∈R 成立等价于()0f x >对任意0x ≥成立.由()e 0xf x k '=-=得ln x k =.①当(01]k ∈,时,()e 10(0)x f x k k x '=->->≥.此时()f x 在[0)+∞,上单调递增.故()(0)10f x f =>≥,符合题意.②当(1)k ∈+∞,时,ln 0k >. 当x 变化时()()f x f x ',的变化情况如下表:由此可得,在[0)+∞,上,()(ln )ln f x f k k k k =-≥. 依题意,ln 0k k k ->,又11e k k >∴<<,. 综合①,②得,实数k 的取值范围是0e k <<. (Ⅲ)()()()e e x xF x f x f x -=+-=+Q , 12()()F x F x ∴=12121212121212()()e e e e e e 2e 2x x x x x x x x x x x x x x +-+--++-+++++>++>+, 1(1)()e 2n F F n +∴>+,11(2)(1)e 2()(1)e 2.n n F F n F n F ++->+>+L L由此得,21[(1)(2)()][(1)()][(2)(1)][()(1)](e 2)n n F F F n F F n F F n F n F +=->+L L 故12(1)(2)()(e2)n n F F F n n +*>+∈N L ,.。

相关文档
最新文档