二次函数与一元二次方程-练习题(家庭作业)

合集下载

一元二次方程与二次函数测试题

一元二次方程与二次函数测试题

一元二次方程与二次函数测试题1一.选择题(共10小题)1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣12.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为()A.1 B.1或﹣1 C.﹣1 D.0.53.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.4.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=15.一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠16.函数y=﹣x2+1的图象大致为()A.B.C. D.7.已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣38.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2D.y2<y3<y1 9.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.10.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m二.填空题(共10小题)11.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为.12.2x2﹣x﹣1=0的二次项系数是,一次项系数是,常数项是.13.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是.14.一元二次方程x2+3﹣2x=0的解是.15.抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=.16.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点,则抛物线的函数关系式是.17.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.则①当x>4时,M<0;②当x<2时,M随着x增大而增大;③使得M大于4的x值不存在;④若M=2,则x=1,其中正确的有(填写序号)18.已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.19.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为.20.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.三.解答题(共10小题)21.解方程(1)3x(x﹣1)=2﹣2x (2)x2+8x﹣9=0.(3)(x﹣3)2=3﹣x (4)3x2+5(2x+1)=0.22.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.23.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.24.(2014•蜀山区校级模拟)已知抛物线y=﹣﹣x+4,(1)用配方法确定它的顶点坐标、对称轴;(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?25.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?28.(2015•黑龙江)如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.一元二次方程与二次函数测试题1参考答案与试题解析一.选择题(共10小题)1.(2016•新都区模拟)下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.【解答】解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选A.2.(2016春•无锡校级期中)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为()A.1 B.1或﹣1 C.﹣1 D.0.5【分析】根据一元二次方程的定义得到m﹣1≠0;根据方程的解的定义得到m2﹣1=0,由此可以求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,∴m2﹣1=0且m﹣1≠0,解得m=﹣1.故选:C.3.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.4.(2016•夏津县二模)用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.5.(2016•邹城市一模)一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠1【分析】根据一元二次方程的根的判别式,以及二次项系数不等于0,建立关于k的不等式组,求出k的取值范围.【解答】解:∵a=1﹣k,b=﹣2,c=﹣1,方程有两个不相等的实数根.∴△=b2﹣4ac=4+4(1﹣k)=8﹣4k>0∴k<2又∵一元二次方程的二次项系数不为0,即k≠1.∴k<2且k≠1.故选C.6.(2016•当涂县三模)函数y=﹣x2+1的图象大致为()A.B.C.D.【分析】根据二次函数的开口方向,对称轴,和y轴的交点可得相关图象.【解答】解:∵二次项系数a<0,∴开口方向向下,∵一次项系数b=0,∴对称轴为y轴,∵常数项c=1,∴图象与y轴交于(0,1),故选B.7.(2016•滨州一模)已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3【分析】现根据函数解析式,画出草图.A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明△≥0,易求a的取值;C、解一元二次不等式即可;D、根据左加右减,上加下减作答即可.【解答】解:∵y=x2﹣4x+a,∴对称轴x=2,此二次函数的草图如图:A、当x<1时,y随x的增大而减小,此说法正确;B、当△=b2﹣4ac=16﹣4a≥0,即a≤4时,二次函数和x轴有交点,此说法正确;C、当a=3时,不等式x2﹣4x+a>0的解集是x<1或x>3,此说法错误;D、y=x2﹣4x+a配方后是y=(x﹣2)2+a﹣4,向上平移1个单位,再向左平移3个单位后,函数解析式是y=(x+1)2+a﹣3,把(1,﹣2)代入函数解析式,易求a=﹣3,此说法正确.故选C.8.(2016•滨江区模拟)已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【分析】求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.【解答】解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.9.(2016•东莞市二模)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A. B. C.D.【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选D.10.(2015•佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m【分析】本题可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故选:A.二.填空题(共10小题)11.(2016春•惠山区期末)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为﹣1.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出a 的值.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,∴|a|﹣1=0,即a=±1,∵a﹣1≠0∴a=﹣1,故答案为:﹣1.12.(2015秋•凤庆县校级期末)2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:根据一元二次方程的定义得:2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.13.(2016•高安市一模)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是3.【分析】先求出两根之积与两根之和的值,再将+化简成两根之积与两根之和的形式,然后代入求值.【解答】解:∵α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根;∴α+β=﹣2m﹣3,α•β=m2;∴+===﹣1;∴m2﹣2m﹣3=0;解得m=3或m=﹣1;∵一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根;∴△=(2m+3)2﹣4×1×m2=12m+9>0;∴m>﹣;∴m=﹣1不合题意舍去;∴m=3.14.(2015•天水)一元二次方程x2+3﹣2x=0的解是x1=x2=.【分析】先分解因式,即可得出完全平方式,求出方程的解即可.【解答】解:x2+3﹣2x=0(x﹣)2=0∴x1=x2=.故答案为:x1=x2=.15.(2012•滕州市校级模拟)抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=﹣1.【分析】根据抛物线y=﹣x2﹣2x+m,若其顶点在x轴上可知其顶点纵坐标为0,故可得出关于m的方程,求出m的值即可.【解答】解:∵抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,∴=0,解得m=﹣1.故答案为:﹣1.16.(2008秋•周村区期中)已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点,则抛物线的函数关系式是y=﹣x2+5x.【分析】把三点坐标代入函数解析式,即可得到关于a,b,c的方程组,即可求得a,b,c的值,求出函数解析式.【解答】解:把点A(5,0)、B(6,﹣6)、(0.0)代入抛物线y=ax2+bx+c,得:解得:则抛物线的函数关系式是y=﹣x2+5x.17.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.则①当x>4时,M<0;②当x<2时,M随着x增大而增大;③使得M大于4的x值不存在;④若M=2,则x=1,其中正确的有②③(填写序号)【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出0>y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<2时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2,∴④错误;故答案为:②③.18.(2015•漳州)已知二次函数y=(x﹣2)2+3,当x<2时,y随x的增大而减小.【分析】根据二次函数的性质,找到解析式中的a为1和对称轴;由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【解答】解:在y=(x﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小;当x>2时,y的值随着x的值增大而增大.故答案为:<2.19.(2015•东光县校级二模)如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为y=﹣(x﹣4)2﹣2.【分析】一条抛物线经过平移后与抛物线y=﹣x2+2重合,所以所求抛物线的二次项系数为a=﹣,再根据顶点坐标写出表达式则可.【解答】解:根据题意,可设所求的抛物线的解析式为y=a(x﹣h)2+k;∵此抛物线经过平移后与抛物线y=﹣x2+2重合,∴a=﹣;∵此抛物线的顶点坐标为(4,﹣2),∴其解析式为:y=﹣(x﹣4)2﹣2.20.(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是64cm2.【分析】设矩形的一边长是xcm,则邻边的长是(16﹣x)cm,则矩形的面积S 即可表示成x的函数,根据函数的性质即可求解.【解答】解:设矩形的一边长是xcm,则邻边的长是(16﹣x)cm.则矩形的面积S=x(16﹣x),即S=﹣x2+16x,当x=﹣=﹣=8时,S有最大值是:64.故答案是:64.三.解答题(共10小题)21.(2014秋•成都期中)解方程(1)3x(x﹣1)=2﹣2x(2)x2+8x﹣9=0.【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣;(2)x2+8x﹣9=0,(x+9)(x﹣1)=0,x+9=0,x﹣1=0,x1=﹣9,x2=1.22.(2013秋•武穴市校级月考)解方程:(3x﹣1)(x﹣1)=(4x+1)(x﹣1).【分析】分析本题容易犯的错误是约去方程两边的(x﹣1),将方程变为3x﹣1=4x+1,所以x=﹣2,这样就丢掉了x=1这个根.故特别要注意:用含有未知数的整式去除方程两边时,很可能导致方程失根.【解答】解:(3x﹣1)(x﹣1)﹣(4x+1)(x﹣1)=0,(x﹣1)[(3x﹣1)﹣(4x+1)]=0,(x﹣1)(x+2)=0,∴x1=1,x2=﹣2.23.(2013秋•嘉峪关校级期中)解方程(1)(x﹣1)(x+3)=12(2)(x﹣3)2=3﹣x(3)3x2+5(2x+1)=0.【分析】(1)方程整理为一般形式后,左边利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(3)方程整理为一般形式后,找出a,b,c的值,代入求根公式即可求出值.【解答】解:(1)方程整理得:x2+2x﹣15=0,分解因式得:(x﹣3)(x+5)=0,解得:x1=3,x2=﹣5;(2)方程变形得:(x﹣3)2+(x﹣3)=0,分解因式得:(x﹣3)(x﹣3+1)=0,解得:x1=3,x2=2;(3)方程整理得:3x2+10x+5=0,这里a=3,b=10,c=5,∵△=100﹣60=40,∴x==.24.(2015秋•永川区校级期中)已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.【分析】(1)若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,即可求出k的取值范围.(2)由于AB=2是方程kx2﹣4x+2=0,所以可以确定k的值,进而再解方程求出BC的值.【解答】解:(1)∵方程有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×k×2=16﹣8k≥0,解得:k≤2,又因为k是二次项系数,所以k≠0,所以k的取值范围是k≤2且k≠0.(2)由于AB=2是方程kx2﹣4x+2=0,所以把x=2代入方程,可得k=,所以原方程是:3x2﹣8x+4=0,解得:x1=2,x2=,所以BC的值是.25.(2004•重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.【分析】首先根据根的判别式求出m的取值范围,利用根与系数的关系可以求得方程的根的和与积,将转化为关于m的方程,求出m的值并检验.【解答】解:由判别式大于零,得(2m﹣3)2﹣4m2>0,解得m<.∵即.∴α+β=αβ.又α+β=﹣(2m﹣3),αβ=m2.代入上式得3﹣2m=m2.解之得m1=﹣3,m2=1.∵m2=1>,故舍去.∴m=﹣3.26.(2014•蜀山区校级模拟)已知抛物线y=﹣﹣x+4,(1)用配方法确定它的顶点坐标、对称轴;(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?【分析】(1)用配方法时,先提二次项系数,再配方,写成顶点式,根据顶点式的坐标特点求顶点坐标及对称轴;(2)对称轴是x=﹣1,开口向下,根据对称轴及开口方向确定函数的增减性;(3)令y=0,确定函数图象与x轴的交点,结合开口方向判断x的取值范围.【解答】解:(1)∵y=﹣﹣x+4=﹣(x2+2x﹣8)=﹣[(x+1)2﹣9]=﹣+,∴它的顶点坐标为(﹣1,),对称轴为直线x=﹣1;(2)∵抛物线对称轴是直线x=﹣1,开口向下,∴当x>﹣1时,y随x增大而减小;(3)当y=0时,即﹣+=0解得x1=2,x2=﹣4,而抛物线开口向下,∴当﹣4<x<2时,抛物线在x轴上方.27.(2011•乌鲁木齐)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?【分析】(1)用每台的利润乘以销售量得到每天的利润.(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.(3)把y=150代入函数,求出对应的x的值,然后根据w与x的关系,舍去不合题意的值.【解答】解:(1)y=(x﹣20)(﹣2x+80),=﹣2x2+120x﹣1600;(2)∵y=﹣2x2+120x﹣1600,=﹣2(x﹣30)2+200,∴当x=30元时,最大利润y=200元;(3)由题意,y=150,即:﹣2(x﹣30)2+200=150,解得:x1=25,x2=35,又销售量W=﹣2x+80随单价x的增大而减小,所以当x=25时,既能保证销售量大,又可以每天获得150元的利润.28.(2015•黑龙江)如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,解方程组求出b、c的值即可;(2)因为点A与点C关于x=2对称,根据轴对称的性质,连接BC与x=2交于点P,则点P即为所求,求出直线BC与x=2的交点即可.【解答】解:(1)由题意得,,解得b=4,c=3,∴抛物线的解析式为.y=x2﹣4x+3;(2)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,,解得,k=﹣1,b=3,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).29.(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【分析】(1)根据题意确定出B与C的坐标,代入抛物线解析式求出b与c的值,即可确定出解析式;(2)把抛物线解析式化为顶点形式,找出顶点坐标,四边形ABDC面积=三角形ABC面积+三角形BCD面积,求出即可.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S=S△ABC+S△BCD=×4×4+×4×2=8+4=12.四边形ABDC30.(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.。

二次函数与一元二次方程练习题

二次函数与一元二次方程练习题

二次函数与一元二次方程专题一、选择题1、下列哪一个函数,其图形与x 轴有两个交点( )A. y =17(x 83)22274B. y =17(x 83)22274C. y = 17(x 83)22274D.y = 17(x 83)22274 2. 已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间 3. 函数y=ax 2+bx+c 的图象如图所示,那么关于x 的方程ax 2+bx+c-2=0 的根的情况是( ) A .有两个不相等的实数根 B .有两个异号的实数根C .有两个相等的实数根D .没有实数根4. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为 -3,则点D 的横坐标最大值为( ) A. -3 B .1 C .5 D .85. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;②c a b +<;③ 024>++c b a ;④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( ) A. 2个 B. 3个 C. 4个 D. 5个6. 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a+b=0;③a-b +c=0; ④5a<b .其中正确结论是( ). A.②④ B. ①④ C. ②③ D. ①③7. 已知二次函数y 1=x 2-x -2和一次函数y 2=x +1的两个交点分别为A (-1,0),B (3,4),当y 1>y 1时,自变量x 的取值X 围是( ) A .x <-1或x >3 B .-1<x <3 C .x <-1 D .x >3 8. 已知二次函数y =,当自变量x 取m 时,其相应的函数值小于0,那么下列结论中正确的是( )(A) m -1的函数值小于0 (B) m -1的函数值大于0(C) m -1的函数值等于0 (D) m -1的函数值与0的大小关系不确定9. 平面直角坐标系中,若平移二次函数y=(x-2017)(x-2018)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为( ) A .向上平移4个单位 B .向下平移4个单位 C .向左平移4个单位 D .向右平移4个单位10. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m,1-m ,-1–m]的函数的一些结论:①当m =-3时,函数图象的顶点坐标是(31,38); ② 当m>0时,函数图象截x 轴所得的x … 1- 01 3 … y…3-131…y x OD C B (4,4)A (1,4)线段长度大于23; ③ 当m<0时,函数在x >41时,y 随x 的增大而减小;④ 当m 0时,函数图象经过同一个点.其中正确的结论有( )A .①②③④B .①②④ C .①③④ D .②④11. 已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2 D .312. 已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值X 围是A.4<kB.4≤kC.4<k 且3≠kD.4≤k 且3≠k13. 已知抛物线y=k (x+1)(x ﹣)与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是( ) A .2 B .3 C .4 D .514. 已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是A .1y >2yB .1y 2y =C .1y <2yD .不能确定15. 设二次函数y=+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值X 围是( )A .c=3 B .c≥3 C.1≤c≤3 D.c≤3二、填空题1.抛物线2283y x x =--与x 轴有个交点,因为其判别式24b ac -=0,相应二次方程23280x x -+=的根的情况为.2. 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm 2.3. 抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论:,.(对称轴方程,图象与x 正半轴、y 轴交点坐标除外)4. 如图,把抛物线y=x 2平移得到抛物线m ,抛物线m 经过点A (﹣6,0)和原点O (0,0),它的顶点为P ,它的对称轴与抛物线y=x 2交于点Q ,则图中阴影部分的面积为.5. 如图10-9是二次函数)0(2≠++=a c bx ax y 在平面直角坐标系中的图象,根据图形判断①c >0;②a +b +c <0;③ 2a -b <0;④b 2+8a >4a c 中正确的是(填写序号).6. 从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度为米.7. 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm 2.8. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是个.9. 函数y = x 2 -2006|x|+ 2008的图象与x 轴交点的横坐标之和等于__________. 10. 已知实数x ,y 满足x 2+3x +y -3=0,则x +y 的最大值为.11. 已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数()233y x a x =+-+的图象与线段AB 恰有一个交点,则a 的取值X 围是.12. 关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于点,此时m =.13. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移个单位.三、解答题1. 已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=的两根,且221210x x +=.(1)求A ,B 两点坐标;(2)求抛物线表达式与点C 坐标;(3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.2. 已知二次函数过点A (0,2-),B (1-,0),C (5948,).(1)求此二次函数的解析式; (2)判断点M (1,12)是否在直线AC 上? (3)过点M (1,12)作一条直线l 与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.3. 已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.4. 已知抛物线2234y x kx k =+-(k 为常数,且k >0). (1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k的值.图85. 已知二次函数12+++=c bx x y 的图象过点P (2,1).(1)求证:42--=b c ;(2)求bc 的最大值;(3)若二次函数的图象与x 轴交于点1(x A ,)0,2(x B ,)0,ABP ∆的面积是43,求b .6. 已知关于x 的方程()231220mx m x m --+-=.(1)求证:无论m 取任何实数时,方程恒有实数(2)若关于x 的二次函数()23122y mx m x m =--+-的图象经过坐标原点,得到抛物线1C .将抛物线1C 向下平移后经过点()0,2A -进而得到新的抛物线2C ,直线l 经过点A 和点()2,0B ,求直线l 和抛物线2C 的解析式;(3)在直线l 下方的抛物线2C 上有一点C ,求点C 到直线l 的距离的最大值.6.解:(1)当0m =时,2x =当0m ≠时,()()231422m m m ∆=---2296188m m m m =-+-+ ()22211m m m =++=+∵()210m +≥,∴0∆≥综上所述:无论m 取任何实数时,方程恒有实数根;………………………3分 (2)∵二次函数2(31)22y mx m x m =--+-∴220m -=∴1m =………………………4分抛物线1C 的解析式为:22y x x =- 抛物线2C 的解析式为:222y x x =-- 设直线l 所在函数解析式为:y kx b =+将A 和点()2,0B 代入y kx b =+∴直线l 所在函数解析式为:2y x =-………5分(3)据题意:过点C 作CE x ⊥轴交AB 于E ,xyOByxED CBAO可证45DEC OAB ∠=∠=︒ ,则2CD =设()2,22C t t t --,(),2E t t -,()03t << ∴E C EC y y =-23t t =-+23924t ⎛⎫=--+ ⎪⎝⎭………………………6分∵3032⎛⎫<< ⎪⎝⎭∴当32t =时,max 94EC =∵CD 随EC 增大而增大,∴max CD =7分。

二次函数与一元二次方程练习题(含答案)

二次函数与一元二次方程练习题(含答案)

二次函数与一元二次方程一、选择题1.如图2-128所示的是二次函数y =ax 2+bx +c 的图象,则一次函数y=ax -b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.在二次函数y =ax 2+bx +c 中,若a 与c 异号,则其图象与x 轴的交点个数为 ( )A .2个B .1个C .0个D .不能确定 3.根据下列表格的对应值:x 3.23 3.24 3.25 3.26 ax 2+bx +c-0.06-0.020.030.09判断方程 ax 2+bx +c=0(a ≠0,a ,b ,c 为常数)的一个解x 的取值范围是 ( )A .3<x <3.23B .3.23<x <3.24C .3.24<x <3.25D .3.25<x <3.26 4.函数cbx axy ++=2的图象如图l -2-30,那么关于x 的方程a x 2+b+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等实数根D .无实数根5.二次函数cbx ax y ++=2的图象如图l -2-31所示,则下列结论成立的是( )A .a >0,bc >0,△<0 B.a <0,bc >0,△<0 C .a >0,bc <0,△<0 D.a <0,bc <0,△>06.函数cbx ax y ++=2的图象如图 l -2-32所示,则下列结论错误的是( )A .a >0B .b 2-4ac >0C 、20ax bx c ++=的两根之和为负D 、20ax bx c ++=的两根之积为正7.不论m 为何实数,抛物线y=x 2-mx +m -2( ) A .在x 轴上方 B .与x 轴只有一个交点 C .与x 轴有两个交点 D .在x 轴下方 二、填空题8.已知二次函数y =-x 2+2x +m 的部分图象如图 2-129所示,则关于x 的一元二次方程-x 2+2x +m =0的解为 .9.若抛物线y=kx 2-2x +l 与x 轴有两个交点,则k 的取值范围是 . 10.若二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴只有一个交 点,则这个交点的坐标是 .11.已知函数y=kx 2-7x —7的图象和x 轴有交点,则k 的取值范围是 12.直线y=3x —3与抛物线y=x 2 -x+1的交点的个数是 . 三、解答题13.已知二次函数y=-x 2+4x-3,其图象与y 轴交于点B,与x 轴交于A, C 两点. 求△ABC 的周长和面积.14..在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A 点的坐标为(0,2),铅球路线的最高处B 点的坐标为B(6,5).(1)求这个二次函数的表达式;(2)该男生把铅球推出去多远?(精确到0.01米).B(6,5)A(0,2)14121086420246xCy15.如图,已知抛物线y=-x 2+bx+c 与x 轴的两个交点分别为A(x 1,0),B(x 2,0) , 且x 1+x 2=4,1213x x .(1)求抛物线的代数表达式; (2)设抛物线与y 轴交于C 点,求直线BC 的表达式; (3)求△ABC 的面积.16.如果一个二次函数的图象经过点A(6,10),与x 轴交于B ,C 两点,点B ,C 的横坐标分别为x 1,x 2,且x 1+x 2=6,x 1x 2=5,求这个二次函数的解析式.17.已知关于x 的方程x 2+(2m +1)x +m 2+2=0有两个不相等的实数根,试判断直线y =(2m -3)x -4m +7能否经过点A(-2,4),并说明理由.18.二次函数y=ax 2+bx +c(a ≠0)的图象如图2-130所示,根据图象解 答下列问题.(1)写出方程ax 2+bx +c =0的两个根; (2)写出不等式ax 2+bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围;BxOCy A(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.如图2-131所示,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F,G分别在线段BC,AC上,抛物线P上的部分点的横坐标对应的纵坐标如下.x …-3 -2 1 2 …y …-52-4 -520 …(1)求A,B,C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;(3)当矩形DEFG的面积S最大时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围;(4)若点D的坐标为(1,0),求矩形DEFG的面积.参考答案1.B[提示:a >0,-2ba<0,∴b >0.] 2.A 3.C 4.C 5.D 6.D 7.C8.x 1=-l ,x 2=3[提示:由图象可知,抛物线的对称轴为x=l ,与x 轴的交点是(3,0),根据对称性可知抛物线与x 轴的另一个交点坐标为(-l ,0),所以一元二次方程-x 2+2x +m =0的解为x 1=-1,x 2=3.故填x 1=-l ,x 2=3.]9.k <1,且k ≠0[提示:若抛物线与x 轴有两个交点,则(-2)2-4k >0.] 10.(-2ba,0) 11.略 12.113.令x=0,得y=-3,故B 点坐标为(0,-3). 解方程-x 2+4x-3=0,得x 1=1,x 2=3. 故A 、C 两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=221310+=,BC=223332+=, OB=│-3│=3. C △ABC =AB+BC+AC=21032++. S △ABC =12AC ·OB=12×2×3=3.14.(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a=112-. 故y=112-(x-6)2+5. (2)由 112-(x-6)2+5=0,得x 1=26215,6215x +=-.结合图象可知:C 点坐标为(6215+ 故OC=6215+13.75(米)即该男生把铅球推出约13.75米15..(1)解方程组1212413x xxx+=⎧⎪⎨=⎪⎩, 得x1=1,x2=3故2210330b cb c⎧-++=⎪⎨-++=⎪⎩,解这个方程组,得b=4,c=-3.所以,该抛物线的代数表达式为y=-x2+4x-3.(2)设直线BC的表达式为y=kx+m.由(1)得,当x=0时,y=-3,故C点坐标为(0,-3).所以330mk m=-⎧⎨+=⎩, 解得13km=⎧⎨=-⎩∴直线BC的代数表达式为y=x-3 (3)由于AB=3-1=2,OC=│-3│=3.故S△ABC =12AB·OC=12×2×3=3.16.解:设函数为y=ax2+bx+c(a≠0),将A(6,10)代入,得10=36a+6b+c①,当y=0时,ax2+bx+c=0,又x1+x2=-ba=6②,x1x2=ca=5③,由①②③解得a=2,b=-12,c=10.所以解析式为y=2x2-12x+10.17.解:该直线不经过点A.理由如下:∵方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,∴△=(2m+1)2-4(m2+2)=4m-7>0,∴2m-72>0,∴2m-3>0.又由4m-7>0,得-4m+7<0,∴直线y=(2m-3)x-4m+7经过第一、三、四象限,而A(-2,4)在第二象限,∴该直线不经过点A.18.解:(1)由二次函数y=ax2+bx+c(a≠0)的图象可知,抛物线与x轴交于(1,0),B(3,0)两点,即x=1或x=3是方程ax2+bx+c=0的两个根.(2)不等式ax2+bx+c>0的解集,即是求y>0的解集,由图象可知l<x <3.(3)因为a<0,故在对称轴的右侧y随x的增大而减小,即当x>2时,y随x的增大而减小.(4)由图可知,22,242,43,baac baca⎧-=⎪⎪-⎪=⎨⎪⎪=⎪⎩解得2,8,6.abc=-⎧⎪=⎨⎪=-⎩代入方程得-2x2+8x-6-k=O.又因为方程有两个不相等的实数根,所以△>0,即82-4×(-2)×(-6-k)>0,解得k<2.19.解法l:(1)任取x,y的三组值代入y=ax2+bx+c(a≠0),求出解析式为y=12x2+x-4.令y=0,得x1=-4,x2=2;令x=0,得y=-4,∴A,B,C三点的坐标分别为A(2,0),B(-4,0),C(0,-4).解法2:(1)由抛物线P过点(1,-52),(-3,-52)可知,抛物线P的对称轴为x=-1.又∵抛物线P过(2,0),(-2,-4),则由抛物线的对称性可知,点A,B,C的坐标分别为A(2,0),B(-4,0),C(0,-4). (2)由题意,知AD DG AO OC=,而AO=2,OC=4,AD=2-m,故DG=4-2m.又BE EFBO OC=,EF=DG,得BE=4-2m,∴DE=3m,∴S矩形DEFG =DG·DE=(4-2m)·3m=12m-6m2(0<m<2). (3)∵S矩形DEFG=12m-6m2(0<m<2),∴m=1时,矩形的面积最大,且最大面积是6.当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0).设直线DF的解析式为y=kx+b,易知k=23,b=-23.∴y=23x-23.又抛物线P的解析式为y=12x2+x-4.令23x-23=12x2+x-4,解得x161-±.如图2-132所示,设射线DF与抛物线P相交于点N,则N161--.过N作x轴的垂线交x轴于H,得1612561339FN HEDF DE-----+===.∵点M不在抛物线P上,即点M不与N重合,此时k的取值范围是k561-+且k>0. (4)由(3)知S矩形DEFG=6.。

初中数学-二次函数和一元二次方程-习题及解析

初中数学-二次函数和一元二次方程-习题及解析

初中数学-二次函数和一元二次方程-习题及解析勤志数学二次函数与一元二次方式练习题一、选择题(共15小题)21、已知二次函数y=a某+b某+c的图象如图所示,对称轴为直线某=1,则下列结论正确的是()2A、ac>0B、方程a某+b某+c=0的两根是某1=﹣1,某2=3C、2a﹣b=0D、当某>0时,y随某的增大而减小22、已知二次函数y=a某+b某+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a﹣b+c>02C、b=﹣4aD、关于某的方程a某+b某+c=0的根是某1=﹣1,某2=523、已知抛物线y=a某+b某+c中,4a﹣b=0,a﹣b+c>0,抛物线与某轴有两个不同的交点,且这两个交点之间的距离小于2,则下列判断错误的是()A、abc<0B、c>0C、4a>cD、a+b+c>04、抛物线y=a某+b某+c在某轴的下方,则所要满足的条件是()22A、a<0,b﹣4ac<0B、a<0,b﹣4ac>022C、a>0,b﹣4ac<0D、a>0,b﹣4ac>025、如图所示,二次函数y=a某+b某+c(a≠0)的图象经过点(﹣1,2),且与某轴交点的横坐标分别为某1,某2,其中﹣2<某1<﹣1,0<某2<1,下列结论:①abc>0;②4a﹣2b+c<0;③2a﹣b<0;2④b+8a>4ac.其中正确的有()2A、1个B、2个C、3个D、4个26、已知:a>b>c,且a+b+c=0,则二次函数y=a某+b某+c的图象可能是下列图象中的()勤志数学A、B、C、2D、27、已知y1=a1某+b1某+c1,y2=a2某+b2某+c2且满足.则称抛物线y1,y2互为“友好抛物线”,则下列关于“友好抛物线”的说法不正确的是()A、y1,y2开口方向、开口大小不一定相同B、因为y1,y2的对称轴相同C、如果y2的最值为m,则y1的最值为kmD、如果y2与某轴的两交点间距离为d,则y1与某轴的两交点间距离为|k|d28、已知二次函数的y=a某+b某+c图象是由的图象经过平移而得到,若图象与某轴交于A、C(﹣1,0)两点,与y轴交于D(0,),顶点为B,则四边形ABCD的面积为()A、9B、10C、11D、129、根据下列表格的对应值:判断方程a某+b某+c=0(a≠0,a,b,c为常数)的一个解某的范围是()A、8<某<9B、9<某<10C、10<某<11D、11<某<12210、如图,已知二次函数y=a某+b某+c的部分图象,由图象可知关于某的一元二次方程2a某+b某+c=0的两个根分别是某1=1.6,某2=()2A、﹣1.6C、4.4B、3.2D、以上都不对2211、如图,抛物线y=某+1与双曲线y=的交点A的横坐标是1,则关于某的不等式+某+1<0的解集是()2勤志数学A、某>1B、某<﹣1C、0<某<1D、﹣1<某<0212、已知二次函数y=a某+b某+c的图象如图所示,则关于某的不等式b某+a>0的解集是()A、某<B、某<C、某>D、某>2213、方程7某﹣(k+13)某+k﹣k﹣2=0(k是实数)有两个实根α、β,且0<α<1,1<β<2,那么k的取值范围是()A、3<k<4B、﹣2<k<﹣1C、3<k<4或﹣2<k<﹣1D、无解214、对于整式某和2某+3,请你判断下列说法正确的是()22A、对于任意实数某,不等式某>2某+3都成立B、对于任意实数某,不等式某<2某+3都成立C、某<3时,不等式某<2某+3成立D、某>3时,不等式某>2某+3成立二、解答题(共7小题)215、已知抛物线y=某+2p某+2p﹣2的顶点为M,(1)求证抛物线与某轴必有两个不同交点;(2)设抛物线与某轴的交点分别为A,B,求实数p的值使△ABM面积达到最小.16、已知:二次函数y=(2m﹣1)某﹣(5m+3)某+3m+5(1)m为何值时,此抛物线必与某轴相交于两个不同的点;(2)m 为何值时,这两个交点在原点的左右两边;(3)m为何值时,此抛物线的对称轴是y轴;(4)m为何值时,这个二次函数有最大值.3222勤志数学17、已知下表:(1)求a、b、c的值,并在表内空格处填入正确的数;(2)请你根据上面的结果判断:2①是否存在实数某,使二次三项式a某+b某+c的值为0?若存在,求出这个实数值;若不存在,请说明理由.22②画出函数y=a某+b某+c的图象示意图,由图象确定,当某取什么实数时,a某+b某+c>0.18、请将下表补充完整;(Ⅱ)利用你在填上表时获得的结论,解不等式﹣某﹣2某+3<0;(Ⅲ)利用你在填上表时获得的结论,试写出一个解集为全体实数的一元二次不等式;(Ⅳ)试写出利用你在填上表时获得的结论解一元二次不等式a某+b某+c>0(a≠0)时的解题步骤.224勤志数学219、二次函数y=a某+b某+c(a≠0)的图象如图所示,根据图象解答下列问题:2(1)写出方程a某+b某+c=0的两个根;2(2)写出不等式a某+b某+c>0的解集;(3)写出y随某的增大而减小的自变量某的取值范围;2(4)若方程a某+b某+c=k有两个不相等的实数根,求k的取值范围.20、阅读材料,解答问题.2例.用图象法解一元二次不等式:某﹣2某﹣3>0.2解:设y=某﹣2某﹣3,则y是某的二次函数.∵a=1>0,∴抛物线开口向上.22又∵当y=0时,某﹣2某﹣3=0,解得某1=﹣1,某2=3.∴由此得抛物线y=某﹣2某﹣3的大致图象如2图所示.观察函数图象可知:当某<﹣1或某>3时,y>0.∴某﹣2某﹣3>0的解集是:某<﹣1或某>3.2(1)观察图象,直接写出一元二次不等式:某﹣2某﹣3<0的解集是_________;2(2)仿照上例,用图象法解一元二次不等式:某﹣5某+6<0.(画出大致图象).三、填空题(共4小题)21、二次函数y=a某+b某+c(a≠0)的图象如图所示,根据图象解答下列问题:2(1)写出方程a某+b某+c=0的两个根.某1=_________,某2=_________;2(2)写出不等式a某+b某+c>0的解集._________;(3)写出y随某的增大而减小的自变量某的取值范围._________;2(4)若方程a某+b某+c=k有两个不相等的实数根,求k的取值范围._________.25勤志数学22、如图是抛物线y=a某+b某+c的一部分,其对称轴为直线某=1,若其与某轴一交点为B(3,20),则由图象可知,不等式a某+b某+c>0的解集是_________.22223、二次函数y=a某+b某+c和一次函数y=m某+n的图象如图所示,则a某+b某+c≤m某+n时,某的取值范围是_________.224、如图,已知函数y=a某+b某+c与y=﹣的图象交于A(﹣4,1)、B(2,﹣2)、C(1,﹣4)2三点,根据图象可求得关于某的不等式a某+b某+c<﹣的解集为_________.6勤志数学答案与评分标准一、选择题(共15小题)21、(2022山西)已知二次函数y=a某+b某+c的图象如图所示,对称轴为直线某=1,则下列结论正确的是()A、ac>0B、方程a某+b某+c=0的两根是某1=﹣1,某2=3C、2a﹣b=0D、当某>0时,y随某的增大而减小考点:二次函数图象与系数的关系;抛物线与某轴的交点。

22.2《二次函数与一元二次方程》练习题(含答案)

22.2《二次函数与一元二次方程》练习题(含答案)

22.2 二次函数与一元二次方程01 基础题知识点1 二次函数与一元二次方程1.(柳州中考)小兰画了一个函数y =x 2+ax +b 的图象如图,则关于x 的方程x 2+ax +b =0的解是(D )A .无解B .x =1C .x =-4D .x =-1或x =42.(青岛中考)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是m >9. 3.二次函数y =ax 2+bx 的图象如图,若一元二次方程ax 2+bx +m =0有实数根,则m 的取值范围为m ≤3.4.(1)已知一元二次方程x 2+x -2=0有两个不相等的实数根,即x 1=1,x 2=-2.求二次函数y =x 2+x -2与x 轴的交点坐标;(2)若二次函数y =-x 2+x +a 与x 轴有一个交点,求a 的值.解:(1)∵一元二次方程x 2+x -2=0有两个不相等的实数根,即x 1=1,x 2=-2, ∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴有一个交点, 令y =0,则-x 2+x +a =0有两个相等的实数根, ∴1+4a =0,解得a =-14.知识点2利用二次函数求一元二次方程的近似解5.(兰州中考)下表是一组二次函数y=x2+3x-5的自变量x与函数值y的对应值:那么方程x2+3x-5=0的一个近似根是(C)A.1 B.1.1 C.1.2 D.1.3知识点3二次函数与不等式6.二次函数y=x2-x-2的图象如图所示,则函数值y<0时x的取值范围是(C)A.x<-1B.x>2C.-1<x<2D.x<-1或x>27.画出二次函数y=x2-2x的图象.利用图象回答:(1)方程x2-2x=0的解是什么?(2)x取什么值时,函数值大于0;(3)x取什么值时,函数值小于0.解:列表:描点并连线:(1)方程x2-2x=0的解是x1=0,x2=2.(2)当x<0或x>2时,函数值大于0.(3)当0<x<2时,函数值小于0.易错点1漏掉函数是一次函数的情况8.(吕梁市文水县期中)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a 的值为-1或2或1.易错点2忽视坐标轴包含x轴和y轴9.抛物线y=x2-2x+1与坐标轴的交点个数是(C)A.0 B.1C.2 D.310.已知抛物线y=x2-(a+2)x+9的顶点在坐标轴上,则抛物线的解析式为y=x2-6x+9或y=x2+6x+9或y=x2+9.02中档题11.(牡丹江中考)抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是(C)A.x<2 B.x>-3C.-3<x<1 D.x<-3或x>112.(大同市期中)二次函数y=(x-2)2+m的图象如图所示,一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B(4,3),则满足kx+b≥(x-2)2+m的x的取值范围是(A) A.1≤x≤4 B.x≤1C.x≥4 D.x≤1或x≥413.如图,抛物线与两坐标轴的交点分别为(-1,0),(2,0),(0,2),则当y>2时,自变量x 的取值范围是(B )A .0<x <12B .0<x <1 C.12<x <1 D .-1<x <214.(济南中考)二次函数y =x 2+bx 的图象如图,对称轴为直线x =1.若关于x 的一元二次方程x 2+bx -t =0(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是(C )A .t ≥-1B .-1≤t <3C .-1≤t <8D .3<t <815.(阳泉市平定县月考)已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为直线x =1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个16.(杭州中考)把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h =20t -5t 2(0≤t ≤4).(1)当t =3时,求足球距离地面的高度; (2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2),当t =t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.解:(1)当t =3时,h =20t -5t 2=20×3-5×9=15, ∴此时足球距离地面的高度为15米. (2)当h =10时,20t -5t 2=10,即t 2-4t +2=0,解得t =2+2或t =2- 2.答:经过2+2或2-2秒时,足球距离地面的高度为10米. (3)由题意得t 1和t 2是方程20t -5t 2=m (m ≥0)的两个不相等的实数根,则 Δ=202-20m >0.解得m <20. ∴m 的取值范围是0≤m <20. 03 综合题17.有这样一个问题:探究函数y =12x 2+1x 的图象与性质,小东根据学习函数的经验,对函数y =12x 2+1x 的图象与性质进行了探究,下面是小东的探究过程,请补充完整:(1)下表是y 与x 的几组对应值.函数y =12x 2+1x 的自变量x 的取值范围是x ≠0,m 的值为296;(2)在如图所示的平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的大致图象;(3)进一步探究函数图象发现:①函数图象与x 轴有1个交点,所以对应方程12x 2+1x =0有1个实数根;②方程12x 2+1x=2有3个实数根;③结合函数的图象,写出该函数的一条性质.解:(2)函数图象如图所示.(3)③答案不唯一,如:函数没有最大值或函数没有最小值,函数图象不经过第四象限.。

一元二次方程与二次函数综合测试题及参考答案(精品范文).doc

一元二次方程与二次函数综合测试题及参考答案(精品范文).doc

【最新整理,下载后即可编辑】一、选择题1、设、是关于的一元二次方程的两个实数根,且,,则()A.B.C.D.2、下列命题:①若,则;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④3、若一次函数的图象过第一、三、四象限,则函数()A.有最大值B.有最大值-C.有最小值D.有最小值-4、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A. 3个B. 2个C. 1个D. 0个5、关于的一元二次方程的两个实数根分别是,且,则的值是()A.1 B.12 C.13 D.25二、填空题6、设、是方程的两根,则代数式= 。

7、已知关于一元二次方程有一根是,则。

三、计算题8、已知:关于的方程(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是,求另一个根及值.9、解方程:四、综合题10、已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.11、如图:抛物线与轴交于A、B两点,点A的坐标是(1,0),与轴交于点C.(1)求抛物线的对称轴和点B的坐标;(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式。

12、已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4.(1)探究m满足什么条件时,二次函数y的图象与x轴的交点的个数. (2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且+=5,与y轴的交点为C,它的顶点为M,求直线CM的解析式.13、如图,已知点,直线交轴于点,交轴于点(1)求对称轴平行于轴,且过三点的抛物线解析式;(2)若直线平分∠ABC,求直线的解析式;(3)若直线产(>0)交(1)中抛物线于两点,问:为何值时,以为边的正方形的面积为9?14、如图,抛物线交轴于点、,交轴于点,连结,是线段上一动点,以为一边向右侧作正方形,连结,交于点.(1)试判断的形状,并说明理由;(2)求证:;(3)连结,记的面积为,的面积为,若,试探究的最小值.15、如图,抛物线y =-x2+bx +c 与x 轴交于A、B两点,与y 轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E 在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.五、简答题16、已知的两边,的长是关于的一元二次方程的两个实数根,第三边的长是.(1)为何值时,是以为斜边的直角三角形;(2)为何值时,是等腰三角形,并求的周长17、已知关于的一元二次方程:.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为(其中).若是关于的函数,且,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量的取值范围满足什么条件时,.18、已知抛物线y = ax2-x + c经过点Q(-2,),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B两点,如图.(1)求抛物线的解析式;(2)求A、B两点的坐标;(3)设PB于y轴交于C点,求△ABC的面积.19、如图,已知抛物线的顶点为A(1,4)、抛物线与y 轴交于点B (0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式.(2)当PA+PB的值最小时,求点P的坐标.20、已知二次函数的部分图象如图7所示,抛物线与轴的一个交点坐标为,对称轴为直线.(1)若,求的值;(2)若实数,比较与的大小,并说明理由.参考答案一、选择题1、C2、B3、B4、考点:二次函数图象与系数的关系。

二次函数与一元二次方程 练习题

二次函数与一元二次方程 练习题

二次函数与一元二次方程练习题1.抛物线y=2x-8-3x与x轴有2个交点,因为其判别式b-4ac=25>0.2,相应二次方程3x^2-2x+8=0的根的情况为2个不相等的实根。

3.关于二次函数y=ax^2+bx+c的图像有下列命题:①当c=0时,函数的图像经过原点;②当c>0,且函数的图像开口向下时,方程ax^2+bx+c=0必有两个不相等的实根;③函数图像最高点的纵坐标是-Δ/4a;④当b=0时,函数的图像关于y 轴对称。

其中正确命题的个数是3个。

4.关于x的方程mx^2+mx+5=m有两个相等的实数根,则相应二次函数y=mx^2+mx+5-m与x轴必然相交于点(0,5-m),此时m=1.5.要使抛物线y=x^2-(2m-1)x-6m与x轴交于两点(x1,0)和(x2,0),经过原点,应将它向右平移1个单位。

6.关于x的二次函数y=2mx+(8m+1)x+8m的图像与x轴有交点,则m的范围是m≥-11/16且m≠16/27.7.已知抛物线y=-(x-h)^2+k的顶点在抛物线y=x上,且抛物线在x轴上截得的线段长是4/3,求h和k的值。

解得h=±1/3,k=2/3.8.已知函数y=x-mx+m-2.(1) 求证:不论m为何实数,此二次函数的图像与x轴都有两个不同交点;(2) 若函数y有最小值-2,求m的值。

(1) 当y=0时,解得x=1和x=m-2,因此与x轴有两个交点;(2) 当m=1时,函数的最小值为-2,因此m=1.9.下图是二次函数y=ax^2+bx+c的图像,与x轴交于B,C两点,与y轴交于A点。

已知BC=5,∠ABC=45°,∠ACB=60°,(1) 根据图像确定a,并说明理由;(2) 如果A点的坐标为(0,-3),b,c的符号,求这个二次函数的函数表达式。

(1) 因为∠ABC=45°,∠ACB=60°,所以BC的长度为5,AB的长度为5cos45°=5/√2,AC的长度为5cos30°=5√3/2.因此,函数的开口向下,a<0.又因为函数与y轴交于A点,所以c=0.(2) 由于A点的坐标为(0,-3),所以c=-3.又因为函数与x轴交于B,C两点,所以b=-a(Bx+Cx)=-a(BC)=5a。

一元二次方程和二次函数测试题

一元二次方程和二次函数测试题

一元二次方程和二次函数测试题一、 选择题: (36 分,每题 3 分) 1.方程 x −23=x 是 ( 2)A. 一 元 二 次 方 程B. 分 式 方 程C. 无 理 方 程D. 一 元 一 次 方 程2. 一 元 二 次 方 程 3x2+2x-5=0 的 二 次 项 系 数 、一 次 项 系 数 和 常 数 项依次为( ) D . 3 , 2 , -5A . 3 , 2 , 5 B . -3 , 2 , -5 C . -3 , 2 , 53. 关 于 x 的 一 元 二 次 方 程 ( m+1 ) x2+x+m2-2m-3=0 有 一 根 是 0 , 则 m 的值是( )A . m=3 或 m=-1 B . m=-3 或 m=1 C . m=-1 D . m=3 4. 若 关 于 x 的 一 元 二 次 方 程 kx2-2x-1=0 有 两 个 不 相 等 的 实 数 根 , 则 k 的取值范围是( )A . k > -1 B . k > -1 且 k ≠ 0 C . k < 1 D . k < 1 且 k ≠ 0 5 若 方 程 x2+ ( m2-1 ) x+m=0 的 两 根 互 为 相 反 数 , 则 m 的值为 ( A . 1 或 -1 B . 1 C . 0 D . -1 ) D . y=x+1 )6. 下 列 函 数 关 系 式 中 , 是 二 次 函 数 的 是 ( A . y=x3-2x2-1 B . y=x2 C. y= −37. 已 知 一 次 函 数 y=ax+c 与 y=ax 2 +bx+c , 它 们 在 同 一 坐 标 系 内 的 大致图象是( )1A.B.C.D.8. ( 2014 • 宁 津 县 模 拟 ) 小 军 从 所 给 的 二 次 函 数 图 象 中 观 察 得 出 了 下 面 的 信 息 : ① a < 0 ; ② c=0 ; ③ 函 数 的 最 小 值 是 -3 ; ④ 当 x < 0 时 y > 0 ;⑤ 当 0 < x 1 < x 2 < 2 时 y 1 > y 2 .你 认 为 其 中 正 确 的 个数为()A. 2 个 B. 3 个k xC. 4 个D. 5 个9. 已知关于 x 的方程 x2+1= 有一个正的实数根,则 k 的取值范围是 ( )A.k<0 B.k>0 C.k≤0 D.k≥0 10. 一件工艺品进价为 100 元, 标价 135 元售出, 每天可售出 100 件. 根 据销售统计,一件工艺品每降价 1 元出售,则每天可多售出 4 件,要使 每天获得的利润最大,每件需降价的钱数为( A.5 元 B.10 元 C.0 元 D.36 元 )11. 在 一 定 的 条 件 下 ,若 物 体 运 动 的 路 程 s( 米 )与 时 间 t( 秒 ) 的 关 系 式 为 s=5t2+2t , 则 当 t=4 秒 时 , 该 物 体 所 经 过 的 路 程 为2()A . 28 米 B . 48 米 C . 68 米 D . 88 米 12. 一 个 直 角 三 角 形 的 两 条 直 角 边 长 的 和 为 20cm , 其中一直角边 长 为 xcm , 面 积 为 ycm 2 , 则 y 与 x 的 函 数 的 关 系 式 是 ( A . y=10x B . y=x ( 20-x ) )C . y= x ( 20-x ) D . y=x ( 10-x二 . 填 空 题 ( 30 分 。

九年级数学二次函数与一元二次方程的关系练习题(含答案)

九年级数学二次函数与一元二次方程的关系练习题(含答案)

二次函数与一元二次方程的关系一、选择题1、[2021河西区·期末]若关于x的一元二次方程(x﹣5)(x﹣6)=m有实数根x1、x2,且x1≠x2,有下列结论:①;②x1=5,x2=6;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(5,0)和(6,0).其中正确结论的个数是()A.0B.1C.2D.3[思路分析]将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项①进行判断;再利用根与系数的关系求出两根之积为30﹣m,这只有在m=0时才能成立,故选项②错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.[答案详解]解:一元二次方程(x﹣5)(x﹣6)=m化为一般形式得:x2﹣11x+30﹣m =0,∵方程有两个不相等的实数根x1、x2,∴b2﹣4ac=(﹣11)2﹣4(30﹣m)=4m+1>0,解得:m>﹣,故选项①正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=11,x1x2=30﹣m,而选项②中x1=5,x2=6,只有在m=0时才能成立,故选项②错误;二次函数y=(x﹣x1)(x﹣x2)+m=x2﹣(x1+x2)x+x1x2+m,=x2﹣11x+(30﹣m)+m=x2﹣11x+30=(x﹣5)(x﹣6),令y=0,可得(x﹣5)(x﹣6)=0,解得:x=5或6.∴抛物线与x轴的交点为(5,0)或(6,0),故选项③正确.综上所述,正确的结论有2个:①③.故选:C.[经验总结]此题考查了抛物线与x轴的交点,一元二次方程的解,根与系数的关系,以及根的判别式的运用,是中考中常考的综合题.2、[2021南关区·期末]二次函数y=ax2+bx+c的部分图象如图所示,可知方程ax2+bx+c=0的所有解的积为()A.﹣4B.4C.﹣5D.5[思路分析]根据抛物线的对称轴的定义、抛物线的图象来求该抛物线与x轴的两交点的横坐标.[答案详解]解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是﹣1.所以x1=﹣1,x2=5,∴x1x2=﹣1×5=﹣5,故选:C.[经验总结]考查抛物线与x轴的交点,抛物线与x轴两个交点的横坐标的和除以2后等于对称轴.3、[2021肥东县·期末]二次函数y=ax2﹣6x+3的图象与x轴有两个公共点,则a的取值范围是()A.a<3B.a<3且a≠0C.a>3D.a≥3[思路分析]根据二次函数y=ax2﹣2x﹣3的图象与x轴有两个公共点可知Δ>0且a≠0,据此可知a的取值范围.[答案详解]解:∵二次函数y=ax2﹣6x+3的图象与x轴有两个公共点,∴Δ>0且a≠0,即36﹣4a×3>0,解得a<3且a≠0.故选:B.[经验总结]本题考查了二次函数的定义和抛物线与x轴的交点,要结合判别式进行解答.4、[2021房县·期末]二次函数y=﹣x2+2x+1与坐标轴交点情况是()A.一个交点B.两个交点C.三个交点D.无交点[思路分析]根据题目中的函数解析式可以求得这个二次函数的图象与坐标轴的交点个数.[答案详解]解:当x=0时,y=1,当y=0时,0=﹣x2+2x+1,∴△=b2﹣4ac=22﹣4•(﹣1)•1=8>0.∴与x轴有两个交点∴即该函数图象与坐标轴共有三个交点.故选:C.[经验总结]本题考查抛物线与x轴的交点、与y轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.5、[2021旬邑县·期末]如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C,对称轴为x=﹣1.下列结论正确的是()A.abc<0B.3a+c=0C.4a+2b+c>0D.2a+b>0[思路分析]根据二次函数图像和性质依次判断即可.[答案详解]解:∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0.∵抛物线的对称轴为:x=﹣=﹣1,∴b=2a<0.∴abc>0.∴A不合题意.∵抛物线过点A(1,0).∴a+b+c=0.∴a+2a+c=0,∴3a+c=0.∴B符合题意.由图知:当x=2时,y<0.∴4a+2b+c<0.∴C不合题意.∵b=2a,∴2a﹣b=0.∴D不合题意.故选:B.[经验总结]本题考查二次函数的图像和性质,掌握二次函数的图像和性质是求解本题的关键.6、[2021准格尔旗·期末]如图所示是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+c>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n+1没有实数根.其中正确的结论个数是()A.1个B.2个C.3个D.4个[思路分析]根据图象开口向下,对称轴为直线x=1可得抛物线与x轴另一交点坐标在(﹣1,0),(﹣2,0)之间,从而判断①.由对称轴为直线x=1可得b与a的关系,将b=﹣2a代入函数解析式根据图象可判断②由ax2+bx+c=n有两个相等实数根可得Δ=b2﹣4a(c﹣n)=0,从而判断③.由函数最大值为y=n可判断④.[答案详解]解:∵抛物线顶点坐标为(1,n),∴抛物线对称轴为直线x=1,∵图象与x轴的一个交点在(3,0),(4,0)之间,∴图象与x轴另一交点在(﹣1,0),(﹣2,0)之间,∴x=﹣1时,y>0,即a﹣b+c>0,故①正确,符合题意.∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+c,∴x=﹣1时,y=3a+c>0,故②正确,符合题意.∵抛物线顶点坐标为(1,n),∴ax2+bx+c=n有两个相等实数根,∴Δ=b2﹣4a(c﹣n)=0,∴b2=4a(c﹣n),故③正确,符合题意.∵y=ax2+bx+c的最大函数值为y=n,∴ax2+bx+c=n+1没有实数根,故④正确,符合题意.故选:D.[经验总结]本题考查二次函数的性质,解题关键是掌握二次函数与方程及不等式的关系.二、填空题7、[2021汕尾·期末]已知抛物线y=ax2+bx+c的图象与x轴分别交于点A(﹣2,0),B(﹣4,0),则关于x的方程ax2+bx+c=0的根为.[思路分析]根据抛物线与x轴的交点坐标可以直接写出抛物线交点式方程,然后利用二次函数与一元二次方程的关系求得答案.[答案详解]解:根据题意知,该抛物线解析式是y=ax2+bx+c=a(x+2)(x+4),∴关于x的方程ax2+bx+c=0=a(x+2)(x+4)=0.∴x+2=0或x+4=0,∴x1=﹣2,x2=﹣4.故答案是:x1=﹣2,x2=﹣4.[经验总结]本题主要考查了抛物线与x轴的交点,二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).8、[2021庆阳·期末]若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣6,0)和(4,0),则该抛物线的对称轴是.[思路分析]由抛物线与x轴的两个交点,利用对称性确定出对称轴即可.[答案详解]解:∵抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣6,0)和(4,0),∴抛物线的对称轴为直线x==﹣1,故答案为:直线x=﹣1.[经验总结]此题考查了抛物线与x轴的交点,二次函数的性质,熟练掌握抛物线的对称性是解决问题的关键.9、[2021姜堰区·期末]已知关于x的一元二次方程ax2+bx+c=0的两个根分别是1和﹣3,若二次函数y=ax2+bx+c+m(m>0)与x轴有两个交点,其中一个交点坐标是(4,0),则另一个交点坐标是.[思路分析]根据一元二次方程与函数的关系,可知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标为方程ax2+bx+c=0的两个根,从而求得抛物线的对称轴,根据抛物线的对称性即可求得二次函数y=ax2+bx+c+m(m>0)与x轴的另一个交点.[答案详解]解:∵关于x的一元二次方程ax2+bx+c=0的两个根分别是1和﹣3,∴抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为(1,0),(﹣3,0),∴抛物线y=ax2+bx+c的对称轴为直线x==﹣1,∵二次函数y=ax2+bx+c+m(m>0)与x轴的一个交点坐标是(4,0),∴函数y=ax2+bx+c与直线y=﹣m的一个交点的横坐标为4,∴函数y=ax2+bx+c与直线y=﹣m的另一个交点的横坐标为﹣6,∴次函数y=ax2+bx+c+m(m>0)与x轴的另一个交点坐标是(﹣6,0),故答案为:(﹣6,0).[经验总结]此题主要考查抛物线与x轴的交点,一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根.10、[2021密山市·八五七农场学校期末]如图是二次函数y=ax2+bx+c图象的一部分,对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.[思路分析]利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c>0的解集.[答案详解]解:由图象得:对称轴是直线x=1,其中一个点的坐标为(3,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c>0的解集即是y>0的解集,∴﹣1<x<3.故答案为:﹣1<x<3.[经验总结]此题主要考查了利用二次函数的图象解一元二次方程的根,解决本题的关键是利用数形结合.11、[2021娄星区·期末]已知抛物线y=x2﹣x﹣1与x轴的一个交点的坐标为(m,0),则代数式m2﹣m+2021的值为.[思路分析]由题意求出m2﹣m的值,代入代数式m2﹣m+2021进行计算即可得出答案.[答案详解]解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2021=1+2021=2022.故答案为:2022.[经验总结]本题考查的是抛物线与x轴的交点,熟知x轴上点的坐标特点是解答此题的关键.12、[2021雄县·期末]如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为公共对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为.[思路分析]根据题意可推出OB=2,OA=1,AD=OC=2,根据平移的性质及抛物线的对称性可知阴影部分的面积等于矩形OCDA的面积,利用矩形的面积公式进行计算即可.[答案详解]解:过抛物线L2的顶点D作CD∥x轴,与y轴交于点C,如右图所示:则四边形OCDA是矩形,∵抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B (0,2),∴OB=2,OA=1,将抛物线L1向下平移两个单位长度得抛物线L2,则AD=OC=2,由图可知,阴影部分的面积等于矩形OCDA的面积,∴S阴影部分=S矩形OCDA=OA•AD=1×2=2.故答案为:2.[经验总结]本题考查抛物线与x轴的交点、二次函数的性质及二次函数图象与几何变换,解题的关键是由平移的性质及抛物线的对称性得到阴影部分的面积等于矩形OCDA的面积.13、[2021临海市·期末]如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③a﹣b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有(填序号).[思路分析]根据抛物线与坐标轴的交点情况、二次函数与方程的关系、二次函数的性质判断即可.[答案详解]解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;由图象可知,当x=﹣1时,y<0,∴a﹣b+c<0,故③错误;∵抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴的一个交点在﹣1,0之间,∴与x轴的另一个一个交点在2,3之间,∴方程ax2+bx+c=0的其中一个根在2,3之间,故④正确,故答案为:①②④.[经验总结]本题考查的是抛物线与x轴的交点、二次函数图象与系数的关系以及二次函数与方程的关系,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.三、解答题14、[2021密山市·八五七农场学校期末]如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式及顶点坐标;(2)若抛物线上有一点B,且S△OAB=1,求点B的坐标.[思路分析](1)利用交点式求抛物线解析式;解析式配成顶点式即可得到抛物线顶点坐标;(2)设B(t,t2﹣2t),根据三角形面积公式得到×2×|t2﹣2t|=1,则t2﹣2t=1或t2﹣2t=﹣1,然后分别解两个方程求出t,从而可得到B点坐标.[答案详解]解:(1)抛物线解析式为y=x(x﹣2),即y=x2﹣2x.因为y=x2﹣2x=(x﹣1)2﹣1,所以抛物线的顶点坐标为(1,﹣1);(2)设B(t,t2﹣2t),因为S△OAB=1,所以×2×|t2﹣2t|=1,所以t2﹣2t=1或t2﹣2t=﹣1,解方程t2﹣2t=1得t1=1+,t2=1﹣,则B点坐标为(1+,1)或(1﹣,1);解方程t2﹣2t=﹣1得t1=t2=1,则B点坐标为(1,﹣1),所以B点坐标为(1+,1)或(1﹣,1)或(1,﹣1).[经验总结]本题考查了抛物线与x轴的交点,运用待定系数法求一次函数的解析式的运用,二次函数的顶点式的运用,三角形的面积公式的运用,解答时求出函数的解析式是关键.15、[2022金川区·期末]已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,求:(1)点A、B、C的坐标;(2)△ABC的面积.[思路分析](1)根据题意得出求出图象与x轴以及y轴交点坐标;(2)根据A,B,C的坐标求出AB,CO长,即可求出S△ABC的值.[答案详解]解:(1)令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵A(﹣1,0),B(3,0),C(0,﹣3),∴AB=4,OC=3,∴S△ABC=AB•OC=×4×3=6.[经验总结]此题主要考查了抛物线与x轴的交点,得出图象与坐标轴交点是解题关键.16、[2021定远县·育才学校期末]在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图,连接AC,P A,PC,若S△P AC=,求点P的坐标.[思路分析](1)由二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,可得二次函数的解析式为y=(x+2)(x﹣4),由此即可解决问题.(2)根据S△P AC=S△AOC+S△OPC﹣S△AOP,构建方程即可解决问题.[答案详解]解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴该二次函数的解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4.(2)如图,连接OP,设P(m,m2﹣m﹣4),由题意可知:A(﹣2,0)、C(0,﹣4);∵S△P AC=S△AOC+S△OPC﹣S△AOP,∴×2×4+×4×m﹣×2×(﹣m2+m+4)=;整理得:m2+2m﹣15=0,解得m=3或m=﹣5(舍弃),∴P(3,﹣).[经验总结]本题考查了三角形的面积,二次函数的解析式的求法,二次函数的性质等知识,解题的关键是学会利用参数构建方程解决问题.17、若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的点雅抛物线,如:y=x2+1是y=x+1的点雅抛物线.(1)若y=x2﹣4是y=﹣2x+p的点雅抛物线,求p的值;(2)若二次函数y=﹣x2+4x+7是经过点(﹣1,2)的一次函数y=kx+t(k≠0)的点雅抛物线,求直线y=kx+t(k≠0)与两坐标轴围成的三角形的面积;(3)若函数y=mx﹣3(m≠0)的点雅抛物线y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.[思路分析](1)利用二次函数的性质得到抛物线y=x2﹣4的顶点坐标为(0,﹣4),再根据新定义,把(0,﹣4)代入y=﹣2x+p值可得到p的值;(2)利用配方法得到抛物线y=﹣x2+4x+7的顶点坐标为(2,11),再利用待定系数法确定一次函数解析式为y=3x+5,接着利用解析式求出一次函数图形与坐标轴的交点坐标,然后计算直线y=kx+t与两坐标轴围成的三角形的面积;(3)先解方程x2+2x+n=0得x1=﹣1+,x2=﹣1﹣,则﹣1+﹣(﹣1﹣)=4,解方程得到n=﹣3,再利用配方法得到抛物线解析式为y=x2+2x﹣3的顶点坐标为(1,﹣4),然后把(1,﹣4)代入y=mx﹣3中可求出m的值.[答案详解]解:(1)抛物线y=x2﹣4的顶点坐标为(0,﹣4),把(0,﹣4)代入y=﹣2x+p得﹣2×0+p=﹣4,解得p=﹣4;(2)∵y=﹣x2+4x+7=﹣(x﹣2)2+11,∴抛物线的顶点坐标为(2,11),把(2,11),(﹣1,2)分别代入y=kx+t得,解得,∴一次函数解析式为y=3x+5,当x=0时,y=5,直线y=3x+5与y轴的交点坐标为(0,5),当y=0时,3x+5=0,解得x=﹣,直线y=3x+5与x轴的交点坐标为(﹣,0),∴直线y=3x+5与两坐标轴围成的三角形的面积=×5×=;(3)当y=0时,x2+2x+n=0,解得x1=﹣1+,x2=﹣1﹣,∵﹣1+﹣(﹣1﹣)=4,∴n=﹣3,∴抛物线解析式为y=x2+2x﹣3,∵y=x2+2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),把(1,﹣4)代入y=mx﹣3得m﹣3=﹣4,解得m=﹣1,∴m、n的值分别为﹣1,﹣3.[经验总结]本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.18、已知抛物线y=x2+2ax+3a与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)当0<x≤k,且k>1时,y的最大值和最小值分别为m,n,且m+n=1,求k的值.[思路分析](1)把C点坐标代入y=x2+2ax+3a中求出a得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2﹣4,则对称轴为直线x=1,当x=1时,y有最小值﹣4,由于当0<x≤k,且k>1时,y的最大值和最小值分别为m,n,所以n=﹣4,则m=5,计算y=5所对应的自变量的值,从而得到k的值.[答案详解]解:(1)把C(0,﹣3)代入y=x2+2ax+3a得3a=﹣3,解得a=﹣1,∴抛物线解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),对称轴为直线x=1,如图,当x=1时,y有最小值﹣4,∵当0<x≤k,且k>1时,y的最大值和最小值分别为m,n,∴n=﹣4,而m+n=1,∴m=5,当y=5时,(x﹣1)2﹣4=5,解得x1=﹣2,x2=4,∴k=4.[经验总结]本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.19、如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)求△BOC的面积.[思路分析](1)根据抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),即可得到关于a、b的方程,从而可以求得a、b的值,然后即可写出抛物线的解析式;(2)根据(1)中抛物线的解析式,可以写出点C的坐标,然后再根据点B的坐标,即可得到OC和OB的长,再根据三角形面积公式,即可求得△BOC的面积.[答案详解]解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B (﹣3,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)由(1)知,y=﹣x2﹣2x+3,∴点C的坐标为(0,3),∴OC=3,∵点B的坐标为(﹣3,0),∴OB=3,∵∠BOC=90°,∴△BOC的面积是==.[经验总结]本题考查抛物线与x轴的交点、待定系数法求二次函数解析式、二次函数的性质、三角形的面积,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.20、已知二次函数y=x2﹣4x+3.(1)二次函数图象的开口方向,顶点坐标是,与x轴的交点坐标为,与y轴的交点坐标为;(2)画函数图象;(3)当1<x<4时,y的取值范围是.[思路分析](1)先把一般式配成顶点式,则根据二次函数的性质可判断抛物线的开口方向,顶点坐标;然后解方程x2﹣4x+3=0得抛物线与x轴的交点坐标,计算自变量为0所对应的函数值得到抛物线与y轴的交点坐标;(2)利用描点法画出二次函数的图象;(3)结合函数图象和二次函数的性质求解.[答案详解]解:(1)∵a=1>0,∴抛物线开口向上,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1);当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴的交点坐标为(1,0),(3,0),当x=0时,y=x2﹣4x+3=3,则抛物线与y轴的交点坐标为(0,3);故答案为:向上;(2,﹣1);(1,0),(3,0);(0,3);(2)如图,(3)当x=1时,y=0;当x=4时,y=3,所以当1<x<4时,y的取值范围为﹣1≤y<3.故答案为:﹣1≤y<3.[经验总结]本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质与图象.。

一元二次方程与二次函数测试题试题

一元二次方程与二次函数测试题试题

一元二次方程与二次函数测试题试题5,则该方程为_______.13.把y=x^2-4x+5配方成顶点式为y=(x-2)^2+1,其中顶点坐标为_______.14.若二次函数y=ax^2+bx+c的图象过点(1,3),则a+b+c=_______.15.若一元二次方程mx^2+(m+1)x+1=0有两个相等的实数根,则m=_______.16.若二次函数y=ax^2+bx+c的图象经过点(2,1),则a+b+c=_______.17.若二次函数y=ax^2+bx+c的图象开口向下,且经过点(1,2),则a<_______.18.若二次函数y=ax^2+bx+c的图象经过点(3,4),且开口向上,则a>_______.19.若一元二次方程x^2+px+q=0的两个根的和等于3,且它们的积等于2,则p=_______,q=_______.20.已知一元二次方程x^2+px+q=0的两个根的和为2,且它们的差为3,则p=_______,q=_______.改写后的文章:___2017-2018学年度第一学期月考试卷九年级数学班级。

考号。

姓名。

得分:一、选择题(每题4分,共40分)1.下列方程中,一元二次方程是()A。

y=2x+3B。

y=(x-2)(x-3)C。

y=x^2-x(x-3)D。

y=x+1/x2.把二次函数y=x^2-2x-1配方成顶点式为()A。

y=(x-1)^2-2B。

y=(x-1)^2+2C。

y=(x+1)^2-2D。

y=(x+1)^2+13.直角坐标平面上将二次函数y=-2(x-1)-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A。

(0,0)B。

(1,-2)C。

(0,-1)D。

(-2,1)4.函数y=ax^2+bx+c的图象如图所示,那么关于一元二次方程ax^2+bx+c=0的根的情况是()A。

有两个不相等的实数根B。

有两个异号的实数根C。

有两个相等的实数根D。

一元二次方程与二次函数基础练习题

一元二次方程与二次函数基础练习题

一元二次方程与二次函数基础练习题1、已知关于x 的方程22(9)(3)50m x m x -++-=.①当m 为何值时,此方程是一元一次方程?并求出此时方程的解.②当m 为何值时,此方程是一元二次方程?并写出这个方程的二次項系数、一次项系数及常数项.2、解方程:(1)2680x x -+= (2)212x x --= 0(3)261135x x --= 0 (4) 2151260x x +-=(5)01322=+-x x (6)22730x x -+=3、已知:关于x 的一元二次方程230x x k --=有两个不相等的实数根. (1)求k 的取值范围;(2)请选择一个k 的负整数值,并求出方程的根.4、若关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的取值范围 是( ). A .2a <且0a ≠B .2a >C .2a <且1a ≠D .2a <-5、已知0b ≠,不解方程,试判定关于x 的一元二次方程222(2)(2)0x a b x a ab b -+++-=的根的情况是 .6、已知a ,b ,c 分别是三角形的三边,则方程2()2()0a b x cx a b ++++=的根的情况是 ( ). A .没有实数根 B .可能有且只有一个实数根 C .有两个相等的实数根D .有两个不相等的实数根7、已知:关于x 的方程2(2)20x k x k -++=. (1)求证:无论取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长1a =,另两边长b c =,恰好是这个方程的两个根,求ABC ∆的周长.8、已知1x 、2x 是方程22340x x +-=的两个根,利用根与系数的关系,求下列各式子 的值:(1)12x x + (2)12x x (3)1211x x + (4)2212x x + (5)12(1)(1)x x ++9、方程(1)(21)2x x -+=的两个根分别是1x 和2x ,则12x x += . 10、已知方程22450x x --=的两个根分别是1x 和2x ,求下列式子的值:①12(2)(2)x x ++ ②221122x x x x -+.11、已知关于x 的方程2(3)(23)0x m x m m +---= (1)证明:无论m 为何值方程都有两个实数根;(2)是否存在正数m ,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m 的值;若不存在,请说明理由.12、已知关于x 的方程2(31)2(1)0kx k x k --+-=. (1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个实数根1x 、2x ,且12||2x x -=,求k 的值.13、已知函数22()(1)2(y m m x m x m =-+--为常数). (1)若这个函数是关于x 的一次函数,求m 的值; (2)若这个函数是关于x 的二次函数,求m 的值.14、若265(1)mm y m x --=+是二次函数,则m =( ). A .7B .1-C .1-或7D .以上都不对15、将抛物线y =x 2向右平移2个单位所得抛物线的函数表达式为( ). A .y =(x ﹣2)2B .y =(x +2)2C .y =x 2﹣2D .y =x 2+216、抛物线y =﹣3(x ﹣1)2的开口方向 ,对称轴是 ,顶点坐标是 .17、把抛物线y =﹣2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( ). A .y =﹣2(x +1)2+2 B .y =﹣2(x +1)2﹣2 C .y =﹣2(x ﹣1)2+2D .y =﹣2(x ﹣1)2﹣218、二次函数y =﹣2(x ﹣5)2+3的开口方向 ;对称轴是直线 ;顶点坐标是 .19、已知二次函数21322y x x =--+(1)把函数表达式配方成2()y a x h k =-+的形式为 .(2)函数图象的开口方向向 ,顶点坐标为 ,对称轴为直线 ,函数图象与x 轴的交点坐标为 ,与y 轴的交点坐标为 .(3)函数21322y x x =--+的图象可由抛物线221x y -=向 平移 个单位长度,再向 平移 个单位长度得到;20、填空:(1)抛物线y =x 2-2x +2的顶点坐标是 ;(2)抛物线y =2x 2-2x -52的开口 ,对称轴是 ;(3)抛物线y =-2x 2-4x +8的开口 ,顶点坐标是 ; (4)抛物线y =-12x 2+2x +4的对称轴是 ;(5)二次函数y =ax 2+4x +a 的最大值是3,则a = . 21、已知二次函数2248y x x =-+.(1)将二次函数的解析式化为2()y a x h k =-+的形式. (2)写出二次函数图象的开口方向、对称轴和顶点坐标.22、已知二次函数25y ax x c =-+的图象如图所示,请根据图象回答下列问题: (1)a = ,c = .(2)函数图象的对称轴是 ,顶点坐标P . (3)该函数有最 值,当x = 时,y 最值= .(4)当x 时,y 随x 的增大而减小;当x 时,y 随x 的增大而增大. (5)抛物线与x 轴交点坐标A ,B ;与y 轴交点C 的坐标为 ;ABC S ∆= ,ABP S ∆= .(6)当0y >时,x 的取值范围是 ;当0y <时,x 的取值范围是 . (7)方程250ax x c -+=中△的符号为 .方程250ax x c -+=的两根分别为 , .(8)当6x =时,y 0;当2x =-时,y 0.。

21.4 二次函数与一元二次方程同步基础练习题(含答案)

21.4 二次函数与一元二次方程同步基础练习题(含答案)

22.4 二次函数与一元二次方程同步基础练习题一、选择题(本大题共15小题)1.抛物线y=x2+2x+m-1与x轴有交点,则m的取值范围是()A.m≤2B.m<-2C.m>2D.0<m≤22.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是()A.无实数根B.有两个相等实数根C.有两个同号不等实数根D.有两个异号实数根3.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=-1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为()A.x=1B.x=-1C.x1=1,x2=-3D.x1=1,x2=-44.已知二次函数y=kx2-5x-5的图象与x轴有交点,则k的取值范围是()A.>B.且k≠0C.D.>且k≠05.在平面直角坐标系中,抛物线y=x2-1与x轴交点的个数()A.3B.2C.1D.06.不论m为何实数,抛物线y=x2-mx+m-2()A.在x轴上方B.与x轴只有一个交点C.与x轴有两个交点D.在x轴下方7.若抛物线y=-x2+px+q与x轴交于A(a,0),B(b,0)两点,且a<1<b,则有()A.p+q<1B.p+q=1C.p+q>1D.pq>08.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2-4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0-x1)(x0-x2)<0;⑤x0<x1或x0>x2,其中正确的有()A.①②B.①②④C.①②⑤D.①②④⑤9.将抛物线y=x2-1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4B.6C.8D.1010.若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0<b<1D.b<111.如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(-2,0),对称轴为直线x=1,则y<0时x的范围是()A.x>4或x<-2B.-2<x<4C.-2<x<3D.0<x<312.已知抛物线y=x2-x-2与x轴的一个交点为(m,0),则代数式m2-m+2016的值为()A.2017B.2018C.2019D.202013.如图,二次函数y=ax2+bx+c的图象与x轴交于(-2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<-2B.x>4C.-2<x<4D.x>014.函数y=-x2+2(m-1)x+m+1的图象如图,它与x轴交于A,B两点,线段OA与OB的比为1:3,则m的值为()A.或2B.C.1D.215.如图,抛物线y=ax2+bx+c的对称轴是经过点(1,0)且平行于y轴的直线,若点P(4,0)在抛物线上,则4a-2b+c 的值为()A.-2B.0C.2D.4二、填空题(本大题共11小题)16.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为______ .17.已知抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,则△ABC的面积是______ .18.若二次函数y=x2+6x+k的图象与x轴有且只有一个交点,则k的值为______ .19.如图,抛物线y=ax2+bx+c与x轴相交于点A、B两点,点B的坐标为(7,0),与y轴相交于点C(0,3),点D (5,3)在该抛物线上,则点A的坐标是______ .20.如图,二次函数y=a(x-2)2+k的图象与x轴交于A,B两点,且点A的横坐标为-1,则点B的横坐标为______ .21.若二次函数y=(k-2)x2+2x+1的图象与x轴有交点,则k的取值范围是______ .22.抛物线y=x2+4x+3在x轴上截得的线段的长度是______ .23.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是______ .24.已知二次函数y=ax2+bx+c的图象如图所示,则a ______ 0,b ______ 0,c ______ 0,△ ______ 0.(用“<”,“=”或“>”号连接)25.若关于x的一元二次方程x2+ax+b=0有两个不同的实数根m,n(m<n),方程x2+ax+b=2有两个不同的实数根p,q(p<q),则m,n,p,q的大小关系用“<”连接为______ .2三、解答题(本大题共6小题)27.已知二次函数y=x2-2的图象与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C点的坐标;(2)判断△ABC的形状,并求其面积.28.已知函数y=x2-(m-2)x+m的图象过点(-1,15),设其图象与x轴交于点A、B(A在B的左侧),点C在图象上,且S△ABC=1,求:(1)求m;(2)求点A、点B的坐标;(3)求点C的坐标.29.已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),求二次函数的顶点坐标.30.二次函数的图象经过A(4,0),B(0,-4),C(2,-4)三点:(1)求这个函数的解析式;(2)求函数图顶点的坐标;(3)求抛物线与坐标轴的交点围成的三角形的面积.31.已知二次函数y=x2+2x-3.(1)把函数配成y=a(x-h)2x轴交点坐标;(3)用五点法画函数图象y……(4)当y>0时,则x的取值范围为______ .(5)当-3<x<0时,则y的取值范围为______ .32.二次函数y=x2+(2m+1)x+m2-1与x轴交于A,B两个不同的点.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时A,B两点的坐标.【答案】1.A2.C3.C4.B5.B6.C7.C8.B9.B 10.A 11.B 12.B 13.C 14.D 15.B16.217.618.919.(-2,0)20.521.k≤3且k≠222.223.方程ax2+bx+c-3=0有两个相等的实数根24.>;<;>;=25.p<m<n<q26.x1=-4,x2=027.解:(1)令y=0,则x2-2=0,解得:x1=-2,x2=2,∴A(-2,0)、B(2,0)或A(2,0)、B(-2,0);令x=0,y=-2,∴C点的坐标为(0,-2).(2)∵A(-2,0)、B(2,0)或A(2,0)、B(-2,0),且C(0,-2),∴AC=2,BC=2,AB=4,∴AB2=AC2+BC2.∵AC=BC,∴△ABC为等腰直角三角形.S△ABC=AC•BC=×2×2=4.28.解:(1)∵函数y=x2-(m-2)x+m的图象过点(-1,15),∴15=1+m-2+m,解得:m=8.(2)将m=8代入y=x2-(m-2)x+m中得:y=x2-6x+8,令y=0,则x2-6x+8=0,解得:x1=2,x2=4,∵A在B的左侧,∴点A的坐标为(2,0),点B的坐标为(4,0).(3)设点C的坐标为(n,n2-6n+8),∵A(2,0),B(4,0),∴AB=2,S△ABC=AB•|n2-6n+8|=1=|n2-6n+8|,解得:n1=1,n2=6,n3=3,∴点C的坐标为(1,1)、(6,1)或(3,-1).29.解:把A(1,0),B(3,0),C(0,3)代入y=ax2+bx+c中得:,解得:,∴二次函数的解析式为:y=x2-4x+3,y=x2-4x+3=(x-2)2-1,顶点坐标为(2,-1).30.解:(1)设抛物线的解析式为y=a(x-h)2+k∵B、C的纵坐标都是-4,∴B、C关于抛物线的对称轴对称,∴抛物线的对称轴为:x=1,即h=1,∴y=a(x-1)2+k,将A(4,0)和B(0,-4)代入上式,解得:∴抛物线的解析式为:y=(x-1)2-(2)由(1)可知:顶点坐标为(1,-)(3)令y=0代入y=(x-1)2-,∴抛物线与x轴的交点坐标为:(4,0)或(-2,0)∵抛物线与y轴的交点坐标为:(0,-4)∴抛物线与坐标轴的交点围成的三角形的面积为:×6×4=1231.x<-3或x>1;-4≤y<032.解:(1)∵二次函数y=x2+(2m+1)x+m2-1与x轴交于A,B两个不同的点,∴一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根,∴△=(2m+1)2-4(m2-1)=4m+5>0,解得:m>-.(2)当m=1时,原二次函数解析式为y=x2+3x,令y=x2+3x=0,解得:x1=-3,x2=0,∴当m=1时,A、B两点的坐标为(-3,0)、(0,0).。

二次函数与一元二次方程、不等式同步练习

二次函数与一元二次方程、不等式同步练习

二次函数与一元二次方程、不等式同步练习一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、同步练习1. 一元二次不等式()()052>-+x x 的解集为 【 】(A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x2. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】(A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或3. 不等式12+-x x≥0的解集为 【 】 (A ){}20≤<x x (B ){}21≤<-x x (C ){}1->x x (D )R4. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m (C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m 5. 不等式022>++bx ax 的解集为{}21<<-x x ,则不等式022<++a bx x 的解集为 【 】 (A )⎭⎬⎫⎩⎨⎧>-<211x x x 或 (B )⎭⎬⎫⎩⎨⎧<<-211x x (C ){}12<<-x x (D ){}12>-<x x x 或6. 设全集=U R ,集合{}42>=x x A ,⎭⎬⎫⎩⎨⎧<-+=013x x xB ,则(C U A )=B 【 】 (A ){}12<≤-x x (B ){}23<<-x x (C ){}22<<-x x (D ){}23≤≤-x x7.(多选)若关于x 的不等式()()0131>+-⋅+x x a (0≠a )的解集是{}21x x x x <<,其中21x x <,则下列结论中正确的是 【 】 (A )221=+x x (B )321-<x x (C )412>-x x (D )3121<<<-x x8. 不等式322+-x x ≤122--a a 在R 上的解集为∅,则实数a 的取值范围是_____________.9. 若关于x 的不等式022>++bx ax 的解集是⎭⎬⎫⎩⎨⎧<<-3121x x ,则=+b a ______. 10. 已知集合{}Z x x x x A ∈<--=,062,则集合A 中所有元素之和为_________. 11. 已知1=x 不是关于x 的不等式08622<+-kx x k 的解,则实数k 的取值范围是_____________.12. 已知关于x 的不等式xax +≤b (∈b a ,R )的解集为{}210≤≤<x x x 或,则a 的值为_________,b 的值为__________.13. 解下列不等式:(1)0652<+--x x ; (2)()()02>--x a x a .14. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的值; (2)若不等式的解集为R ,求实数k 的取值范围.15. 已知下列两个说法:①012=++mx x 有两个不等的负根; ②()012442=+-+x m x 无实数根. 若说法①和说法②有且只有一个成立,求实数m 的取值范围.16. 已知集合{}a x a x A ≤-<-=127,()(){}021≤+-=x x x B .(1)若0=a ,求B A ,B A ; (2)若A B ⊆,求实数a 的取值范围.17. 已知关于x 的不等式222->-x kx kx .(1)当2=k 时,解不等式; (2)当∈k R ,解不等式.二次函数与一元二次方程、不等式同步练习同步练习1. 一元二次不等式()()052>-+x x 的解集为 【 】(A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.2. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】(A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.3. 不等式12+-x x≥0的解集为 【 】 (A ){}20≤<x x (B ){}21≤<-x x (C ){}1->x x (D )R分析 本题考查分式不等式的解法,求解的思路是把分式不等式转化为同解的整式不等式.解: 原不等式可化为:12+-x x ≤0,它同解于不等式组()()⎩⎨⎧≠+≤-+01021x x x . 解之得:1-x <≤2.∴原不等式的解集为{}21≤<-x x . ∴选择答案【 B 】.4. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m (C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m 分析 本题由题意可知:0<m .解: ∵()()021>--x mx ,∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.5. 不等式022>++bx ax 的解集为{}21<<-x x ,则不等式022<++a bx x 的解集为 【 】 (A )⎭⎬⎫⎩⎨⎧>-<211x x x 或 (B )⎭⎬⎫⎩⎨⎧<<-211x x (C ){}12<<-x x (D ){}12>-<x x x 或解: ∵不等式022>++bx ax 的解集为{}21<<-x x∴0<a ,方程022=++bx ax 的两个实数根分别为1-和2. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-21221aab ,解之得:⎩⎨⎧=-=11b a . ∴022<++a bx x 即0122<-+x x ,解之得:211<<-x . ∴不等式022<++a bx x 的解集为⎭⎬⎫⎩⎨⎧<<-211x x .∴选择答案【 B 】.6. 设全集=U R ,集合{}42>=x x A ,⎭⎬⎫⎩⎨⎧<-+=013x x xB ,则(C U A )=B 【 】 (A ){}12<≤-x x (B ){}23<<-x x (C ){}22<<-x x (D ){}23≤≤-x x解: 解不等式42>x 得:2>x 或2-<x ;分式不等式013<-+x x 同解于不等式()()013<-+x x ,解之得:13<<-x . ∴{}22-<>=x x x A 或,{}13<<-=x x B . ∴C U A ={}22≤≤-x x . ∴(C U A )=B {}12<≤-x x . ∴选择答案【 A 】.7.(多选)若关于x 的不等式()()0131>+-⋅+x x a (0≠a )的解集是{}21x x x x <<,其中21x x <,则下列结论中正确的是 【 】 (A )221=+x x (B )321-<x x (C )412>-x x (D )3121<<<-x x解: ∵()()0131>+-⋅+x x a∴03122>-+-a ax ax .∵不等式的解集为{}21x x x x <<,∴0<a .由题意可知,方程03122=-+-a ax ax 有两个不相等的实数根∴()031442>--=∆a a a ,解之得:41>a 或0<a . ∴0<a ,即实数a 的取值范围是()0,∞-.对于(A ),由根与系数的关系定理可得:2221=--=+aax x . ∴(A )正确;对于(B ),由根与系数的关系定理可得:3313121-<-=-=aa a x x ; ∴(B )正确; 对于(C ),∵ax x ∆=-21,21x x <,0<a ∴4164164164162221221=>⎪⎭⎫ ⎝⎛-+=-=--=-=-a a a a a a a x x x x . ∴(C )正确;或者: ∵21x x <,∴012>-x x .∴()()4416314442122122112>⎪⎭⎫⎝⎛-+=-⨯-=-+=-=-a a a x x x x x x x x . 对于(D ),∵221=+x x ,∴122x x -=. ∵412>-x x ,∴4211>--x x ,解之得:11-<x . 同理,求得:32>x . ∴(D )错误.综上所述,结论中正确的是【 ABC 】.8. 不等式322+-x x ≤122--a a 在R 上的解集为∅,则实数a 的取值范围是_____________.解: ∵不等式322+-x x ≤122--a a 在R 上的解集为∅∴123222-->+-a a x x 在R 上恒成立,只需()min 223212+-<--x x a a 即可. ∵()213222+-=+-x x x ≥2∴()232min 2=+-x x∴2122<--a a ,解之得:31<<-a .∴实数a 的取值范围是()3,1-.9. 若关于x 的不等式022>++bx ax 的解集是⎭⎬⎫⎩⎨⎧<<-3121x x ,则=+b a ______. 解: ∵不等式022>++bx ax 的解集是⎭⎬⎫⎩⎨⎧<<-3121x x ∴0<a ,方程022=++bx ax 的两个实数根分别为31,21-.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-312123121a a b ,解之得:⎩⎨⎧-=-=212b a . ∴14212-=--=+b a .10. 已知集合{}Z x x x x A ∈<--=,062,则集合A 中所有元素之和为_________.解: 解不等式()()03262<-+=--x x x x 得:32<<-x .∴{}{}2,1,0,1,32-=∈<<-=Z x x x A . ∴集合A 中所有元素之和为22101=+++-.11. 已知1=x 不是关于x 的不等式08622<+-kx x k 的解,则实数k 的取值范围是_____________.解: ∵1=x 不是关于x 的不等式08622<+-kx x k 的解∴当1=x 时,8686222+-=+-k k kx x k ≥0. 解之得:k ≥4或k ≤2.∴实数k 的取值范围是[)(]2,,4∞-+∞ .12. 已知关于x 的不等式xax +≤b (∈b a ,R )的解集为{}210≤≤<x x x 或,则a 的值为_________,b 的值为__________.解: ∵x a x +≤b ,∴x a bx x +-2≤0,它同解于不等式组()⎩⎨⎧≠≤+-002x a bx x x .∵不等式xax +≤b 的解集为{}210≤≤<x x x 或∴方程02=+-a bx x 的两个实数根分别为1和2. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=2121a b ,解之得:⎩⎨⎧==32b a . ∴a 的值为2,b 的值为3.13. 解下列不等式:(1)0652<+--x x ; (2)()()02>--x a x a .解:(1)原不等式可化为:0652>-+x x .解方程0652=-+x x 得:6,121-==x x . ∴0652>-+x x 的解集为{}61-<>x x x 或. ∴原不等式的解集为{}61-<>x x x 或;(2)当0>a ,原不等式同解于()()02>--x a x . 若2>a ,则原不等式的解集为{}2<>x a x x 或; 若2=a ,则()022>-x ,原不等式的解集为{}2≠x x ;若20<<a ,原不等式的解集为{}a x x x <>或2; 当0=a 时,原不等式的解集为∅;当0<a 时,原不等式同解于()()02<--x a x ,∴原不等式的解集为{}2<<x a x . 综上所述,当2>a 时,原不等式的解集为{}2<>x a x x 或; 当2=a 时,原不等式的解集为{}2≠x x ;当20<<a 时,原不等式的解集为{}a x x x <>或2; 当0=a 时,原不等式的解集为∅;当0<a 时,原不等式的解集为{}2<<x a x .14. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)∵关于x 的不等式0622<+-k x kx 的解集为{}23->-<x x x 或∴0<k ,方程0622=+-k x kx 的两个实数根分别为2,3--. 由根与系数的关系定理可得:()⎪⎪⎩⎪⎪⎨⎧-⨯-=--=--236232kk k ,解之得:52-=k . ∴实数k 的值为52-; (2)∵不等式0622<+-k x kx 的解集为为R ∴当0=k 时,02<-x ,不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎪⎪⎭⎫ ⎝⎛-∞-66,. 15. 已知下列两个说法:①012=++mx x 有两个不等的负根; ②()012442=+-+x m x 无实数根. 若说法①和说法②有且只有一个成立,求实数m 的取值范围.解: 当说法①成立时,则有:⎩⎨⎧<->-=∆0042m m ,解之得:2>m ; 当说法②成立,则有:()[]016242<--=∆m ,解之得:31<<m . (显然,说法②不成立时,m ≤1或m ≥3)若说法①成立,说法②不成立,则有:⎩⎨⎧≥≤>312m m m 或,解之得:m ≥3; 若说法①不成立,说法②成立,则有:⎩⎨⎧<<≤312m m ,解之得:m <1≤2. 综上所述,实数m 的取值范围为{}3≥m m 或{}21≤<m m .16. 已知集合{}a x a x A ≤-<-=127,()(){}021≤+-=x x x B .(1)若0=a ,求B A ,B A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)当0=a 时,{}⎭⎬⎫⎩⎨⎧≤<-=≤-<-=2130127x x x x A . ()(){}{}12021≤≤-=≤+-=x x x x x B . ∴⎭⎬⎫⎩⎨⎧≤≤-=212x x B A ,{}13≤<-=x x B A ; (2){}()()⎭⎬⎫⎩⎨⎧+≤<-=≤-<-=121621127a x a x a x a x A . ∵A B ⊆∴()()⎪⎪⎩⎪⎪⎨⎧≥+-<-11212621a a ,解之得:1≤2<a . ∴实数a 的取值范围是[)2,1.17. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式;(2)当∈k R ,解不等式.解:(1)当2=k 时,2422->-x x x ∴02522>+-x x∴()()0212>--x x .解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或; (2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x .∴原不等式的解集为{}2<x x ; 当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫ ⎝⎛--k x x k . 方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫ ⎝⎛--k x x . ①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或. 综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或; 当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.。

二次函数一元二次方程练习题及答案

二次函数一元二次方程练习题及答案

1如果b>0,c>0那么二次函数y=ax²+bx+c的图象大致是()2一次函数y=2x-3与二次函数y=x²-2x+1的图象有()A一个交点B两个交点C无数个交点D无交点3已知二次函数y=mx²-2x-3的图象与x轴有交点,则m的取值范围A m>—13B m≥—13C m>—13且m≠0 D m≥—13且m≠04如果对于任意实数x,函数y=ax²+bx+c的值都是负数,那么有()A a>0,b2−4ac>0 B a<0,b2−4ac<0C a>0,b2−4ac<0D a<0,b2−4ac>05如图,抛物线y=x²+bx+c与x轴交于点A,B两点,与y轴交于点C(0,c),∠OBC=45°,则下列各式成立的是()A b-c-1=0B b+c-1=0C b-c+1=0D b+c+1=06函数y=ax+b与y=ax²+bx+c(a≠0)的图象如图所示,则下列选项正确的是()A ab>0,c>0B ab<0,c>0C ab<0,c>0D ab<0,c<07已知抛物线y=ax²+bx+c的对称轴x=2,且经过点(3,0)则a+b+c的值()A 0B 1C -1D 不能确定8已知二次函数y=ax²+bx+c的图象如图,则化简二次根式√(a+c)2+√(b−c)2的结果是()A a+bB a-b+2 C-a+b-2c D-a-b9已知二次函数y1=ax²+bx+c的图象如图与一次函数y2=kx+m的图象如图,直线与抛物线的交点为A(-2,4)B(8,2)则能使y1<y2的x的取值范围()A X>8B X<-2C x<-2或x>8 D-2<x<810已知二次函数y1=ax²+bx+c的图象如图所示,则a,b,c满足()A a<0,b<0,c>0B a<0,b<0,c<0C a<0,b>0,c>0D a>0,b<0,c>011已知二次函数y=(a-1)x²+2ax+3a-2的图象最低点在x轴上,那么a=_______此时的解析式为________________的图象总与x轴有12已知关于x的函数y=(a²+3a+2)x²+(a+1)x+14交点,求a的取值范围13:已知一个二次函数的图象如图所示三点(1)求抛物线的对称轴(2)平行于x轴的直线1的解析式为y=25,抛物线与x轴交于AB两4点,在抛物线的对称轴上找点P,使BP的长等于直线1与x轴的距离,求点P的坐标14某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高产量,在试生产中发现,由于其它生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品。

人教版九年级上册数学二次函数和一元二次方程的关系练习题(含答案)

人教版九年级上册数学二次函数和一元二次方程的关系练习题(含答案)

二次函数与一元二次方程的关系知识点回顾一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表:要点诠释:二次函数图象与x 轴的交点的个数由ac b 42-=∆的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,042>-=∆ac b ,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时042=-=∆ac b 方程有两个相等的实根; (3)当二次函数的图象与x 轴没有交点时,042<-=∆ac b ,方程没有实根. 2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c ).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定. 当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 课后作业 ●基础训练1.已知二次函数y=ax 2-5x+c 的图象如图所示,请根据图象回答下列问题: (1)a=_______,c=______.(2)函数图象的对称轴是_________,顶点坐标P__________. (3)该函数有最______值,当x=______时,y 最值=________.(4)当x_____时,y 随x 的增大而减小.当x_____时,y 随x 的增大而增大.(5)抛物线与x 轴交点坐标A_______,B________;与y 轴交点C 的坐标为_______;ABC S ∆=_________,ABP S ∆=________.(6)当y>0时,x 的取值范围是_________;当y<0时,x 的取值范围是_________. (7)方程ax 2-5x+c=0中△的符号为________.方程ax 2-5x+c=0的两根分别为_____,____. (8)当x=6时,y______0;当x=-2时,y______0. 2.已知下表:(1)求a 、b 、c 的值,并在表内空格处填入正确的数; (2)请你根据上面的结果判断:①是否存在实数x,使二次三项式ax 2+bx+c 的值为0?若存在,求出这个实数值;若不存在,请说明理由.②画出函数y=ax2+bx+c的图象示意图,由图象确定,当x取什么实数时,ax2+ bx+c>0?3.请画出适当的函数图象,求方程x2=12x+3的解.4.若二次函数y=-12x2+bx+c的图象与x轴相交于A(-5,0),B(-1,0).(1)求这个二次函数的关系式;(2)如果要通过适当的平移,使得这个函数的图象与x轴只有一个交点,那么应该怎样平移?向右还是向左?或者是向上还是向下?应该平移向个单位?5.已知某型汽车在干燥的路面上, 汽车停止行驶所需的刹车距离与刹车时的车速之间有下表所示的对应关系.(1)请你以汽车刹车时的车速V为自变量,刹车距离s为函数, 在图所示的坐标系中描点连线,画出函数的图象;(2)观察所画的函数的图象,你发现了什么?(3)若把这个函数的图象看成是一条抛物线,请根据表中所给的数据,选择三对,求出它的函数关系式;(4)用你留下的两对数据,验证一个你所得到的结论是否正确.●能力提升6.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x 轴上,点C 在直线y=x-2上.(1)求矩形各顶点坐标;(2)若直线y=x-2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.7.已知一条抛物线经过A(0,3),B(4,6)两点,对称轴是x=5 3 .(1)求这条抛物线的关系式.CBA x ODyE(2)证明:这条抛物线与x 轴的两个交点中,必存在点C,使得对x 轴上任意点D 都有AC+BC≤AD+BD.8.如图所示,一位篮球运动员在离篮圈水平距离为4m 处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m 时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m 处出手.问:球出手时,他跳离地面多高?9.某工厂生产A 产品x 吨所需费用为P 元,而卖出x 吨这种产品的售价为每吨Q 元, 已知P=110x 2+5x+1000,Q=-30x+45. 3.05m4m2.5mxOy(1)该厂生产并售出x 吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?10.已知抛物线y=2x 2-kx -1与x 轴两交点的横坐标,一个大于2,另一个小于2,试求k 的取值范围.11.如图,在Rt △ABC 中,∠ACB=90°,BC>AC,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA 2+OB 2= 17, 且线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx+2(m -3)=0的两个根. (1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E,求过A 、B 、E 三点的抛物线的关系式,并画出此抛物线的草图.(3)在抛物线上是否存在点P ,使△ABP 与△ABC 全等?若存在,求出符合条件的P 点的坐标;若不存在,说明理由.C BAxOy●综合探究12.已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0), 它的顶点P的坐标是24,24b ac ba a⎛⎫-- ⎪⎝⎭,与y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式:伴随抛物线的关系式_________________伴随直线的关系式___________________(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3, 则这条抛物线的关系是___________:(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴随抛物线和伴随直线的关系式;(4)若抛物线L与x轴交于A(x1,0),B(x2,0)两点x2>x1>0,它的伴随抛物线与x 轴交于C,D两点,且AB=CD,请求出a、b、c应满足的条件.答案:1.(1)a=1;c=4 (2)直线x=52,59,24⎛⎫-⎪⎝⎭(3)小;52;94-(4)55;22≤≥(5)(1,0);(4,0);(0,4); 6; 278; (6)x<1或x>4;1<x<4 (7)正号;x1=1;x2=4 (8)>;>2.(1)由表知,当x=0时,ax 2+bx+c=3;当x=1时,ax 2=1;当x=2时,ax 2+bx+c=3.∴31423c a a b c =⎧⎪=⎨⎪++=⎩,∴123a b c =⎧⎪=-⎨⎪=⎩, ∴a=1,b=-2,c=3,空格内分别应填入0,4,2. (2)①在x 2-2x+3=0中,∵△=(-2)2-4×1×3=-8<0, ∴不存在实数x 能使ax 2+bx+c=0.②函数y=x 2-2x+3的图象示意图如答图所示, 观察图象得出,无论x 取什么实数总有ax 2+bx+c>0.3.:在同一坐标系中如答图所示, 画出函数y=x 2的图象,画出函数y=12x+3 的图象, 这两个图象的交点为A,B,交点A,B 的横坐标32-和2就是方程x 2=12x+3的解. 4.:(1)∵y=12-x 2+bx+c,把A(-5,0),B(-1,0)代入上式,得∴()221(5)5021(1)(1)02b c b c ⎧⎛⎫-⨯-+⨯-+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯-+⨯-+= ⎪⎪⎝⎭⎩,352a b =-⎧⎪⎨=-⎪⎩,∴y=215322x x ---.632BAxyO(2)∵y=215322x x ---=21(3)22x -++ ∴顶点坐标为(-3,2),∴欲使函数的图象与x 轴只有一个交点,应向下平移2个单位. 5.:(1)函数的图象如答图所示.(2)图象可看成是一条抛物线这个函数可看作二次函数. (3)设所求函数关系式为:s=av 2+bv+c,把v=48,s=22.5;v=64,s=36;v=96,s=72分别代入s=av 2+bv+c,得222484822.5646436969672a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩, 解得35123160a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩.∴23351216s v v =+ (4)当v=80时,223333808052.55121651216v v +=⨯+⨯= ∵s=52.5, ∴23351216s v v =+ 当v=112时,22333311211294.55121651216v v +=⨯+⨯= ∵s=94.5,∴23351216s v v =+ 经检验,所得结论是正确的. 6.:(1)如答图所示.∵y=x -2,AD=BC=2,设C 点坐标为(m,2), 把C(m,2)代入y=x -2,2=m -2.∴m=4.∴C(4,2),∴OB=4,AB=3.∴OA=4-3=1, ∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x -2,∴令x=0,得y=-2,∴E(0,-2).设经过E(0,-2),A(1,0),B(4,0) 三点的抛物线关系式为y=ax 2+bx+c,∴201640c a b c a b c =-⎧⎪++=⎨⎪++=⎩, 解得12522a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩∴y=215222x x -+-. (3)抛物线顶点在矩形ABCD 内部.∵y=215222x x -+-, ∴顶点为59,28⎛⎫ ⎪⎝⎭. ∵5142<<, ∴顶点59,28⎛⎫⎪⎝⎭在矩形ABCD 内部. 7.(1)解:设所求抛物线的关系式为y=ax 2+bx+c, ∵A(0,3),B(4,6),对称轴是直线x=53. ∴31646523c a b c b a ⎧⎪=⎪++=⎨⎪⎪-=⎩, 解得981543a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴y=2915384x x -+. (2)证明:令y=0,得2915384x x -+=0, ∴ 124,23x x ==∵A(0,3),取A点关于x轴的对称点E,∴E(0,-3).设直线BE的关系式为y=kx-3,把B(4,6)代入上式,得6=4k-3,∴k=94,∴y=94x-3 .由94x-3=0,得x=43.故C为4,03⎛⎫⎪⎝⎭,C点与抛物线在x轴上的一个交点重合,在x轴上任取一点D,在△BED中,BE< BD+DE.又∵BE=EC+BC,EC=AC,ED=AD,∴AC+BC<AD+BD.若D与C重合,则AC+BC=AD+BD. ∴AC+BC≤AD+BD. 8:(1)图中各点字母表示如答图所示.∵OA=2.5,AB=4,∴OB=4-2.5=1.5.∴点D坐标为(1.5,3.05).∵抛物线顶点坐标(0,3.5),∴设所求抛物线的关系式为y=ax2+3.5,把D(1.5, 3.05)代入上式,得3.05=a×1.52+3.5,∴a=-0.2,∴y=-0.2x2+3.5(2)∵OA=2.5,∴设C点坐标为(2.5,m),∴把C(2.5,m)代入y=-0.2x2+3.5,得m=- 0.2×2.52+3.5=2.25.∴该运动员跳离地面高度h=m-(1.8+0.25)=2.25-(1.8+0.25)=0.2(m).3.05m4m2.5m xOyBDA9:(1)∵P=110x 2+5x+1000,Q=-30x+45. ∴W=Qx -P=(-30x+45)-(110x 2+5x+1000)= 224010015x x -+-.(2)∵W=224010015x x -+-=-215(x -150)2+2000. ∵-215<0,∴W 有最大值. 当x=150吨时,利润最多,最大利润2000元. 当x=150吨,Q=-30x+45=40(元). 10:∵y=2x 2-kx -1,∴△=(-k)2-4×2×(-1)=k 2+8>0,∴无论k 为何实数, 抛物线y=2x 2-kx -1与x 轴恒有两个交点. 设y=2x 2-kx -1与x 轴两交点的横坐标分别为x 1,x 2,且规定x 1<2,x 2> 2, ∴x 1-2<0,x 2-2>0.∴(x 1-2)(x 2-2)<0,∴x 1x 2-2(x 1+x 2)+4<0.∵x 1,x 2亦是方程2x 2-kx -1=0的两个根,∴x 1+x 2=2k ,x 1·x 2=-12,∴124022k --⨯+<,∴k>72. ∴k 的取值范围为k>72. 法二:∵抛物线y=2x 2-kx -1与x 轴两交点横坐标一个大于2,另一个小于2,∴此函数的图象大致位置如答图所示. 由图象知:当x=2时,y<0. 即y=2×22-2k -1<0,∴k>72.∴k 的取值范围为k>72.11:(1)线段OA,OB 的长度是关于x 的一元二次方程x 2-mx+2(m -3)=0 的两个根,∴(1)2(3)(2)OA OB m OA OB m +=⎧⎨=-⎩L g L又∵OA 2+OB 2=17,∴(OA+OB)2-2·OA ·OB=17.③把①,②代入③,得m 2-4(m -3) =17,∴m 2-4m -5=0.解之,得m=-1或m=5. 又知OA+OB=m>0,∴m=-1应舍去.∴当m=5时,得方程:x 2-5x+4=0,解之,得x=1或x=4. ∵BC>AC,∴OB>OA,∴OA=1,OB=4,在Rt △ABC 中,∠ACB=90°,CO ⊥AB, ∴OC 2=OA ·OB=1×4=4.∴OC=2,∴C(0,2) (2)∵OA=1,OB=4,C,E 两点关于x 轴对称, ∴A(-1,0),B(4,0),E(0,-2).设经过A,B,E 三点的抛物线的关系式为y=ax 2+bx+c,则016402a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ ,解之,得12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩∴所求抛物线关系式为y=213222x x --. (3)存在.∵点E 是抛物线与圆的交点. ∴Rt △ACB ≌Rt △AEB,∴E(0,-2)符合条件. ∵圆心的坐标(32,0 )在抛物线的对称轴上. ∴这个圆和这条抛物线均关于抛物线的对称轴对称.∴点E 关于抛物线对称轴的对称点E′也符合题意. ∴可求得E′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2) 12.(1)y=-2x 2+1,y=-2x+1. (2)y=x 2-2x -3(3)∵伴随抛物线的顶点是(0,c), ∴设它的解析式为y=m(x -0)2+c(m≠0).∴设抛物线过P 24,24b ac b aa ⎛⎫-- ⎪⎝⎭, ∴22442ac b b m c a a -⎛⎫=-+ ⎪⎝⎭g 解得m=-a,∴伴随抛物线关系式为y=-ax 2+c. 设伴随直线关系式为y=kx+c(k≠0).∵P 24,24b ac b a a ⎛⎫-- ⎪⎝⎭在此直线上,∴2442ac b b k c a a -⎛⎫=-+ ⎪⎝⎭g , ∴k=2b . ∴伴随直线关系式为y=2bx+c (4)∵抛物线L 与x 轴有两交点,∴△1=b 2-4ac>0,∴b 2<4ac.∵x 2>x 1>0,∴x 1+ x 2= -b a >0,x 1x 2=ca>0,∴ab<0,ac>0.对于伴随抛物线y=-ax 2+c,有△2=02-(-4ac)=4ac>0.由-ax 2+c=0,得x=∴,C D ⎛⎫⎫ ⎪⎪ ⎪⎪⎝⎭⎭,∴又AB=x2-x1=.由AB=CD,得整理得b2=8ac,综合b2>4ac,ab<0,ac>0,b2=8ac,得a,b,c满足的条件为b2=8ac且ab<0,(或b2=8ac且bc<0).。

九年级数学上册 21.3 二次函数与一元二次方程 作业练习题(含答案)

九年级数学上册 21.3 二次函数与一元二次方程 作业练习题(含答案)

21.3二次函数与一元二次方程一、选择题(本题包括8小题.每小题只有1个选项符合题意)1﹒下列抛物线,与x轴有两个交点的是()A.y=3x2-5x+3B.y=4x2-12x+9C.y=x2-2x+3D.y=2x2+3x-42﹒函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠03﹒已知抛物线y=ax2-2x+1与x轴没有交点,,那么该抛物线的顶点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限4﹒已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=35﹒下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧6﹒如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴为直线x=-1,则方程ax2+bx+c=0的解是()A.x1=-3,x2=1B.x1=3,x2=1C.x=-3D.x=-27﹒如图,二次函数y=ax2+bx+c的图象与x轴相交于(-2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<-2B.-2<x<4C.x>0D.x>48.如图,已知顶点为(-3,6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥-6C.若点(-2,m),(-5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1二、填空题(本题包括8小题)9.一元二次方程ax2+bx+c=0的根就是抛物线y=ax2+bx+c与直线_________的交点的_______坐标.10.抛物线y=-3(x-2)(x+5)与x轴的交点坐标为______________.11.已知二次函数y=x2+2mx+2,当x>2时,y的值随x的增大而增大,则实数m的取值范围是___________.12.若关于x的函数y=kx2+2x-1的图象与x轴仅有一个公共点,则实数k的值为_________.13.已知关于x的函数y=(m+6)x2+2(m-1)x+m+1的图象与x轴有交点,则m的取值范围为_______________.14.二次函数y=ax2-2ax+3的图象与x轴有两个交点,其中一个交点坐标为(-1,0),则一元二次方程ax2-2ax+3=0的解为__________________________.15.抛物线y=x2-2x-3在x轴上截得的线段长度是__________.16.关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是______________________.三、解答题(本题包括6小题)17.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=52.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.18.已知二次函数y=-x2+2x+m .(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.19.如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.20.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的表达式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.21.已知函数y=mx2-6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.22.如图,抛物线与x轴交于A,B两点,与y轴交于C点,点A的坐标为(2,0),点C的坐标为(0,3),抛物线的对称轴是直线x=-12.(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求点M的坐标.21.3二次函数与一元二次方程参考答案一、选择题(本题包括10小题.每小题只有1个选项符合题意)1.D 分析:A.y=3x2-5x+3,△=(-5)2-4×3×3=-9<0,抛物线与x轴没有交点,故A错误;B.y=4x2-12x+9,△=(-12)2-4×4×9=0,抛物线与x轴有一个交点,故B错误;C.y=x2-2x+3,△=(-2)2-4×1×3=-8<0,抛物线与x轴没有交点,故C错误;D.y=2x2+3x-4,△=32-4×2×(-4)=41>0,抛物线与x轴有两个交点,故D正确. 故选D.2.C 分析:∵函数y=kx2-6x+3的图象与x轴有交点,∴当k≠0时,△=(-6)2-4k×3≥0,解得:k≤3,当k=0时,函数y=kx2-6x+3为一次函数,则它的图象与x轴有交点,综合上述,k的取值范围是k≤3.故选C.3.D 分析:∵抛物线y=ax2-2x+1与x轴没有交点,∴△=(-2)2-4a×1<0,且a≠0,解得a>1,∴-22a-=1a>0,241(2)4aa⨯--=1-1a<0,∴抛物线顶点在第四象限.故选D.4.B 分析:抛物线y=x2-3x+m的对称轴是x=32,且与x轴的一个交点为(1,0),∵a=1,∴抛物线的开口向上,∴抛物线与x轴的另一个交点为(2,0),∴一元二次方程x2-3x+m=0的两实数根是x1=1,x2=2.故选B.5.D 分析:当y=0时,ax2-2ax+1=0,∵a>1,∴△=4a2-4a=4a(a-1)>0,∴方程ax2-2ax+1=0有两个实数根,则抛物线与x轴有两个交点.∵x>0,∴抛物线与x轴的两个交点均在y轴的右侧.故选D.6.A 分析:由图象可知:抛物线与x轴的另一个交点坐标为(-3,0),∴方程ax2+bx+c=0的解是x1=-3,x2=1.故选A.7.B 分析:∵当函数值y>0时,二次函数图象在x轴的上方,∴当-2<x<4时,y>0,即自变量x的取值范围是-2<x<4 .故选B.8.C 分析:由图象可知:抛物线与x轴有两个交点,∴△=b2-4ac>0,则b2>4ac,故A正确;∵抛物线开口向上,且顶点坐标为(-3,-6),∴函数y的最小值是-6,则ax2+bx+c≥-6,故B正确;∵抛物线的对称轴为直线x=-3,∴点(-2,m)离对称轴的距离比点(-5,n)离对称轴距离近,∴m<n,故C错误;根据抛物线的对称性可知:(-1,-4)关于对称轴对称的对称称点为(-5,-4),∴一元二次方程ax2+bx+c=-4的两根为-5和-1,故D正确.故选C.二、填空题(本题包括8小题)9. 0,横 分析:一元二次方程ax 2+bx +c =0的根就是抛物线y =ax 2+bx +c 与直线x =0的交点的横坐标.10. (2,0),(-5,0)分析:令y =0,则-3(x -2)(x +5)=0,解这个方程得:x 1=2,x 2=-5,∴此抛物线与x 的交点坐标为(2,0),(-5,0).11. m ≥-2 分析:∵a =1>0,∴抛物线开口向上,又∵当x >2时,y 的值随x 的增大而增大,∴-221m⨯≤2,解得m ≥-2. 12. k =0或k =-1 分析:①当k =0时,此函数为一次函数,则直线y =2x -1与x 轴只有一个公共点;②当k ≠0时,△=22-4k ×(-1)=0,解得k =-1,此时抛物线与x 轴只有一个公共点, 综合上述,实数k 的值为k =0或k =-1. 13. m ≤-59分析:当m +6=0,即m =-6时,此函数为一次函数,这时图象必与x 轴有交点; 当m +6≠0,即m ≠-6时,△=4(m -1)2-4(m +6)(m +1)=-20-36m ≥0, 解得m ≤-59.综合上述,m 的取值范围是m ≤-59. 14. x 1=-1,x 2=3 分析:抛物线y =ax 2-2ax +3的对称轴为直线x =-22aa-=1,∵抛物线与x 轴的一个交点坐标为(-1,0),∴抛物线与x 轴的另一个交点坐标为(3,0),∴一元二次方程ax 2-2ax +3=0的解为x 1=-1,x 2=3.15.4 分析:设抛物线与x 轴的交点分别为(x 1,0),(x 2,0),则x 1+x 2=2,x 1x 2=-3,∴12x x -=4,即此抛物线在x 轴上截得的线段长度为4.16. -94<a <-2 分析:∵关于x 的一元二次方程ax 2-3x -1=0的两个不相等的实数根,∴△=(-3)2-4a ×(-4)>0,解得:a >-94,设y =ax 2-3x -1,则可画出图象如图.∵实数根都在-1和0之间,∴-1<-32a -<0,解得a <-32.由图象可知:当x =-1时,y <0,当x =0时,y <0,即a ×(-1)2-3×(-1)-1<0,-1<0,解得a <-2.∴-94<a <-2, 三、解答题(本题包括6小题)17.(1)证明:y =(x -m )2﹣(x ﹣m )=x 2-(2m +1)x +m 2+m , ∵△=(2m +1)2﹣4(m 2+m )=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=-(21)2m-+=52,∴m=2,∴抛物线解析式为y=x2﹣5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52-4(6+k)=0,∴k=14,即把该抛物线沿y轴向上平移14个单位长度后,得到的抛物线与x轴只有一个公共点.18.解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1,即m的取值范围是m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴303k bb+=⎧⎨=⎩,解得:13kb=-⎧⎨=⎩,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).19.解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴10930b cb c-+=⎧⎨++=⎩,解得:23bc=-⎧⎨=-⎩,∴抛物线的解析式为:y=x2﹣2x﹣3;(2)∵点E(2,m)在抛物线上,∴m =4﹣4﹣3=﹣3,∴E(2,﹣3), ∴BE =22(32)(03)-++=10,∵点F 是AE 中点,抛物线的对称轴与x 轴交于点H ,即H 为AB 的中点, ∴FH 是三角形ABE 的中位线, ∴FH =12BE =12×10=102.20.解:(1)∵二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,-1)和C (4,5)三点,∴42011645a b c c a b c ++=⎧⎪=-⎨⎪++=⎩,解得12121a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,∴二次函数的表达式为y =12x 2-12x -1; (2)当y =0时,则12x 2-12x -1=0,解得:x 1=2,x 2=-1, ∴点D 的坐标为(-1,0);(3)图象如图所示,当-1<x <4时,一次函数的值大于二次函数的值.21.解:(1)令x =0,则y =1,故不论m 为何值,该函数的图象都经过y 轴上的定点(0,1); (2)①当m =0时,函数y =mx 2-6x +1为y =-6x +1, ∵函数y =-6x +1图象为一条直线, ∴此时函数图象与x 轴只有一个交点;②当m ≠0时,∵函数y =mx 2-6x +1与x 轴只有一个交点, ∴方程mx 2-6x +1=0有两个相等的实数根,∴△=(-6)2-4m=0,解得:m=9,综合上述,该函数的图象与x轴只有一个交点时,m的值为0或9.22.解:(1)设抛物线的解析式为y=a(x+12)2+k,把(2,0),(0,3)代入上式得:250 4134a ka k⎧+=⎪⎪⎨⎪+=⎪⎩,解得:a=-12,k=258,∴y=-12(x+12)2+258,即y=-12x2-12x+3,(2)令y=0,则-12x2-12x+3=0,解得:x1=2,x2=-3,∴B(-3,0),①当CM=BM时,∵BO=CO=3,即△BOC是等腰直角三角形,∴当M点在坐标原点O处时,△MBC是等腰三角形,∴M(0,0);②当BC=BM时,在Rt△BOC中, BO=CO=3,由勾股定理得:BC,∴BM=,∴M(-3,0),综合上述,点M的坐标为(0,0)或(-3,0).。

二次函数与一元二次方程练习题2

二次函数与一元二次方程练习题2

二次函数与一元二次方程练习题2【知识要点】二次函数与一元二次方程的关系,图象法求一元二次方程的近似根.【能力要求】明白得二次函数与x 轴交点的个数与一元二次方程根的个数之间的关系,明白得何时方程有两个不等的实根,两个相等的实根和没有实根;明白得一元二次方程的根确实是二次函数与y = h 〔h 是实数〕交点的横坐标,能够利用二次函数的图象求一元二次方程的近似根.练习一【基础练习】一、填空题:1. 假设抛物线y = ax 2 + x + c 与x 轴一个交点的横坐标是 -1,那么a + c = ;2. 二次函数y = ax 2 +bx + c 的图象与x 轴有两个交点,那么,一元二次方程ax 2 +bx + c = 0的根的情形是 ;3. 假如抛物线y = (m 2 -1)x 2 – (2m +1)x +1与x 轴有公共点,那么,m 的取值范畴是 .二、选择题:1. 二次函数y = x 2 + (3m -1)x + 2m 2 –m ,那么其图象与x 轴〔 〕;A. 一定有两个交点B. 只有一个交点C. 没有交点D. 有一个交点或两个交点2. 假设抛物线y = x 2 +2x – m +1与x 轴没有交点,那么方程x 2 + mx +12m –1= 0的根的情形是〔 〕.A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 不能确定三、解答题:1. 求以下二次函数的图象与x 轴的交点坐标,并画出图象进行验证.〔1〕y = 2x 2 – 4x – 6; 〔2〕y = 3121312++-x x .2. 二次函数y = ax 2 –2的图象通过点〔1,-1〕,试判定该函数图象与x 轴的交点个数.【综合练习】如图2-15,这是某防空部队进行射击训练时在平面直角坐标系中的示意图,固定目标B 的坐标是〔7,94〕,位于地面O 点正上方A 处的直升飞机向目标B 发射导弹,导弹的高度h 〔km 〕可用公式h = 35321212++-x x 〔x 是导弹离开O 点的水平距离〕表示.〔1〕导弹能否击中目标B ,什么缘故?〔2〕点A 离地面有多高?〔3〕讲明方程35321212++-x x = 0的根的实际意义.8. 二次函数与一元二次方程练习一【基础练习】一、1. 1; 2. 有两个不相等的实数根; 3. m ≥- 54且m ≠±1. 二、1. D ; 2. B. 三、1. 〔1〕〔3,0〕,〔-1,0〕;〔2〕〔2,0〕,〔21-,0〕. 2. 两个交点. 【综合练习】〔1〕能击中目标.〔提示:将x = 7,h = 94 代入h = 35321212++-x x ,左边=右边〕;〔2〕53 km ;〔3〕x = 10〔km 〕表示导弹的最远射程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程 练习题(家庭作业)
拟题:黄昌芹
1、抛物线2283y x x =--与x 轴有 个交点,因为其判别式24b ac -=
0,相应二次方程23280x x -+=的根的情况为 .
2、函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为(
) A、0个 B、1个
C、2个 D、1个或2个 3、关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,
且函数的图像开口向下时,方程2
0ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是2
44ac b a
-;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是( )
A、1个 B、2个 C、3个 D、4个 4、关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数2
5y mx mx m =++-与x 轴必然相交于 点,此时m = .
5、抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,
和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移
个单位. 6、关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是(
) A、116m <- B、116m -≥且0m ≠ C、116m =- D、116
m >-且0m ≠
7、 已知抛物线21
()3
y x h k =--+的顶点在抛物线2y x =上,且抛物线在x 轴上截得的线段长是求h 和k 的值.
8、已知函数22y x mx m =-+-.
(1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点;
(2)若函数y 有最小值54
-,求函数表达式. 9、已知二次函数2224y x mx m =-+.(1)求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;
(2)若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC 的面积为数表达式.
10
、如图所示,函数2(2)(5)y k x k =--+-的图像与x 轴只有一个交点,则交点的横坐标0x =

11、已知抛物线2y ax bx c =++与y 轴交于C 点,与x
)两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=(1)求A ,B 两点坐标;(2)求抛物线表达式及点C (3)在抛物线上是否存在着点P ,使△PAB P 点坐标;若不存在,请说明理由.
12、二次函数2
69y x x =-+-的图像与x 轴的交点坐标为 .
13、二次函数25106y x x =-+的图像与x 轴有 个交点.
14、若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )
A、a c + B、a c - C、c - D、c
15、下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( )
A、2y x = B、24y x =+ C、2325y x x =-+
D、2351y x x =+- 16、二次函数256y x x =-+与x 轴的交点坐标是( )
A、(2,0)(3,0) B、(2-,0)(3-,0) C、(0,2)(0,3) D、(0,2-)(0,3-)
17、函数2
y ax bx c =++的图象如图所示,那么关于x 2( )
A、有两个不相等的实数根 B、有两个异号的实数根
C、有两个相等的实数根
D、没有实数根 18、 已知二次函数212y x bx c =-++,关于x 的一元二次方程5-,则这个二次函数的解析式为。

相关文档
最新文档