武汉 中考数学(反比例函数提高练习题)压轴题训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、反比例函数真题与模拟题分类汇编(难题易错题)
1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.
(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;
(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;
(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.
【答案】(1)解:k=4,S△PAB=15.
提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图1,
把x=4代入y= x,得到点B的坐标为(4,1),
把点B(4,1)代入y= ,得k=4.
解方程组,得到点A的坐标为(﹣4,﹣1),
则点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP.
设直线AP的解析式为y=mx+n,
把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,
求得直线AP的解析式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
= OC•AR+ OC•PS
= ×3×4+ ×3×1= ,
∴S△PAB=2S△AOP=15;
(2)解:过点P作PH⊥x轴于H,如图2.
B(4,1),则反比例函数解析式为y= ,
设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,
联立,解得直线PB的方程为y=﹣ x+ +1,
∴M(m﹣4,0),N(m+4,0),
∴H(m,0),
∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,
∴MH=NH,
∴PH垂直平分MN,
∴PM=PN,
∴△PMN是等腰三角形;
(3)解:∠PAQ=∠PBQ.
理由如下:
过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有
,
解得:,
∴直线AQ的解析式为y= x+ ﹣1.
当y=0时, x+ ﹣1=0,
解得:x=c﹣4,
∴D(c﹣4,0).
同理可得E(c+4,0),
∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,
∴DT=ET,
∴QT垂直平分DE,
∴QD=QE,
∴∠QDE=∠QED.
∵∠MDA=∠QDE,
∴∠MDA=∠QED.
∵PM=PN,∴∠PMN=∠PNM.
∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,
∴∠PAQ=∠PBQ.
【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ
交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.
2.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点
C.
(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).
【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3,
∴y= ,
∵B(3,y2)在反比例函数的图象上,
∴y2= =1,
∴B(3,1),
∵直线y=ax+b经过A、B两点,
∴解得,
∴直线为y=﹣x+4,
令y=0,则x=4,
∴P(4,O)
(2)解:如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG 交于H,则AD∥BG∥x轴,AE∥BF∥y轴,
∴= ,= = ,
∵b=y1+1,AB=BP,
∴= ,
= = ,
∴B(,y1)
∵A,B两点都是反比例函数图象上的点,
∴x1•y1= • y1,
解得x1=2,
代入= ,解得y1=2,
∴A(2,2),B(4,1)