一元二次方程一元二次不等式二次函数之间的关系

合集下载

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT课件

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT课件
栏目 导引
第二章 一元二次函数、方程和不等式
解含参数的一元二次不等式
解关于 x 的不等式 ax2-(a+1)x+1<0. 【解】 ①当 a=0 时,原不等式即为-x+1<0,解得 x>1.
②当 a<0 时,原不等式化为x-1a(x-1)>0,解得 x<1a或 x>1. ③当 a>0 时,原不等式化为x-1a(x-1)<0. 若 a=1,即1a=1 时,不等式无解;
三个“二次”之间的关系
若关于 x 的一元二次不等式 ax2+bx+c<0 的解集为
xx<13或x>12,求关于 x 的不等式 cx2-bx+a>0 的解集.
【解】
a<0, 由题意知13+12=-ba,
13×12=ac,
栏目 导引
第二章 一元二次函数、方程和不等式
a<0, 所以b=-56a>0,
c=16a<0, 代入不等式 cx2-bx+a>0 中得16ax2+56ax+a>0(a<0). 即16x2+56x+1<0,化简得 x2+5x+6<0, 解得-3<x<-2, 所以所求不等式的解集为{x|-3<x<-2}.
栏目 导引
第二章 一元二次函数、方程和不等式
当 a-1=-a,即 a=12时,x≠-12, 所以当 a<12时,原不等式的解集为{x|x<a-1 或 x>-a}, 当 a>12时,原不等式的解集为{x|x<-a 或 x>a-1}, 当 a=12时,原不等式的解集为xx≠-12,x∈R.
栏目 导引
第二章 一元二次函数、方程和不等式
栏目 导引

二次函数与一元二次方程、不等式(第一课时)-2024-2025学年高一数学教材课件

二次函数与一元二次方程、不等式(第一课时)-2024-2025学年高一数学教材课件
在初中,我们从一次函数的角度看一元一次方程,一元一次不等式,
发现了三者之间的内在联系,利用这种联系可以让我们更简便的解决问题:
方程 + 1 = 0的解为 = −1
=+



不等式 + 1 > 0的解为 > −1
不等式 + 1 > 1的解为 > 0
对于二次函数、一元二次方程和一元二次不等式,
人教A版2019必修第一册
第 2 章 一元二次函数、方程和不等式
2.3
二次函数与一元二次方程、不等式(第一课时)
教学目标
1.理解一元二次方程、一元二次不等式与二次函数之间的关系。
2.掌握一元二次不等式,含参数的一元二次不等式的解法。
3.能够运用二次函数及其图像、性质解决实际问题。
01
温故知新
情景导入
= + +
+ + =
他们的联系又是怎样的呢?
+ + >
02
一元二次不等式
概念讲解
问题:园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24
m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?
概念讲解
在上题中我们得到这样一个不等式:
时,对应的的取值范围的集合;
③ + + < 的解集⇔ = + + 的图像上的点 , 处于轴 下方
时,对应的的取值范围的集合;
概念讲解
例1.求不等式 − + > 的解集.
解:对于方程 − + = ,因为 > ,所以它有两个实数根.

关于一元二次函数,一元二次方程,一元二次不等式及其关系

关于一元二次函数,一元二次方程,一元二次不等式及其关系

1. 一元二次函数函数 2y ax bx c =++ (0)a ¹叫做一元二次函数,其中,,a b c 是常数 一般式2y ax bx c =++ ( 0a ¹)顶点式 ()2y a x h k =-+ (0a ¹),其中(),h k 为抛物线顶点坐标两点式()()12y a x x x x =-- ( 0a ¹), 其中12,x x 是抛物线与x 轴交点的横坐标。

1.1一元二次函数的基本性质1.1.1一元二次函数的定义域和值域 一元二次函数2y ax bx c =++ ,(0)a ¹的R一元二次函数2y ax bx c =++ ,(0)a ¹ 的值域是0a >时一元二次函数的值域是24,4ac ba 轹-÷ê÷+ ÷ê÷øë 0a <时一元二次函数的值域是24,4acb a 纟-çú- ççúèû1.1.2一元二次函数的单调性1. 2y ax bx c =++ , ()0a > 在区间,2ba 纟çú-?ççúèû上为单调减函数 ,在区间,2ba 轹÷ê-+ ÷÷êøë上为单调增函数 。

当2b x a=-时 2min 44ac b y a-=, m ax y =无2. 2y ax bx c =++ ()0a <在区间,2ba 纟çú-?ççúèû上为单调增加函数,在区间,2ba轹÷ê-+ ÷÷êøë上为单调减函数 。

26.3第3课时 二次函数与一元二次方程、一元二次不等式之间的联系

26.3第3课时 二次函数与一元二次方程、一元二次不等式之间的联系
2 2
2
2
第3课时 二次函数与一元二次方程、 一元二次不等式之间的联系
探究问题二
例2
用图象法求一元二次方程的解(或近似解)
用两种方法求方程 2x2-3x-2=0 的解.
2
解:(解法一 )画函数 y=2x - 3x- 2 的图象,如图 26- 3-32 所示. 由图象可知 2x -3x-2= 0 的解是 1 x1=- , x2=2. 2
第3课时 二次函数与一元二次方程、 一元二次不等式之间的联系
(2)一次函数 y=-x+ 2 的图象如图 26-3 -6 所示,则方
2 程-x +2=0 的解为 x=________ ,不等式-x+2<0 的解集为 x>2 . ________
图26-3-6
第3课时 二次函数与一元二次方程、 一元二次不等式之间的联系
2
x<1或x>2 x=1或x=2 1<x<2
0 (2)关于 x 的二次函数 y=ax2 +bx+c 中,当 y=________ 一元二次方 时,得到关于 x 的方程 ax +bx+ c=0,这是一个 ________
2
程.
第3课时 二次函数与一元二次方程、 一元二次不等式之间的联系
◆链接知识—— [新知梳理 ]知识点 2.利用图象求方程 (组)的解 (1)已知二次函数 y=x2-2x-3 的图象如图 26- 3- 8 所示,那
2 2
图26-3-4
第3课时 二次函数与一元二次方程、 一元二次不等式之间的联系
[归纳总结 ] 关于 x 的一元二次不等式 ax + bx+ c> 0 或 ax + bx+ c <0 与关于 x 的二次函数 y= ax +bx+c 存在内在联系,抛物线在 x 轴上 方的点的横坐标的集合即是不等式 ax2+bx+c> 0 的解集, 抛物线在 x 轴 下方的点的横坐标的集合即是不等式 ax + bx+ c<0 的解集.

二次函数,一元二次不等式,一元二次方程的联系和区别

二次函数,一元二次不等式,一元二次方程的联系和区别

二次函数,一元二次不等式,一元二次方程的联系和区别
二次函数、一元二次不等式和一元二次方程都是数学中与二次项相关的概念,它们之间存在联系和区别。

首先,二次函数是指形如y=ax+bx+c的函数,其中a≠0,是一个二次项的函数。

与一元二次方程类似,二次函数也有顶点、轴对称性、开口方向等性质。

但与一元二次方程不同的是,二次函数可以是图像连续的曲线,而一元二次方程则只有两个解或无解。

其次,一元二次不等式是指形如ax+bx+c>0或ax+bx+c<0的不等式,其中a≠0。

一元二次不等式的解集是实数集中满足不等式条件的部分。

与一元二次方程和二次函数不同的是,一元二次不等式的解集不一定是连续的,可能是一段区间或分离的几个点。

最后,一元二次方程是指形如ax+bx+c=0的方程,其中a≠0。

一元二次方程的解可以通过求根公式或配方法等方式求得。

与二次函数和一元二次不等式不同的是,一元二次方程的解只有两个,或者没有实数解。

综上所述,二次函数、一元二次不等式和一元二次方程虽然有一些共同点,但它们之间的区别也十分明显。

深入理解这些概念之间的联系和区别,有助于我们更好地掌握二次函数、一元二次不等式和一元二次方程的基本知识和应用。

- 1 -。

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。

一元二次不等式与二次函数

一元二次不等式与二次函数

一元二次不等式与二次函数、一元二次方程注意:(1)不等式解集规律:“>”取两边,”<”取中间,前提:0a >。

即c bx ax x f ++=2)(的图象与X 轴交于)0,(),0,(21x B x A 两点 ⇔02=++c bx ax 的二实根为21,x x⇔当0>a 时 02<++c bx ax 的解集为{}12x x x x <<02>++c bx ax 解集为{}12x x x x x <>或 (2)解一元二次不等式步骤:1、把二次项的系数变为正的。

(如果是负,那么在不等式两边都乘以-1,把系数变为正)2、解对应的一元二次方程。

(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式。

(根据一元二次方程的根及不等式的方向)练习:1、0652>++x x 2、0652≤--x x 3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x10、0121632>-+x x一.一元二次不等式解的端点值为对应一元二次方程的根Eg1.若不等式ax 2+5x+b >0的解集为{x |31<x <21}.则a, b 的值分别为(A )A.-6,-1B.1,6C.-1,-6D.-1,-1Eg .若不等式220ax bx ++>的解集为{x |12-<x <13}.则a= ,b = 。

二.恒成立问题1.一般地,()a f x >恒成立,()f x 的最大值为M ,则a M >;()a f x <恒成立,()f x 的最小值为m ,则a m <。

2.02>++c bx ax ()0≠a 恒成立 ⎩⎨⎧<∆>⇔00a)0(02≠<++a c bx ax 恒成立⎩⎨⎧<∆<⇔00a注意: 要单独考虑0a =时的情况。

二次函数与一元二次方程不等式关系

二次函数与一元二次方程不等式关系
• m取何值时,抛物线y=x2+(m+8)x+m+8与 x 轴的两个交点关于原点对称? • m取何值时,抛物线y=x2+(m+8)x+m+8与 x 轴的正半轴有两个交点? • m取何值时,抛物线y=x2+(m+8)x+m+8与 x 轴的负半轴有两个交点? • m取何值时,抛物线y=x2+(m+8)x+m+8与 x 轴的正负半轴都有交点? • m取何值时,抛物线y=x2+(m+8)x+m+8经 过原点?
• 如果方程ax2+bx+c=0 (a≠0)没有 实数根,那么 • 函数y=ax2+bx+c的图像与 x轴有 0 ______ 个交点; • 不等式ax2+bx+c<0的解集是______
(1)当a>0时, ax2+bx+c<0无解 (2)当a<0时, ax2+bx+c<0的解集是一切实数。
思考4:
x1 1, x2 3 x1 0, x2 2 x1 x2 1
x 1或x 3
1 x 3
1 x 3且x 1




=


x1 3, x2 1
3 x 1
x 3或x 1
x 0或x 4
x 0或x 4
0 x4
是一个 。
X1 =X2 =-b/2a
x ≠ x1的一切实 数
没有实数根
x<x1或x>x2 x1<x<x2
所有实数 无解

《二次函数与一元二次方程、不等式》知识点

《二次函数与一元二次方程、不等式》知识点

二次函数与一元二次方程、不等式
1.一元二次不等式的概念
一般地,我们把只含有一个末知数,并且末知数的最高次数是2的不等式,称为一元二次不等式,即形如20(0)ax bx c ++>≥或2
0(0)ax bx c ++<≤(其中a ,b ,c 均为常数,)0a ≠的不等式都是一元二次不等式.
2.二次函数与一元二次方程、不等式的解的对应关系
对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,
相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集. 24b ac ∆=-
0>∆ 0=∆ 0<∆
二次函数 c
bx ax y ++=2(0>a )的图象
20
(0)ax bx c a ++=>的根
有两相异实根
)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集
)0(0
2>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集
)0(0
2><++a c bx ax {}21x x x x << ∅ ∅。

一元二次不等式与二次函数、一元二次方程的关系

一元二次不等式与二次函数、一元二次方程的关系

返回
双基讲解
解一元二次不等式的关键是看不等式对应的二次函数图像
返回
双基讲解
方程ax bx c , (其中a )
0
有两不相等实根 .设为x、x,且x x
计算判 别式
求根
画图
写出不等 式解集
ax bx c 的解集 , x x , ax2 bx c 0的解集 x1 , x2
一元二次方程 二次函数 一元=0
的解 当Δ >0 时, 有两个不相等 的实数根
y =ax +bx+c
的图像
2
ax2+bx+c>0
ax2+bx+c<0
(x1,x2)
y x1 o y x2 x
x1, x2
当Δ =0 时, 有两个相等的 实数根 b
x1=x2=
o x1=x2
返回
示范例题
例4 解 (1) 图像如下图所示:
返回
示范例题
例5 对应的二次函数 y=8x²-2x-3 对应的一元二次方程 8x²-2x-3=0 y
x
返回
示范例题
例6
二次项系数为负
对应的二次函数 y=x²-2x+2
对应的一元二次方程 x²-2x+2=0
返回
示范例题
例7 对应的二次函数 y=x²-4x+4 对应的一元二次方程 x²-4x+4=0
返回
新课导入
一元二次不等式与二次函数、一元二次方程的关系
任意一个一元二次不等式,都可以找到 与它对应的二次函数和一元二次方程. 一般的,一元二次不等式ax²+bx+c>0 (或<0) 对应的二次函数为 y= ax²+bx+c; 对应的一元二次方程为 ax²+bx+c=0 例如:一元二次不等式 x²-2x-3>0 对应的二次函数 y=x²-2x-3 对应的一元二次方程 x²-2x-3=0

一元二次不等式、方程和函数的关系

一元二次不等式、方程和函数的关系

一元二次函数、方程和不等式一、定义1、等式的定义等式是数学中表示两个量或两个表达式之间相等关系的式子。

它由等号(=)连接,等号两边的数值或表达式在特定条件下是相等的。

换句话说,如果两个量或两个表达式用等号连接,那么这两个量或表达式就构成了等式。

2、不等式的定义不等式是数学中表示两个量或两个表达式之间大小关系的式子。

它不使用等号(=)连接,而是使用大于(>)、小于(<)、大于等于(≥)、小于等于(≤)或不等号(≠)这样的关系符号来连接两边的数值或表达式。

二、性质1、等式的性质:性质1:如果a=b ,那么b=a性质2:如果a=b ,b=c ,那么a=c性质3:如果a=b ,那么a±c=b±c性质4:如果a=b ,那么ac=bc 。

性质5:如果a=b ,c ≠0,那么c b c a =2、不等式的性质:性质1:如果a >b ,那么b <a;如果b <a ,那么a >b .即:a >b ⇔b <a 。

性质2:如果a >b ,b >c ,那么a >c 。

即:a >b ,b >c ⇒a >c .性质3:如果a >b ,那么cb c a ++>性质4:如果a >b ,c>0,那么ac >bc ;如果a>b ,c<0,那么ac<bc性质5:如果d c b a >,>,那么db c a ++>性质6:如果0d c 0b a >>,>>,那么bdac >性质7:如果a >b >0,那么),(>2n n b a nn ≥∈N三、基本不等式对于∀a >0,b >0,ab 2b a ≥+变形为2b a ab +≤①当且仅当a=b 时,等号成立.通常我们称不等式①为基本不等式。

其中2b a +叫做正数a ,b 的算术平方根,ab 叫做正数a ,b 的几何平均数基本不等式表明:两个正数的算术平均数不小于它们的几何平均数四、用分析法证明基本不等式分析法是一种“执果索因”的证明方法,即从要证明的结论出发,逐步寻求使他成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理)为止要证明2b a ab +≤,只要证明b a ab 2+≤,要证明b a ab 2+≤,只要证明0b a ab 2≤--,要证明0b a ab 2≤--,只要证明0b a 2≤--)(,要证明0b a 2≤--)(,只要证明0b a 2≥-)(,很显然,平方恒大于等于0,0b a 2≥-)(成立,当且仅当a=b 时,0b a 2≥-)(中的等号成立。

一元二次方程、二次不等式与二次函数的关系

一元二次方程、二次不等式与二次函数的关系

一元二次方程、二次不等式与二次函数的关系
其实,一元二次方程、二次不等式与二次函数是存在有着密切联系的。

他们之
间互相建立起一种相互联系的关系,联系紧密。

首先,要了解一元二次方程、二次不等式与二次函数的定义,才能更好地了解
它们之间的关系。

一元二次方程是指只有一个未知数的二次方程,一般表示为
ax²+bx+c=0 (a≠0)。

二次不等式是指一个不等于0的二次方程和一个零点的方程
组合出的不等式表达式。

而二次函数是指常数项的系数均为0的二次多项式,表示一般形式为y=ax²+bx+c (a≠0),可以以y为自变量、x为因变量,在平面直角坐
标系上表示成曲线。

接下来,从数学的角度来考虑一元二次方程、二次不等式与二次函数三者之间
的联系。

一元二次方程可以构成一个二次不等式系统,而二次不等式反过来也可以构成一个一元二次方程系统,由此可见,它们之间是相互转化关系。

二次函数则可以用来描述一元二次方程与二次不等式,得出它们之间是图形联系的。

就如,
y=ax²+bx+c这样的一次函数,可以用来描绘ax²+bx+c=0这一个元二次方程的解,
前者生成的关系图像就是后者的解的图象。

综上所述,一元二次方程、二次不等式与二次函数之间存在着相互联系的关系。

它们彼此可以相互转化,可以印证彼此,也可以从图形上看出关系并求出结果。

只有了解并运用好这些数学概念,我们才能学好数学,更好地把握思维去解决现实生活中的问题。

二次函数,一元二次不等式,一元二次方程的联系和区别

二次函数,一元二次不等式,一元二次方程的联系和区别

二次函数,一元二次不等式,一元二次方程的
联系和区别
二次函数、一元二次不等式、一元二次方程都是关于二次方的数
学概念。

它们在形式和性质上各有不同,但都具有密切联系。

二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数。

其图像为一个开口向上或向下的抛物线,与x轴交点为其根。

一元二次方程是指形如ax^2+bx+c=0的方程,其中a、b、c为常数,x为未知数。

其解为x=(-b±√(b^2-4ac))/(2a)。

这个方程的解
决了抛物线与x轴交点的问题。

一元二次不等式是指形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b、c为常数,x为未知数。

这个式子就是要解出抛物线的正负。

因此,从几何角度来看,二次函数和一元二次不等式都与抛物线
的开口方向和根相关。

一元二次方程和二次函数的解方程式中的x为
根有关。

而一元二次不等式则是解出某个范围内x的取值。

同时,这些概念还有着实际意义。

二次函数的图像在物理学中很
常见,比如抛物线运动。

而一元二次方程在物理学和工程学中也有广
泛的应用。

在学习过程中需要注意,这些概念虽然看似相似,但细节处的不同很重要。

需要分类讨论、注意符号、掌握解法等,才能真正理解这些概念并活用于实际问题中。

从函数的观点看一元二次方程与一元二次不等式

从函数的观点看一元二次方程与一元二次不等式

从函数的观点看一元二次方程与一元二次不等式从函数的角度来看,一元二次方程和一元二次不等式都是关于一个未知数的二次函数。

一元二次不等式是只含有一个未知数,且未知数的最高次数为2的整式不等式。

而一元二次方程则是有两相异实根或有两相等实根的二次函数。

对于一元二次方程,判别式Δ=b²-4ac可以判断其有无实根以及实根的情况。

当Δ>0时,方程有两相异实根x1和x2;当Δ=0时,方程有两相等实根x1=x2;当Δ<0时,方程没有实数根。

而对于一元二次不等式,其解集可以通过判别式2Δ的符号来确定。

当2Δ>0时,解集为{x|x>x2或x<x1};当2Δ=0时,解集为{x|x=x1或x=x2};当2Δ<0时,解集为{x|x1<x<x2}。

此外,对于分式不等式和整式不等式,我们可以通过乘上一个不等式来确定其符号。

具体而言,对于f(x)/g(x)>0(0(<0);对于f(x)/g(x)≥0(≤0),我们则需要同时满足f(x)·g(x)≥0(≤0)且g(x)≠0.在解不等式时,我们需要注意绝对值不等式的解集,以及当a=0时的特殊情况。

同时,要结合函数图象来确定___成立的条件。

针对一些疑误辨析,我们可以判断:(1)错误,解集为(-∞,x1)∪(x2,+∞)时,并不能确定方程的两个根;(2)正确,解集为(x1,x2)时,a必须大于0;(3)错误,解集为x≤a时,其实为(-∞,a]。

4.已知函数$f(x)=-x+ax+b-b+1(a\in R,b\in R)$,对任意实数$x$都有$f(1-x)=f(1+x)$成立,当$x\in[-1,1]$时,$f(x)>0$恒成立,则$b$的取值范围是()解析:由$f(1-x)=f(1+x)$可得$-1+a+b-b+1=1+a-b-b+1$,即$a=0$,代入$f(x)>0$恒成立的条件,可得$b\in(-1,0)\cup(2,+\infty)$,故选项为$\textbf{(C)}$。

三个二次之间的关系

三个二次之间的关系

三个二次之间的关系作者:董中枝来源:《新课程学习·下》2015年第01期三个二次是指一元二次方程、一元二次不等式和二次函数。

这三个二次都是中学数学的重要内容,它们之间相互联系,相互渗透,其中二次函数最重要,其图象是纽带。

它将等与不等,数与形紧密结合在一起。

它既包含了方程的根,又包括了不等式的解集。

利用数形结合使一些数学问题得到很好的解决。

三个二次之间的关系表:上表告诉我们:利用函数观点认识方程和不等式。

一元二次方程的根分别对应着二次函数与x轴交点的横坐标,同时对应着一元二次不等式解集的端点。

函数的正值区间就是不等式大于0的解集对应着函数图象在x轴上方各点横坐标的集合。

函数的负值区间就是不等式小于0的解集对应着的函数图象在x轴下方各点的横坐标的集合。

下面通过例子来看这几种关系。

一、利用方程有无根与?驻之间的关系求解例1.当m为何值时,函数y=x2+2(m-1)x+3m2-11=0的图象与x轴有一个交点、两个交点、无交点?分析:函数图象与x轴有无交点,就是对应方程有无实数根。

一个交点?葑一个实根?葑?驻=0两个交点?葑两个实根?葑?驻>0无交点?葑无实数根?葑?驻<0而?驻=[2(m-1)]2-4×1×(3m2-11)我们来解关于m的方程或不等式可以使问题得以求解解:?驻=[2(m-1)]2-4×1(3m2-11)=-8(m2+m-6)当?驻>0时:m2+m-6<0 解得-3<m<2即:当-3<m<2时图象与x轴两个交点。

当?驻=0时:m2+m-6=0 解得m=-3或m=2即:当m=-3或m=2时图象与x轴一个交点。

当?驻<0时:m2+m-6>0 解得m<-3或m>2即:当m<-3或m>2时图象与x轴没有交点。

二、利用方程的根和不等式解集之间的关系求解例2.已知ax2-bx-1>0的解集为(-■,-■)求x2-bx-a<0的解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程
(1)一般形式:;(2)配方式:;(3)两根式:
求解过程(即证明过程,采用配方法):→→
判别式Δ(希腊字母,音译为戴尔塔)
若Δ>0,该方程在实数域内有两个不相等的实数根:
若Δ=0,该方程在实数域内有两个相等的实数根:
若Δ<0,该方程在实数域内无解,但在虚数域内有两个共轭复根,为(不需要记住,这是在大学里需要学的)
一元二次方程的根与系数的关系:(也称为韦达定理,其逆定理也成立)
【知识要点】
1.如果方程(a≠O)的两根为,,那么,
2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为
3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根
4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式
5.当一元二次方程(a≠O)有两根,时:(1)若,则方程有一正一负根;(2)若,,则方程有两个正根;(3)若,,则方程有两个负根
一元二次方程式、二次函数之间的关系(高中部分):。

相关文档
最新文档