高中数学万能解题模板汇总
【高考宝典】高考数学解答题常考公式及答题模板
高考数学解答题常考公式及答题模板题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan = 奇:2π的奇数倍 偶:2π的偶数倍8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。
高中数学解题技巧方法总结(必备19篇)
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高考数学答题模板
高考数学答题模板
一、选择题
1. 易错点归纳:对于选择题,首先要避开常见的易错点和混淆点。
这些易错点可能包括概率与频率概念的混淆、数列求和公式的记忆错误等。
解决这些问题需要强化基础知识点记忆,理解每个概念和公式的具体含义和应用条件。
2. 答题方法:选择题有一些常用的速解方法,如排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法和分析选项法。
掌握这些方法可以大大提高解题速度和准确性。
二、填空题
1. 易错点归纳:填空题主要考察学生对基础知识的理解和应用能力,常见的失误可能包括审题不仔细、解题思路不严谨等。
例如,在集合题型中未考虑空集情况,在函数问题中未考虑定义域等。
2. 答题方法:对于填空题,有直接法、特殊化法、数形结合法和等价转化法等速解方法。
这些方法可以帮助学生在短时间内找到问题的突破口,提高解题效率。
三、解答题
1. 解题路线图:对于解答题,首先要明确解题的步骤和思路。
例如,三角变换与三角函数的性质问题,解题步骤可以归纳为:不同角化同角、降幂扩角、化f(x)=Asin(ωx+φ)+h形式,然后结合性质求解。
2. 构建答题模板:针对不同类型的题目,需要构建不同的答题模板。
例如,对于三角函数式,一般需要化简为y=Asin(ωx+φ)+h 的形式,即化为“一角、一次、一函数”的形式。
这样可以方便后续的计算和理解。
(完整word版)高中数学12个答题模板
答题方法和考试技巧选择填空题易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
答题方法选择题十大速解方法排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法直接法、特殊化法、数形结合法、等价转化法。
解答题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
高考数学万能答题模板
第5页共7页
本文格式为 Word 版,下载可任意编辑
得出结果的方法。 逆推验证法(代答案入题干验证法): 将选择支代入题干进行验证,从而否定错误选择支而得出正确选
择支的方法。 正难则反法: 正从题的正面解决比较难时,可从选择支出发逐步逆推找出符合
条件的结论,或从反面出发得出结论。 特征分析法: 特对题设和选择支的特点进行分析,发现规律,归纳得出正确判
第3页共7页
本文格式为 Word 版,下载可任意编辑
等) ②将上面的假设代入已知条件求解。 ③得出结论。 2、构建答题模板 ①先假定:假设结论成立。 ②再推理:以假设结论成立为条件,进行推理求解。 ③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出
矛盾则否定假设。 ④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视
③求结果。 ④再反思:在实施边角互化的时候应注意转化的方向,一般有两 种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关 系,然后进行恒等变形。 专题三、数列的通项、求和问题 1、解题路线图 ①先求某一项,或者找到数列的关系式。 ②求通项公式。 ③求数列和通式。 2、构建答题模板 ①找递推:根据已知条件确定数列相邻两项之间的关系,即找数 列的递推公式。 ②求通项:根据数列递推公式转化为等差或等比数列求通项公式, 或利用累加法或累乘法求通项公式。
解题规范性。 专题七、离散型随机变量的均值与方差 1、解题路线图 (1)①标记事件;②对事件分解;③计算概率。 (2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
2、构建答题模板 ①定元:根据已知条件确定离散型随机变量的取值。 ②定性:明确每个随机变量取值所对应的事件。 ③定型:确定事件的概率模型和计算公式。 ④计算:计算随机变量取每一个值的概率。 ⑤列表:列出分布列。 ⑥求解:根据均值、方差公式求解其值。 专题八、函数的单调性、极值、最值问题 1、解题路线图 (1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。 (2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值; ④得到原函数的单调区间和极值。 2、构建答题模板 ①求导数:求 f(x)的导数 f′(x)。(注意 f(x)的定义域)
高考数学万能解题模板总结(高考必备)
高考数学万能解题模板总结(高考必备)1、选择填空题1)易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2)答题方法选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
2、解答题答题技巧与模板1)三角变换与三角函数的性质问题一、解题路线图①不同角化同角①降幂扩角①化f(x)=Asin(ωx+φ)+h①结合性质求解。
二、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
①整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
①求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
①反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
2)解三角形问题一、解题路线图①化简变形;①用余弦定理转化为边的关系;①变形证明。
①用余弦定理表示角;①用基本不等式求范围;①确定角的取值范围。
二、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
①定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
①求结果。
①再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
3)数列的通项、求和问题一、解题路线图①先求某一项,或者找到数列的关系式。
①求通项公式。
①求数列和通式。
二、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
高中数学解答题答题模板(11个)
Asin(ωx+φ)+h 的形式或 y=Acos(ωx+φ)+h 的形式. π 如:f(x)=2sin2x+3 +1.
第二步:根据 f(x)的表达式求其周期、最值.
第三步:由 sin x、cos x 的单调性,将“ωx+φ”看作一个整体,转 化为解不等式问题.
第四步:明确规范表述结论.
π (2)∵-1≤sin2x+3≤1, π ∴-1≤2sin2x+3+1≤3.
π π π ∴当 2x+3=2+2kπ,k↔Z,即 x=12+kπ,k↔Z 时,f(x)取得最大值 3; π π 5π 当 2x+ =- +2kπ,k↔Z,即 x=- +kπ,k↔Z 时,f(x)取得最小值-1. 3 2 12
高中数学解答题答题模板 (11个)
【模板特征概述】 数学解答题是高考数学试卷中的一类重要题型, 通常是高考的把关题 和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单 纯的知识综合型转化为知识、 方法和能力的综合型解答题. 在高考考场上, 能否做好解答题, 是高考成败的关键, 因此, 在高考备考中学会怎样解题, 是一项重要的内容. 本节以著名数学家波利亚的 《怎样解题》 为理论依据, 结合具体的题目类型,来谈一谈解答数学解答题的一般思维过程、解题程 序和答题格式,即所谓的“答题模板”. “答题模板”就是首先把高考试题纳入某一类型, 把数学解题的思维过 程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整 为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最 佳方案,实现答题效率的最优化.
模板 1 【例 1】
三角函数的周期性、单调性及最值问题
已知函数 f(x)=2cos x· π sinx+3 - 3sin2x+sin xcos x+1. (1)求函数 f(x)的最小正周期; (2)求函数 f(x)的最大值及最小值; (3)写出函数 f(x)的单调递增区间. 审题路线图 规范解答 不同角化同角→降幂扩角→化 f(x)=Asin(ωx+φ) +h→结合性质求解.
高考数学答题模板12个(最新)
高考数学答题模板12个选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题方法:选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=A sin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
高中数学提分技巧:18个经典解题模板
第 6 页 共 30 页
A. 15
8
B. 15
4
C. 1
8
D. 1
4
▲模板构建 利用正弦定理、余弦定理都可以进行三角形的边、角之间的互化,当已知三角形的 两边及一边的对角,或已知两角及一角的对边时,可以利用正弦定理求解三角形中的有关量;如果 已知三边或两边及其夹角,则可利用余弦定理进行求解.其基本思路如下:
第 8 页 共 30 页
【变式
4】【2018
吉林省实验中模拟】设函数
f
x
ex
1 x2
2
,则使得
f
x
f
2x 1
成立的 x 的
取值范围是
A.
1 3
,1
B.
,
1 3
1,
C.
1 3
,
1 3
D.
,
1 3
1 3
,
【解析】 f
x
ex
1 x2
2
为偶函数,且在0,
单调递增,因为 f x f 2x 1 ,
【 变 式 6 】【 2018 河 南 省 南 阳 市 第 一 中 学 模 拟 】 在 ABC 中 , 内 角 A, B,C 所 对 的 边 分 别 为
a,b, c,sinB acosB bcosA 3ccosB .
(1) 求 B ; (2) 若 b 2 3, ABC 的面积为 2 3 ,求 ABC 的周长 【解析】(1)由题意及正弦定理得
围;
(Ⅱ)是否存在实数 m ,使得不等式 2x 1 m x2 1 对满足 x 2 的一切实数 x 的取值都成立. 【解析】(Ⅰ)不等式 2x 1 m x2 1 可化为 2x 1 m x2 1 0 ,
高中数学万能解题模板
高中数学万能解题模板高中数学万能解题模板 1①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
⑩⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高中数学万能解题模板 2模板1 三角函数计算问题第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板2 对称轴、距离第一步找到周期和对称轴第二步确定对称轴距离第三步写出关系式模板3 拼凑计算问题第一步化简第二步通过拼凑,写出我们想要的诱导公式第三步求出结果模板4 三角等式的证明第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板5 求三角函数的定义域第三步结合定义域求出最值模板7 二次函数求最值第一步化简成二次函数的形式第二步配方第三步考虑定义域求出最值模板8 均值求最值第一步化简第二步转化为均值不等式的形式第三步当且仅当求出最值模板9 构造函数求最值第一步化简第二步构造函数第三步转化成见过的形式模板10 放缩求最值第一步找到或者创造放缩点第二步转化为我们见过的形式第三步搞定模板11 解三角形求最值第一步利用解三角形,一般是余弦定理第二步均值不等式第三步搞定模板12 向量问题第一步把向量问题转化为三角函数问题第二步利用三角函数解决模板13 判断形状第一步正弦或余弦定理第二步角化边或边化角第三步判断形状模板14 求面积第一步化简第二步求出夹角和临边第三步利用公式计算面积模板15 找规律第一步观察,找到见过的或会做的形式第二步利用见过的东西写出规律第三步生疏不可怕,只要计算对,肯定没问题模板16 实际问题第一步将实际问题转化为数学问题第二步利用三角函数,求出结果第三步将数学问题转化为实际问题。
2022年高考数学万能答题模板(含数学公式大全)
2022年高考数学万能答题模板(含数学公式大全)话说学得好不如考的好,每年都有不少考生,平时学习很刻苦,可偏偏就是考不好,不知道如何安排考试时间和掌握答题技巧,下面是小编给大家带来的2022年高考数学万能答题模板(含数学公式大全),以供大家参考!2022年高考数学万能答题模板选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题方法选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题专题一、三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1.解题路线图①化简变形;②用余弦定理转化为边的关系;③变形证明。
①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
高中数学大题答题模板及技巧总结
高中数学大题答题模板及技巧总结一、模板总结在高中数学大题的答题过程中,采用一定的模板可以帮助更好地组织答题结构,提高答题效率。
以下是一份常用的答题模板总结:1. 题目分析:仔细阅读题目,理解所给条件和要求。
分析题目要求,明确解题思路。
题目分析:仔细阅读题目,理解所给条件和要求。
分析题目要求,明确解题思路。
2. 设定变量:根据题目中的信息设定变量,可以是一些简单的字母或数字,有助于理清问题思路。
设定变量:根据题目中的信息设定变量,可以是一些简单的字母或数字,有助于理清问题思路。
3. 列方程:根据变量的设定以及问题所需,列出相应的方程或者不等式。
列方程:根据变量的设定以及问题所需,列出相应的方程或者不等式。
4. 解方程:针对所列出的方程或者不等式进行求解,根据题目要求得出结果。
解方程:针对所列出的方程或者不等式进行求解,根据题目要求得出结果。
5. 回答问题:将解出的结果以清晰简洁的方式回答问题,可以给出具体数值或者符号表示。
回答问题:将解出的结果以清晰简洁的方式回答问题,可以给出具体数值或者符号表示。
二、技巧总结除了模板的应用,一些解题技巧也是高中数学大题答题中的关键。
以下是一些常用的技巧总结:1. 画图法:对于几何问题,可以用画图的方式帮助理解题目,抓住关键信息。
画图法:对于几何问题,可以用画图的方式帮助理解题目,抓住关键信息。
2. 分步递进法:将问题分解成多个步骤,逐步推进,避免思路混乱。
分步递进法:将问题分解成多个步骤,逐步推进,避免思路混乱。
3. 巧用性质和定理:运用已学过的数学性质和定理,加快解题速度。
巧用性质和定理:运用已学过的数学性质和定理,加快解题速度。
4. 注意单位和量纲:特别对于物理题,要注意单位和量纲的转换,避免计算错误。
注意单位和量纲:特别对于物理题,要注意单位和量纲的转换,避免计算错误。
5. 反复检查:在解题过程中,要反复检查计算过程和结果是否符合题目要求。
反复检查:在解题过程中,要反复检查计算过程和结果是否符合题目要求。
高考答题模板:数学答题模板
选择填空题1、易错点归纳:九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2、答题方法:选择题十大速解方法:(十大解题技巧你会了没)排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
高考数学答题模板12个
高考数学答题模板12个1500字高考数学答题模板12个1. 解方程模板:首先列出方程:a(x - m)^2 + n = b然后展开方程:ax^2 - 2amx + am^2 + n = b移项并化简:ax^2 - 2amx + am^2 + n - b = 0将方程视为一元二次方程,使用求根公式:x = (2am ±√(4a(b-n) + 4a^2m^2))/ (2a)化简并整理得最终答案。
2. 圆的相关模板:圆的标准方程:(x - a)^2 + (y - b)^2 = r^2其中,圆心为 (a, b),半径为 r。
根据题目给出的条件,代入方程中求解。
3. 三角形的模板:勾股定理:a^2 + b^2 = c^2 (三角形中,a、b 为直角边,c 为斜边)根据给出的条件,利用勾股定理求解。
4. 几何图形的模板:首先画出几何图形,标出已知的条件和需要求解的量。
根据已知条件,利用几何定理、相似性原理等,搭建等式或者比例关系,并解方程求解。
5. 求导模板:根据给出的函数关系,利用求导公式对函数进行求导。
注意计算过程的细节,利用链式法则、乘积法则等进行计算。
最后化简求解得结果。
6. 极限求解模板:对于一般的函数极限求解,可以利用函数极限的性质进行求解。
根据题目的要求,利用夹逼准则、洛必达法则等方法求解极限。
7. 统计问题模板:根据题目的要求计算平均数、方差、标准差等统计量。
注意计算过程的细节,并进行适当的整理和化简。
8. 概率问题模板:根据已知的概率模型和条件,利用概率公式计算概率。
注意计算过程的细节,并进行适当的整理和化简。
9. 计算题模板:根据题目给出的计算式和条件,一步一步进行计算。
注意计算的细节,进行适当的化简和整理。
10. 综合题模板:综合题一般包含多个题目要求,根据每个小题的要求进行分析和求解。
先分析每个小题的要求,并给出解题思路。
然后分别解答每个小题,并按照题目要求进行整理和化简。
高中数学12个答题模板!掌握了,数学140分没问题!
高中数学12个答题模板!掌握了,数学140分没问题!高中数学12个答题模板!掌握了,数学140分没问题!选择填空题?易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
?答题方法选择题十大速解方法排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法直接法、特殊化法、数形结合法、等价转化法。
解答题?一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
?二、解三角形问题1、解题路线图(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
?三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
高考数学28个答题模板及答题技巧汇总(真的超精细哦)
高考数学28个答题模板及答题技巧汇总(真的超精细哦)本文总结了高考数学中常见的28个题型、解题模板和解题技巧,希望能够对考生提供参考和帮助。
单选题1. 未知数的代值:将题目中给定的条件代入方程中,解方程即可;未知数的代值:将题目中给定的条件代入方程中,解方程即可;2. 因式分解求值:将式子进行因式分解,再将已知的值代入求得答案;因式分解求值:将式子进行因式分解,再将已知的值代入求得答案;3. 图像与解析式配对:通过画图或分析图像,找到图像对应的解析式,再求得答案;图像与解析式配对:通过画图或分析图像,找到图像对应的解析式,再求得答案;4. 二次函数:将二次函数用顶点式表示或通过配方法将二次函数转化为标准式,再根据已知条件求解;二次函数:将二次函数用顶点式表示或通过配方法将二次函数转化为标准式,再根据已知条件求解;5. 三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;6. 数列求和:根据数列的首项、公比、项数等已知条件,利用数列求和公式求解;数列求和:根据数列的首项、公比、项数等已知条件,利用数列求和公式求解;7. 圆的性质:根据圆的定义、性质,以及圆内接、外接三角形性质进行判断和计算;圆的性质:根据圆的定义、性质,以及圆内接、外接三角形性质进行判断和计算;8. 统计与概率:根据统计数据和概率公式进行计算。
统计与概率:根据统计数据和概率公式进行计算。
填空题9. 比例求值:根据已知值和比例关系,通过求解等式来求得答案;比例求值:根据已知值和比例关系,通过求解等式来求得答案;10. 三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;11. 函数求值:根据函数的定义和已知条件,将函数进行变形,得出结果;函数求值:根据函数的定义和已知条件,将函数进行变形,得出结果;12. 平面几何:根据平面几何的定义、定理和公式,进行计算;平面几何:根据平面几何的定义、定理和公式,进行计算;13. 空间几何:根据空间几何的定义、定理和公式,进行计算。
高中数学解答题常考公式及答题模版_2
an
Sn
a13a2
32 a3
3n1 an
n 2
n 1
a1
S1
1 2
n2
Sn
a13a2
32 a3
3n2 an1
3n1 an
n 2
S n 1
a13a2
32 a3
3n2
an1
n 1 2
3n1 an
1 2
an
1 2
1 3n1
n 1
a1
1 2
an
1 2
1 3n1
(n 2)
an Sn
第 2 页 共 17 页
2
1 tan 2
②
cos
1
tan 2
2
2
2 tan
③
tan
1
2 tan 2
2
(2)三倍角公式: ① sin 3 3sin 4sin3
② cos 3 4 cos3 3cos
③
tan 3
tan3 3 tan 3 tan 2 1
{an }
a13a2
32 a3
3n1 an
n 2
②通项公式: an
a1
(n 1)d
an
am
(n m)d
d
an am nm
②通项公式: an a1q n1 an amq nm
③前
n
项和:
Sn
na1
n(n 1) 2
d
(大题小题都常考)
③前
n
项和:
Snቤተ መጻሕፍቲ ባይዱ
a1(1 q n ) 1 q
(常考)
Sn
n(a1 an ) 2
(小题常考)
高中数学12个答题模板
高中数学12个答题模板!掌握了,数学140分没问题!高中数学是很多同学高考道路上的拦路虎,很多同学一致回答:大题没思路。
高考数学6道大题,每题12分,一分都不能丢啊!所以,小编整理了高中数学的答题模板,大家要好好利用哈~选择填空题易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
答题方法选择题十大速解方法排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法直接法、特殊化法、数形结合法、等价转化法。
解答题一、三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
二、解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学万能解题模板汇总
高中数学万能解题模板有哪些?数学怎幺解题能速度最快,准确率最高?其实高中数学各类题型都是有一定解题模板和解题技巧的,把这些规律找准了,做起题来就方便多了。
1高中数学十大万能解题法①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那幺就能瞬间解决问题。
③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否
定错误选择支而得出正确选择支的方法。
⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得。