高一数学下学期期末试题(共4套,含答案)

合集下载

2021-2022学年吉林省长春市第五中学高一下学期期末数学试题(解析版)

2021-2022学年吉林省长春市第五中学高一下学期期末数学试题(解析版)

2021-2022学年吉林省长春市第五中学高一下学期期末数学试题一、单选题1.复数5i2-的共轭复数是()A.2i+B.2i-+C.2i--D.2i-【答案】B【分析】根据复数的除法运算化简5i2-,根据共轭复数的概念可得答案.【详解】55(i2)2i i25--==---,故5i2-的共轭复数为2i-+,故选:B2)A.3 B.C.6 D.【答案】B【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得l的值,即为所求.【详解】设圆锥的母线长为l,由底面半径为r所以2πr=πl,所以该圆锥的母线长为l=2r=故选:B.3.已知向量(1,2),(2,3)a b=-=,若()a ma b⊥-,则m=()A.54B.54-C.45D.45-【答案】C【分析】根据向量垂直的坐标表示,列出方程,即可求解. 【详解】由题意,向量(1,2),(2,3)a b=-=,可得25,4a a b=⋅=-因为()a ma b⊥-,可得2()540ma ab bma ma=+-⋅-=⋅=,解得45 m=.故选:C.4.某棋牌室有20名爱好棋牌的棋友,技能分为高级、中级和初级三个等级,中级11人,从棋牌室中抽取一名棋友,若抽取高级棋友的概率是0.2,则抽到初级的概率是()A.0.20B.0.22C.0.25D.0.42【答案】C【分析】首先求得初级棋友的人数,由古典概型概率公式计算可得结果. 【详解】由题意知:高级棋友有200.24⨯=人,∴初级棋友有201145--=人, ∴从棋牌室中抽取一名棋友,抽到初级的概率是50.2520=. 故选:C.5.设ABC 的内角A 、B 、C 所对边分别为a 、b 、c ,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形 D .钝角三角形【答案】B【分析】根据余弦定理表示出cos C ,与已知等式联立,化简求解. 【详解】由余弦定理得222cos 2a b c C ab+-=,又2cos a b C =,所以得:22222222a b c a b c a b ab a+-+-=⋅=, ∴2222a a b c =+-, ∴22c b =.又b 和c 都大于0, 则b c =,即三角形为等腰三角形. 故选:B .【点睛】本题主要考查余弦定理的应用,属于基础题.6.北京冬奥会已在北京和张家口市如火如荼的进行,为了纪念申奥成功,中国邮政发行《北京申办2022年冬奥会成功纪念》邮票,图案分别为冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”及“志愿者标志”.若从一套5枚邮票中任取2枚,则恰有2枚会徽邮票的概率为( ) A .110 B .15C .310 D .25【答案】A【分析】将冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”分别记为a 、b ,将冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”及“志愿者标志”分别记为A 、B 、C ,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】将冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”分别记为a 、b ,将冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”及“志愿者标志”分别记为A 、B 、C ,从一套5枚邮票中任取2枚,则所有的基本事件有:ab 、aA 、aB 、aC 、bA 、bB 、bC 、AB 、AC 、BC ,共10种,其中,事件“恰有2枚会徽邮票”包含的基本事件为:ab ,共1种, 故所求概率为110P =. 故选:A.7.已知正三棱锥S ABC -的四个顶点都在球O 的球面上,且球心O 在三棱锥的内部.若该三棱锥的侧面积为73,2BC =,则球O 的表面积为( ) A .25π B .16π C .1219πD .1699π【答案】D【分析】由条件作出如图辅助线,并根据正三棱锥的性质确定球心的位置,OAM △中,利用勾股定理求半径R ,最后求球的表面积.【详解】作SM ⊥平面ABC ,连结AM 并延长交BC 于点D ,连结SD , 正三棱锥外接球的球心O 在高SM 上,连结OA , 123732S SD =⨯⨯⨯=,解得:733SD =,正三角形ABC 中,3363DM BC ==,233AM = 224SM SD DM ∴=-=,设SO AO R ==,OAM △中,()2222343R R ⎛⎫=-+ ⎪ ⎪⎝⎭,解得:136R =, 则球O 的表面积216949S R ππ==.故选:D【点睛】本题考查几何体与球的综合问题,意在考查空间想象能力,和推理计算,属于基础题型.8.在ABC 中,角A B C ,,的对边分别为a b c ,,,已知c =,且2sin cos sin sin a C B a A b B =-+sin C ,点O 满足0OA OB OC ++=,3cos 8CAO ∠=,则ABC 的面积为A B .C .D 【答案】D【分析】运用正弦定理和余弦定理将角统一成边,再利用向量的数量积运算和三角形的面积公式结合求解.【详解】由2sin cos sin sin sin a C B a A b B C =-,可得2222222a c b ac a b ac +-⨯=-,即c =.又c =,所以4b =.因为0OA OB OC ++=,所以点O 为ABC 的重心, 所以3AB AC AO +=,所以3AB AO AC =-,两边平方得22|9|6cos AB AO AO AC CAO =-∠2||AC +.因为3cos 8CAO ∠=,所以2223|9|6||8AB AO AO AC AC =-⨯+,于是29||AO -940AO -=,所以43AO =,AOC △的面积为114sin 4223AO AC CAO ⨯⨯⨯∠=⨯⨯⨯=.因为ABC 的面积是AOC △面积的3倍.故ABC【点睛】本题关键在于运用向量的平方可以转化到向量的夹角的关系,再与三角形的面积公式相结合求解,属于难度题. 二、多选题9.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题,其中正确命题的有( ) A .若//m l ,且m α⊥,则l α⊥ B .若//m l ,且//m α,则//l α C .若l αβ=,m βγ=,n γα=,则////l m n D .若m αβ=,l βγ=,n γα=,且//n β,则//l m【答案】AD【分析】对于A ,由线面垂直的判定定理判断;对于B ,//l α或l α⊂;对于C ,////l m n 或l ,m ,n 三条直线交于一点;对于D ,由线面平行的判定定理、性质定理和公理4判断.【详解】由l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,知: 对于A ,若//m l ,且m α⊥,则由线面垂直的判定定理得l α⊥,故A 正确; 对于B ,若//m l ,且//m α,则//l α或l α⊂,故B 错误; 对于C ,若l αβ=,m βγ=,n γα=,则////l m n 或l ,m ,n 三条直线交于一点,故C 错误; 对于D ,若m αβ=,l βγ=,n γα=,且//n β,则由线面平行的判定定理、性质定理和公理4得到//l m ,故D 正确. 故选:AD .【点睛】本题主要考查,线线、线面关系命题的判断,还考查了空间想象和逻辑推理的能力,属于基础题.10.若84i z z +=-,其中i 为虚数单位,则下列关于复数z 的说法正确的是( ) A .5z = B .z 的虚部为4i -C .34i z =-+D .z 在复平面内对应的点位于第四象限【答案】AD【分析】先设出复数z ,由84i z z +=-求出34i z =-,进而根据复数的模长、虚部、共轭复数、所在象限依次判断即可.【详解】设i z b a =+,则z =i 84i z z a b +=+-,则84a b ⎧⎪=⎨=-⎪⎩,即得34a b =⎧⎨=-⎩,即34i z =-,5z =,A 正确;z 的虚部为4-,B 错误;34i z =+,C 错误;z 在复平面内对应的点为()3,4-,位于第四象限,D 正确. 故选:AD.11.一组数据1x ,2x ,…,n x 的平均数是3,方差为4,关于数据131x -,231x -,…,31n x -,下列说法正确的是( )A .平均数是3B .平均数是8C .方差是11D .方差是36【答案】BD【分析】利用平均数和方差的线性关系直接求解.【详解】设:1x ,2x ,3x ,…,n x 的平均数为x ,方差为2s ,则3x =,24s =.所以131x -,231x -,…,31n x -的平均数为313318x -=⨯-=, 方差为22233436s =⨯=. 故选:BD.12.已知四边形ABCD 是等腰梯形(如图1),AB =3,DC =1,∠BAD =45°,DE ⊥AB .将△ADE 沿DE 折起,使得AE ⊥EB (如图2),连结AC ,AB ,设M 是AB 的中点.下列结论中正确的是( )A .BC ⊥ADB .点E 到平面AMC 的距离为63C .EM ∥平面ACDD .四面体ABCE 的外接球表面积为5π 【答案】BD【分析】对选项A ,在图1中,过C 作CF EB ⊥,连接CE ,易证BC ⊥平面AEC ,假设BC AD ⊥,得到BC ⊥平面AED ,与已知条件矛盾,故A 错误;对选项B ,设点E 到平面AMC 的距离为h ,根据A BCE E ABC V V --=求解即可;对选项C ,假设//EM 平面ACD ,从而得到平面//AEB 平面ACD ,与已知条件矛盾,故C 错误;对选项D ,连接MC ,易得M 为四面体ABCE 的外接球的球心,再计算外接球表面积即可。

学科网高一数学试卷期末

学科网高一数学试卷期末

一、选择题(每题5分,共50分)1. 已知函数$f(x) = x^2 - 2x + 1$,则函数的最小值为()。

A. 0B. 1C. 2D. 32. 若等差数列$\{a_n\}$中,$a_1 = 3$,公差$d = 2$,则第10项$a_{10}$为()。

A. 17B. 19C. 21D. 233. 已知直线$y = kx + b$经过点$A(1, 2)$和点$B(3, 4)$,则$k$的值为()。

A. 1B. 2C. 3D. 44. 若复数$z = a + bi$($a, b \in \mathbb{R}$)满足$|z| = 1$,则$\overline{z}$的值为()。

A. $a - bi$B. $-a + bi$C. $-a - bi$D. $a + bi$5. 在三角形ABC中,$A = 60^\circ$,$AB = 4$,$AC = 6$,则$BC$的长度为()。

A. 2B. 4C. 6D. 86. 已知函数$f(x) = \sqrt{x^2 + 1}$,则函数的定义域为()。

A. $(-\infty, +\infty)$B. $[0, +\infty)$C. $(-\infty, 0) \cup [0, +\infty)$D. $(0, +\infty)$7. 若等比数列$\{a_n\}$中,$a_1 = 2$,公比$q = \frac{1}{2}$,则第5项$a_5$为()。

A. 2B. 1C. $\frac{1}{2}$D. $\frac{1}{4}$8. 已知圆的方程为$x^2 + y^2 - 4x - 6y + 9 = 0$,则圆心坐标为()。

A. (2, 3)B. (3, 2)C. (2, -3)D. (-3, 2)9. 若向量$\vec{a} = (1, 2)$,$\vec{b} = (3, 4)$,则$\vec{a} \cdot\vec{b}$的值为()。

A. 5B. 6C. 7D. 810. 在等腰三角形ABC中,$AB = AC$,$AD$是底边BC上的高,若$BD = 3$,则$AD$的长度为()。

高一下期末数学试卷含答案解析

高一下期末数学试卷含答案解析
则0≤α<π,且tanα= ,故α=60°,
故选B.
3.在正项等比数列{an}中,若a2=2,a4﹣a3=4,则公比为( )
A.2B.1C. D.
【考点】等比数列的通项公式.
【分析】利用等比数列的通项公式及其性质即可得出,
【解答】解:设正项等比数列{an}的公比为q>0,
∵a2=2,a4﹣a3=4,∴ =2q2﹣2q=4,
22.已知A(﹣1,0),B(1,0),圆C:x2﹣2kx+y2+2y﹣3k2+15=0.
(Ⅰ)若过B点至少能作一条直线与圆C相切,求k的取值范围.
(Ⅱ)当k= 时,圆C上存在两点P1,P2满足∠APiB=90°(i=1,2),求|P1P2|的长.
-学年河北省沧州市高一(下)期末数学试卷
参考答案与试题解析
化为q2﹣q﹣2=0,解得q=2.
故选;A.
4.若a>b,则下列不等式成立的是( )
A.a2>b2B. C.lga>lgbD.
【考点】不等关系与不等式.
【分析】利用不等式的性质和指数函数的单调性就看得出.
【解答】解:∵a>b,∴2a>2b>0,∴ ,
故D正确.
故选D.
5.若直线l∥平面α,直线m⊂α,则l与m的位置关系是( )
A. B. C. D.3
【考点】由三视图求面积、体积.
【分析】由三视图知该几何体是一个长方体截去一个三棱锥所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.
【解答】解:由三视图知几何体是一个长方体截去一个三棱锥所得的组合体,
且长方体长、宽、高分别是1、1、3,
三棱锥的底面是等腰直角三角形、直角边是1,三棱锥的高是1,
A.2B.1C. D.

高一数学下期试题及答案

高一数学下期试题及答案

高一数学下期试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x^2-4x+3,下列哪个值是函数的最小值?A. 0B. 1C. 3D. 42. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}3. 已知等差数列的前三项依次为3,5,7,则该数列的第五项为:A. 9B. 11C. 13D. 154. 函数y=x^3-3x^2+3x+1的导数为:A. 3x^2-6x+3B. x^2-6x+3C. 3x^2-3x+1D. x^2-3x+15. 直线y=2x+1与x轴的交点坐标是:A. (0,1)B. (-1,0)C. (1,0)D. (0,-1)6. 已知复数z满足|z|=1,且z^2=i,则z的值为:A. 1B. -1C. iD. -i7. 函数y=x/(x^2+1)的值域是:A. (-1,1)B. (-∞,-1]∪[1,+∞)C. (-∞,0]∪[0,+∞)D. (-1,0)∪(0,1)8. 圆x^2+y^2=25的圆心坐标是:A. (0,0)B. (5,0)C. (-5,0)D. (0,5)9. 已知函数f(x)=x^3-3x^2+2,若f(a)=0,则a的值为:A. 0B. 1C. 2D. 310. 函数y=|x-2|+|x+3|的最小值是:A. 1B. 2C. 5D. 6二、填空题(每题4分,共20分)11. 函数f(x)=x^2-6x+8的顶点坐标为______。

12. 已知等比数列的前三项依次为2,4,8,则该数列的公比为______。

13. 圆的方程为x^2+y^2-6x+8y-24=0,其半径为______。

14. 函数y=|x-1|+|x+2|的最小值为______。

15. 已知向量a=(3,-4),向量b=(2,k),若a⊥b,则k的值为______。

三、解答题(每题10分,共50分)16. 解方程:2x^2-5x+2=0。

2023-2024第二学期期末考试高一数学试卷

2023-2024第二学期期末考试高一数学试卷

2023—2024学年第二学期期末试卷高一数学注意事项:1.本试卷包括单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题)四部分。

本试卷满分为150分,考试时间为120分钟。

2.答卷前,考生务必将自己的姓名、学校、班级填在答题卡上指定的位置。

3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,再写上新答案;不准使用铅笔和涂改液。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =3+i(i 为虚数单位),则复数zz -2i的虚部是 A .45B . 45iC . 35D .35i2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是 A .若m ∥α,n α⊂,则m ∥n B .若m ⊥α,n ⊥α,则m ∥nC .若m ∥β,n ∥β,且m α⊂,n α⊂,则α∥βD .若α⊥β,α β=m ,m ⊥n ,则n ⊥β 3.已知数据x 1,x 2,x 3, …x n 的平均数为10,方差为5,数据3x 1-1,3x 2-1,3x 3-1, …3x n-1的平均数为—x ,方差为s 2,则 A .—x =10,s 2=14 B .—x =9,s 2=44 C .—x =29,s 2=45D .—x =29,s 2=444.向量→a 与→b 不共线,→AB =→a + k →b ,→AC = m →a -→b (k ,m ∈R ),若→AB 与→AC 共线,则k ,m 应满足A .k +m =0B .k -m =0C .km +1=0D .km -1=05.同时抛掷两枚质地均匀的骰子,观察向上的点数,设事件A =“第一枚向上点数为奇数”,事件B =“第二枚向上点数为偶数”,事件C =“两枚骰子向上点数之和为8”,事件D =“两枚骰子向上点数之积为奇数”,则 A . A 与C 互斥B . A 与C 相互独立C . B 与D 互斥 D . B 与D 相互独立6. 在△ABC 中,角A ,B ,C 对边分别为a ,b ,c .若2b cos C =2a -c ,A =π4,b =3,则实数a 的值为 A . 6B . 3C . 6D . 37. 如图,四棱锥P -ABCD 中,P A ⊥面ABCD ,四边形ABCD 为正方形,P A =4,PC 与平面ABCD 所成角的大小为θ,且 tan θ=223,则四棱锥P -ABCD 的外接球表面积为 A . 26π B . 28π C . 34πD . 14π8.已知sin2θ=45,θ∈(0,π4) ,若cos(π4-θ)=m cos(π4+θ),则实数m 的值A .-3B .3C .2D .-2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.设复数z =i +3i 2(i 为虚数单位),则下列结论正确的是 A . z 的共轭复数为-3-iB .z ·i=1-3iC . z 在复平面内对应的点位于第二象限D .|z +2|= 210.已知△ABC 内角A ,B ,C 对边分别为a ,b ,c ,则下列说法正确的是 A .若sin A >sin B ,则A >BB .若a cos B =b cos A ,则△ABC 为等腰三角形 C .若a 2+b 2>c 2,则△ABC 为锐角三角形D .若a =1.5,b =2,A =30°的三角形有两解11.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则A .M ,N ,B ,A 1四点共面B .若a =2,则异面直线PD 1与MNC .平面PMN 截正方体所得截面为等腰梯形D .若a =1,则三棱锥P -MD 1B 的体积为124三、填空题:本大题共3小题,每小题5分,共15分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.12.一只不透明的口袋中装有形状、大小都相同的6个小球,其中2个白球,1个红球和3个黄球,从中1次随机摸出2个球,则恰有一球是黄球的概率是▲ .13.已知A(-3,5),B(1,10),C(2,1),则tan∠ACB=▲ .14.在△ABC中,角A、B、C所对的边分别为a、b、c,∠ABC=120°,BD是△ABC的中线,且1BD=,则a+c的最大值为▲.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.(13分)已知sin α=-55,α∈(π,3π2),sin(α+β)=513,β∈(π2,π).(1)求tan2α的值;(2)求sinβ的值.16.(15分)某市高一年级数学期末考试,满分为100分,为做好分析评价工作,现从中随机抽取100名学生成绩,经统计,这批学生的成绩全部介于40和100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成如图所示的频率直方图。

高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。

大一下学期高等数学期末试题及答案__数套

大一下学期高等数学期末试题及答案__数套

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctanyz x =,则z x ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()L x y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dxD.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.22530d r dr dzπθ⎰⎰⎰ B.24530d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.2252d r dr dzπθ⎰⎰⎰(4)已知幂级数12nnn n x ∞=∑,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 x xy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 . 二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).2 B.1 C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

高一期末数学试卷及答案

高一期末数学试卷及答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. √-1D. 0.1010010001…2. 若 a > b > 0,则下列不等式成立的是:A. a² > b²B. a - b > 0C. a/b > 1D. ab > 03. 已知函数 f(x) = 2x - 3,若 f(x) + f(2 - x) = 0,则 x 的值为:A. 1B. 2C. 3D. 44. 在直角坐标系中,点 A(2,3),B(4,5),则线段 AB 的中点坐标为:A. (3,4)B. (4,3)C. (3,5)D. (4,4)5. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为:A. 100B. 105C. 110D. 1156. 若复数 z 满足 |z - 1| = |z + 1|,则 z 在复平面上的位置是:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 下列函数中,是奇函数的是:A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = 1/x8. 在△ABC中,若 a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形9. 已知函数f(x) = x² - 4x + 4,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 410. 若等比数列 {an} 的前三项分别是 2, 6, 18,则其公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共50分)1. 若 a + b = 5,a - b = 1,则a² - b² 的值为________。

2. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为________。

高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。

二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。

(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。

(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。

(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。

2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。

原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。

高一下学期数学期末试卷含答案(共5套)

高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。

高一数学试题及答案(8页)

高一数学试题及答案(8页)

高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。

A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。

A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。

A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。

A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。

A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。

A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。

A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。

A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。

A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。

A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。

高一下期数学试题及答案

高一下期数学试题及答案

高一下期数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. √2B. -πC. 1/3D. i2. 函数f(x) = 2x^2 + 3x - 5的图像与x轴的交点个数是:A. 0B. 1C. 2D. 无穷多3. 已知等差数列{an}的首项a1=3,公差d=2,该数列的第5项a5等于:A. 13B. 15C. 17D. 194. 以下哪个不等式是正确的?A. |-3| > 3B. -2 < √4C. 1/2 ≤ √1/4D. -1 ≥ -25. 圆的方程为(x-2)^2 + (y-3)^2 = 25,圆心到直线x + y - 5 = 0的距离是:A. 2B. 3C. 4D. 56. 已知集合A={1, 2, 3},B={2, 3, 4},A∪B等于:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}7. 若sinθ + cosθ = √2/2,那么sin2θ的值是:A. 1/2B. -1/2C. 1D. -18. 函数y = ln(x-1)的定义域是:A. (1, +∞)B. (0, +∞)C. (-∞, 1)D. (-∞, 0)9. 根据题目信息,第9题缺失。

10. 已知点A(-1, 2)和点B(2, -1),直线AB的斜率k是:A. 1/3B. -1/3C. -3D. 3二、填空题(每题2分,共10分)11. 已知等比数列{bn}的首项b1=2,公比q=3,该数列的第3项b3等于______。

12. 函数f(x) = x^3 - 3x^2 + 2的极小值点是______。

13. 已知向量a = (3, 2),b = (-1, 2),向量a与b的点积是______。

14. 根据题目信息,第14题缺失。

15. 抛物线y^2 = 4x的准线方程是______。

三、解答题(共60分)16. 解不等式:|x+2| - |x-3| ≤ 5。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)
故选:B.
【点睛】一般地,如果 为等差数列, 为其前 项和,则有性质:
(1)若 ,则 ;
(2) 且 ;
(3) 且 为等差数列;
(4) 为等差数列.
6.A
【解析】
【分析】
利用正弦定理将边转化为角得到 ,再由角C的范围可得选项.
【详解】因为 ,
所以由正弦定理得 ,所以 ,即 ,
又因为 为 的内角,
所以 .
解得 , ,
, ;
(2) ,

又 ,由题得 ,即 ,
,即
由题知 且 ,故 ,
故 ,
故只需考虑 , 时 , 时 , 时 ,
17.(10分)已知 中,点 .
(1)求直线 的方程;
(2)求 的面积.
18.(12分)已知函数 .
(1)当 时,求不等式 的解集;
(2)若关于x的不等式 的解集为R,求a的取值范围.
19.(12分)己知向量 , .
(1)若 ,其中 ,求 坐标;
(2)若 与 的夹角为 ,求 的值.
20.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产,某医疗器械厂统计了口罩生产车间每名工人的生产速度,将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等.
故 ,
故答案为:
【点睛】向量的数量积有两个应用:(1)计算长度或模长,通过用 来求;(2)计算角, .特别地,两个非零向量 垂直的等价条件是 .
15.9
【解析】
【分析】
将 变形后利用基本不等式可求其最小值
【详解】 ,
,等号成立时 , .
故答案为:9.
【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.

新疆维吾尔自治区可克达拉市兵团地州学校2022-2023学年高一下学期期末联考数学试题

新疆维吾尔自治区可克达拉市兵团地州学校2022-2023学年高一下学期期末联考数学试题

新疆维吾尔自治区可克达拉市兵团地州学校2022-2023学年高一下学期期末联考数学试题学校:___________姓名:___________班级:___________考号:___________D .2i z --在复平面内对应的点位于第二象限10.一副扑克牌去掉大王和小王后,共52张,,2,3,4,5,6,7,8,9,10,,,A J Q K 各4张,从扑克牌中随机取出1张,M =“取出的牌为10”,N =“取出的牌为红桃”,P =“取出的牌为黑桃9”,则( )A .M 与N 互斥B .M 与P 互斥C .M 与N 相互独立D .N 与P 对立11.某校为了了解学生的身体素质,对2022届初三年级所有学生仰卧起坐一分钟的个数情况进行了数据统计,结果如图1所示.该校2023届初三学生人数较2022届初三学生人数上升了10%,2023届初三学生仰卧起坐一分钟的个数分布条形图如图2所示,则下列说法正确的有( )A .该校2022届初三年级学生仰卧起坐一分钟的个数在[)30,60内的学生人数占70%B .该校2023届初三学生仰卧起坐一分钟的个数在[]60,80内的学生人数比2022届初三学生仰卧起坐一分钟的个数在[]60,80内的学生人数的2倍还多C .该校2023届初三学生仰卧起坐一分钟的个数和2022届初三学生仰卧起坐一分钟个数的中位数均在[)50,60内D .相比2022届初三学生仰卧起坐一分钟个数不小于50的人数,2023届初三学生仰卧起坐一分钟个数不小于50的人数占比增加12.已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别是棱1AA ,11A D 的中点,P 为四、双空题16.武当山,位于湖北省西北部十堰市境内,其自然风光以雄为主,兼有险、奇、幽、秀等多重特色.主峰天柱峰犹如金铸玉琢的宝柱雄峙苍穹,屹立于群峰之巅.环绕其周围的群山,从四面八方向主峰倾斜,形成独特的“七十二峰朝大顶,二十四涧水长流”的天然奇观,被誉为“亘古无双胜境,天下第一仙山”.如图,若点P 为主峰天柱峰的最高点,,M N 为观测点,且,,P M N 在同一水平面上的投影分别为,,Q E F ,满足30,45QEF QFE ÐÐ==o o ,在点M 处测得点N 的仰角为15o ,200NF ME -=米,在(1)证明:1AA BC ^.(2)过11B C 的平面α交,AB AC 分别于,E F ,若1//AA 平面a ,求直线1BB 与平面a 所成角的正弦值.11.ABD【分析】根据扇形统计图和条形图对四个选项逐个判断可得答案.【详解】2022届初三年级学生仰卧起坐一分钟的个数在[)30,60内的学生人数占比为=,A正确.20%25%25%++70%由于2023届初三学生人数较2022届上升了10%,假设2022届初三学生人数为a(0a>),则仰卧起坐一分钟的个数在[]60,80内的学生人数为0.2a,2023届初三学生仰卧起坐一分钟的个数在[]60,80内的学生人数为()´+´=,a a110%41%0.451>´=,B正确.0.4510.220.4a a a∵10%20%30%++=,+=,10%20%25%55%∴2022届初三学生仰卧起坐一分钟个数的中位数在[)40,50内,∵1%4%+13%18%+++=,+=,1%4%13%41%59%∴2023届初三学生仰卧起坐一分钟个数的中位数在[)50,60内,C错误.2022届初三学生仰卧起坐一分钟个数不小于50的人数占25%15%5%45%++=,2023届初三学生仰卧起坐一分钟个数不小于50的人数占41%34%7%82%++=,D正确.故选:ABD.12.ACD。

高一数学期末考试试题及答案

高一数学期末考试试题及答案

高一数学期末考试试题及答案高一期末考试试题一、选择题1.已知集合M={x∈N/x=8-m,m∈N},则集合M中的元素的个数为()A.7 B.8 C.9 D.10答案:B。

解析:当m=1时,x=7;当m=2时,x=6;当m=3时,x=5;当m=4时,x=4;当m=5时,x=3;当m=6时,x=2;当m=7时,x=1;当m=8时,x=0.因此,集合M中的元素的个数为8.2.已知点A(x,1,2)和点B(2,3,4),且AB=26,则实数x的值是()A.−3或4 B.6或2 C.3或−4 D.6或−2答案:C。

解析:根据勾股定理,AB=√[(x-2)²+(1-3)²+(2-4)²]=√[(x-2)²+4]。

因为AB=26,所以√[(x-2)²+4]=26,解得x=3或-7.但是题目中说了点A的横坐标为实数,所以x=3.3.已知两个球的表面积之比为1:9,则这两个球的半径之比为()A.1:3 B.1:3 C.1:9 D.1:81答案:B。

解析:设两个球的半径分别为r1和r2,则它们的表面积之比为4πr1²:4πr2²=1:9,化简得.4.圆x+y=1上的动点P到直线3x−4y−10=0的距离的最小值为()A.2 B.1 C.3 D.4答案:A。

解析:首先求出直线3x−4y−10=0与圆x+y=1的交点Q,解得Q(2,-1),然后求出点P到直线的距离d,设P(x,y),则d=|(3x-4y-10)/5|,根据点到直线的距离公式。

将P点的坐标代入d中,得到d的表达式为d=|(3x-4y-16)/5|。

将d表示成x和y的函数,即d=f(x,y)=(3x-4y-16)/5,然后求出f(x,y)的最小值。

由于f(x,y)的系数3和-4的比值为3:4,所以f(x,y)的最小值为f(2,-1)=-2/5,即P点到直线的最小距离为2/5,取整后为2.5.直线x−y+4=0被圆x²+y²+4x−4y+6=0截得的弦长等于()A.12B.22C.32D.42答案:B。

【典型题】高一数学下期末模拟试卷(含答案)(1)

【典型题】高一数学下期末模拟试卷(含答案)(1)

【典型题】高一数学下期末模拟试卷(含答案)(1)一、选择题1.如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =u u u v u u u v ,4AD AC ⋅=u u u v u u u v ,则AB BC ⋅=u u u v u u u vA .-45B .13C .-13D .-372.如图,在ABC V 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .103.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( )A .1B .2C .3D .44.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +u u u v u u u v u u u v 的最小值是()A .6-B .3-C .4-D .2-5.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D . 6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,//l m ,则m α⊥C .若//l α,m α⊂,则//l mD .若//l α,//m α,则//l m7.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=L ( )A .50B .2C .0D .50-8.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A .45B .35C .25D .159.函数223()2x x x f x e+=的大致图像是( ) A . B .C .D .10.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫>< ⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增 B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减 C .()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递减 D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 11.函数2ln ||y x x =+的图象大致为( )A .B .C .D .12.在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么 ( )A .M 一定在直线AC 上B .M 一定在直线BD 上C .M 可能在直线AC 上,也可能在直线BD 上D .M 既不在直线AC 上,也不在直线BD 上二、填空题13.已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为__________.14.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.15.对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2e x f x x -=+-与()1422x x g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)16.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u u r u u u r u u u r r ,则角B 的大小是__________. 17.已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.18.已知f (x )是定义在R 上的偶函数,且在区间(−∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (2-),则a 的取值范围是______.19.若a 10=12,a m =22,则m =______. 20.已知复数z x yi =+,且23z -y x 的最大值为__________. 三、解答题21.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若7c =33ABC S ∆=ABC ∆的周长. 22.已知:a b c v v v 、、是同一平面内的三个向量,其中()1,2a =v(1)若25c =v ,且//c a v v ,求c v 的坐标; (2)若52b =v,且2a b +v v 与2a b -v v 垂直,求a v 与b v 的夹角θ. (3)若()1,1b =v ,且a v 与a b λ+v v 的夹角为锐角,求实数λ的取值范围. 23.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项.数列{}n b 中,12b =,点()1,n n P b b +在直线2y x =+上.(1)求1a 和2a 的值;(2)求数列{}n a ,{}n b 的通项公式;(3)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .24.已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 25.等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (1)求数列{}n a 的通项公式;(2)设 31323log log ......log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示. (1)求函数()f x 的解析式,并写出()f x 的最小正周期;(2)令()1π212g x f x ⎛⎫=-⎪⎝⎭,若在[]0,x π∈内,方程()()212320a g x ag x ⎡⎤-+-=⎣⎦有且仅有两解,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先用AB u u u v 和AC uuu v 表示出2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v , 再根据,12BD DC =u u u v u u u v 用用AB u u u v 和AC uuu v 表示出AD u u u v ,再根据4AD AC ⋅=u u u v u u u v 求出A AB C ⋅u u u v u u u v 的值,最后将A AB C ⋅u u u v u u u v 的值代入2 A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,,从而得出答案. 【详解】()2 A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v , ∵12BD DC =u u u vu u u v , ∴111B C ?C B 222AD A A AD AD A AD A -=-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v (), 整理可得:12 AB 33AD AC +u u u v u u u v u u u v =, 221A A 433AD AC AB C C ∴⋅⋅+=u u u v u u u v u u u v u u u v u u u v = ∴ A =-12AB C ⋅u u u v u u u v ,∴2 =A =122537AB BC AB C AB ⋅⋅---=-u u u v u u u v u u u v u u u v u u u v ., 故选:D .【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题. 2.C解析:C【解析】【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形.【详解】①PA ⊥Q 平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴Q V 是直角三角形;③,,AD BC ABD ACD ⊥∴∆∆Q 是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.3.D解析:D【解析】【分析】【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个,故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.4.A解析:A【解析】【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解.【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系, 则(0,23),(2,0),(2,0)A B C -,设(,)P x y ,则(,23),(2,),(2,)PA x y PB x y PC x y =-=---=--u u u r u u u r u u u r , 所以22()(2)(23)(2)2432PA PB PC x x y y x y •+=-⋅-+⋅-=-+u u u r u u u r u u u r222[(3)3]x y =+-,所以当0,3x y ==时,()PA PB PC •+u u u r u u u r u u u r取得最小值为2(3)6⨯-=-,故选A. 【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.5.B 解析:B【解析】【分析】计算函数()y f x =的表达式,对比图像得到答案.【详解】根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x =1()cos sin sin 22f x x x x ==对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力. 6.B解析:B【解析】【分析】利用,l α可能平行判断A ,利用线面平行的性质判断B ,利用//l m 或l 与m 异面判断C ,l 与m 可能平行、相交、异面,判断D .【详解】l m ⊥,m α⊂,则,l α可能平行,A 错;l α⊥,//l m ,由线面平行的性质可得m α⊥,B 正确;//l α,m α⊂,则//l m , l 与m 异面;C 错,//l α,//m α,l 与m 可能平行、相交、异面,D 错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.7.C解析:C【解析】【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x -=-且()00f =又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=-在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-=所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦L 50500=⨯=故选C【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.8.C解析:C【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.9.B解析:B【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232x x x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 10.A解析:A【解析】【分析】将f(x)化简,求得ωφ,,再进行判断即可.【详解】()πf x ωx φ,4⎛⎫=+- ⎪⎝⎭∵最小正周期为2ππ,π,ω∴=得ω2=, 又f x f x ()()-=为偶函数,所以ππφk π42-=+, k Z ∈ ∵πφ2<,∴k=-1,()πππφ,f x 2x 444⎛⎫=-∴=--= ⎪⎝⎭, 当2k π2x 2k ππ≤≤+,即πk πx k π2≤≤+,f(x)单调递增,结合选项k=0合题意, 故选A.【点睛】 本题考查三角函数性质,两角差的正弦逆用,熟记三角函数性质,熟练计算f(x)解析式是关键,是中档题.11.A解析:A【解析】【分析】先确定函数定义域,再确定函数奇偶性,最后根据值域确定大致图像。

高一数学期末试题及答案

高一数学期末试题及答案

高一数学期末试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x2. 函数y = 2x + 3的斜率是:A. 2B. 3C. 1/2D. 1/33. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}4. 圆的方程为(x-2)^2 + (y-3)^2 = 9,则圆心坐标是:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)5. 函数f(x) = |x|的图象是:A. 直线B. 抛物线C. V形D. U形6. 等差数列{an}的首项a1 = 3,公差d = 2,则a5的值是:A. 11B. 13C. 15D. 177. 向量a = (3, -4)与向量b = (-2, 5)的点积是:A. 13B. -13C. 3D. -38. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π9. 函数f(x) = x^2 - 4x + 3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)10. 抛物线y = x^2 - 6x + 9的顶点坐标是:A. (3, 0)B. (-3, 0)C. (3, 9)D. (-3, 9)二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1 = 2,公比q = 3,则b3的值是________。

12. 函数y = 3x - 2与x轴的交点坐标是________。

13. 圆心在原点,半径为5的圆的方程是________。

14. 向量a = (1, 2)与向量b = (-2, 4)的向量积是________。

15. 函数f(x) = x^3 - 3x^2 + 2x + 1的极值点是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期末检测 高一数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}21A x x =-<<,{}0≥=x x B ,则A B =U ( )A .{}2->x xB .{}0≥x xC .{}10<≤x xD .{}12<<-x x 2.0000sin 75sin15cos75cos15+的值为( ) A .1 B .0 C .21D .233.已知直线01=--+a y ax 与直线021=-y x 平行,则a 的值是( ) A .1 B .1- C .2 D .2- 4.已知向量()()3,1,2,1=-=b a ,则( )A .b a ⊥B .b a // C.()b a a -⊥ D .()b a a -//5.某路段检查站监控录像显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为如下图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于h km /90的约有( )A .100辆B .200辆 C.300辆 D .400辆 6.执行如图所示的程序框图,输出的S 值为( )A .2B .4 C. 8 D .16 7.点()0,2关于直线4--=x y 的对称点是( )A .()6,4--B .()4,6-- C. ()7,5-- D .()5,7--8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积是( )A .12B .284+ C.248+ D .244+9.如图,在ABC ∆中,点D 在BC 边上,且DB CD 3=,点E 在AD 边上,且AE AD 3=,则用向量CA CB ,表示CE 为( )A .3241+=B .3294+= C.CA CB CE 3241-= D .CA CB CE 3294-=10.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方向拼成一个边长为2的大正方形,若直角三角形中较小的锐角6πα=,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )A .231-B .23 C.434- D .43 11.已知以下四个结论:①函数x y tan =图像的一个对称中心为⎪⎭⎫⎝⎛0,2π; ②函数1sin +=x y 的最小正周期为π;③⎪⎭⎫⎝⎛+=32sin πx y 的表达式可以改写为()⎪⎭⎫⎝⎛-=x x f 267cos π; ④若4=+B A ,则()().2tan 1tan 1=++B A 其中,正确的结论是( )A .①③B .①④ C.②③ D .②④ 12.已知函数()()⎪⎭⎫⎝⎛<>>+=2,0,0sin πϕωϕωA x A x f ,在一个周期内图像如图所示,若()()21x f x f =,且⎥⎦⎤⎢⎣⎡∈65,12,21ππx x ,21x x ≠,则()=+21x x f ( )A .3B .2 C.3- D .2-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()⎩⎨⎧≥<+=0,0,1x e x x x f x,则()()=-+30f f .14.甲、乙两名运动员的5次测试成绩如图所示,以这5次测试成绩为判断依据,则甲、乙两名运动员成绩稳定性较差的是 .(填“甲、乙”)15.若直线()42+-=x k y 与圆()4122=-+y x 相切,则实数k = .16.如图所示,摩天轮的半径为40米,点O 距地面高度为50米,摩天轮做匀速运动,每3分钟转一圈,以点O 为原点,过点O 且平行与地平线的直线为x 轴建立平面直角坐标系xOy ,设点P 的起始位置在最低点(且在最低点开始时),设在时刻t (分钟)时点P 距地面的高度h (米),则h 与t 的函数关系式()t h = .在摩天轮旋转一周内,点P 到地面的距离不小于70米的时间长度为 (分钟)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知()()()5,2,1,0,0,1C B A ,求: (Ⅰ)AC +2; (Ⅱ).cos BAC ∠18. 已知函数().,42sin 2R x x x f ∈⎪⎭⎫⎝⎛+=π(Ⅰ)求()x f 的最小正周期和单调递增区间; (Ⅱ)说明函数()R x x x f ∈⎪⎭⎫⎝⎛+=,42sin 2π的图像可由正弦曲线x y sin =经过怎样的变化得到; (Ⅲ)若απα,2382=⎪⎭⎫⎝⎛-f 是第二象限的角,求.2sin α 19.某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如下图所示(x(吨)为该商品进货量,y(天)为销售天数):(Ⅰ)根据上表数据在下列网格中绘制散点图:(Ⅱ)根据上表提供的数据,求出y关于x的线性回归方程∧∧∧+=axby;(Ⅲ)根据(Ⅱ)中的计算结果,若该商店准备一次性进货该商品24吨,预测需要销售天数;参考公式和数据:1221,.ni iiniix y nxyb a y b xx nx∧∧∧==-==--∑∑.241,356,32,48818128181====∑∑∑∑====iiiiiiiiiyxxyx20.如图,在三棱柱111CBAABC-中,底面ABC∆是等边三角形,且1AA⊥平面ABC,D为AB的中点,(Ⅰ) 求证:直线//1BC平面CDA1;(Ⅱ) 若E BB AB ,21==是1BB 的中点,求三棱锥CDE A -1的体积; 21.已知圆心在原点的圆被直线1+=x y 截得的弦长为.14 (Ⅰ) 求圆的方程;(Ⅱ) 设动直线()()01≠-=k x k y 与圆C 交于B A ,两点,问在x 轴正半轴上是否存在定点N ,使得直线AN 与直线BN 关于x 轴对称?若存在,请求出点N 的坐标;若不存在,请说明理由;22.已知函数().2cos 2sin x x x f -= (Ⅰ) 求证:()x f x f =⎪⎭⎫ ⎝⎛-π47;(Ⅱ)若对任意的⎥⎦⎤⎢⎣⎡∈4,0πx ,使得()012=-+k x f 有解,求实数k 的取值范围; (Ⅲ)若⎪⎭⎫ ⎝⎛∈85,0πx 时,函数()()()122+-=x mf x f x g 有四个不同零点,求实数m 的取值范围;试卷答案一、选择题1-5:ACDCC 6-10: CACAA 11、12:BA二、填空题13. 1- 14. 甲 15.125 16.(1)()()0,32cos 4050≥-=t t t h π ;(2) 1 三、解答题17.解:(Ⅰ)()()()7,12,5,1,1,1-=+=-=所以,.252=+622==4=⋅cos AB AC BAC AB AC⋅∠===⋅u u u u u r18.解:(Ⅰ)由()2sin 24f x x π⎛⎫=+⎪⎝⎭可知,函数的最小正周期为ππ==22T 令42π+=x u ,则u y sin 2=的增区间是()Z k k k ∈⎥⎦⎤⎢⎣⎡+-22,22ππππ, 由224222πππππ+≤+≤-k x k ,解得.,883Z k k x k ∈+≤≤-ππππ 所以函数()x f 的单调递增区间是.8,83Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ (Ⅱ)将x y sin =和图像纵坐标不变, 横坐标为原来的21倍得到x y 2sin =的图像,将x y 2sin =和图像向左平移8π得到⎪⎭⎫ ⎝⎛+=42sin πx y 的图像,将⎪⎭⎫ ⎝⎛+=42sin πx y 的图像横坐标不变,纵坐标为原来的2倍得到()⎪⎭⎫⎝⎛+=42sin 2πx x f 的图像 或,将x y sin =和图像向左平移4π,得到⎪⎭⎫ ⎝⎛+=4sin πx y 的图像,将⎪⎭⎫ ⎝⎛+=4sin πx y 纵坐标不变,横坐标为原来的21得到⎪⎭⎫ ⎝⎛+=42sin πx y 的图像,将⎪⎭⎫ ⎝⎛+=42sin πx y 图像横坐标不变,纵坐标为原来的2倍得到()⎪⎭⎫⎝⎛+=42sin 2πx x f 的图像.(Ⅲ)由()⎪⎭⎫⎝⎛+=42sin 2πx x f 知,所以23sin 282==⎪⎭⎫⎝⎛-απαf ,即43sin =α, 又α是第二象限的角,所以413431sin 1cos 22-=⎪⎪⎭⎫ ⎝⎛--=--=αα, 所以839413432cos sin 22sin -=⎪⎪⎭⎫ ⎝⎛-⨯⨯==ααα 19.解:(Ⅰ)散点图如图所示:(Ⅱ)依题意,(),611986543281=+++++++=x (),4865432181=++++++=y ,356121816436251694812=+++++++=∑=i ix,2418854402415126281=+++++++=∑=i ii yx,684968356468241882812281=⨯-⨯⨯-=--=∑∑=-=∧i i i i i x x xy y x b ,3411668494-=⨯-=∴∧a ∴回归直线方程为.34116849-=∧x y(Ⅲ)由(Ⅱ)知,当24=x 时,,173411246849≈-⨯=y 即若一次性买进蔬菜24吨,则预计需要销售约17天.20.解:(Ⅰ)连接1AC 交于点F ,则F 为1AC 的中点,又D 为AB 的中点,所以DF BC //1,又⊄1BC 平面CD A 1,又⊂DF 平面CD A 1,所以//1BC 平面CD A 1.(Ⅱ)三棱锥CDE A -1的体积11113A CDE C A DE A DE V V S h --∆==⋅,其中点C 到平面11A ABB 的距离3==CD h ,又23212111212121221=⨯⨯-⨯⨯-⨯⨯-⨯=∆DEA S ,所以.233233131111=⨯⨯=⋅==∆--h S V V DE A DE A C CDE A 21.解:(Ⅰ)圆心()0,0到直线1+=x y 的距离21=d ,由圆的性质可得4214222=⎪⎪⎭⎫ ⎝⎛+=d r ,所以,圆的方程为422=+y x ;(Ⅱ) 设()()()2211,,,,0,y x B y x A t N ,由()⎩⎨⎧-==+1422x k y y x 得,()04212222=-+-+k x k x k , 所以.14,1222212221+-=+=+k k x x k k x x 若直线AN 与直线BN 关于x 轴对称,则02211=-+-⇒-=tx yt x y K K BN AN , 即()()()()021201121212211=+++-⇒=--+--t x x t x x tx x k t x x k()().4021121422222=⇒=+++-+-⇒t t k t k k k 所以当点N 为()0,4时,直线AN 与直线BN 关于x 轴对称; 22.解:(Ⅰ)x x x x x f 2cos 2sin 227cos 227sin 47-=⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-πππ 所以,()x f x f =⎪⎭⎫ ⎝⎛-π47(Ⅱ)()⎪⎭⎫ ⎝⎛-=-=42sin 22cos 2sin πx x x x f[]1,142sin 2,22,2242sin ,4,0-∈⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡-∈⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡∈πππx x x ()012=-+kx f ,即()[]3,12∈+=x f k (Ⅲ)令()x f t =,因为⎪⎭⎫⎝⎛∈85,0πx ,所以,(]2,1-∈t , 函数()()()122+-=x mf x fx g 有四个不同零点等价于()122+-=mt t t h 在()2,0∈t 有两个不的零点由根的分布知识可得:()()⎪⎪⎩⎪⎪⎨⎧>><<>∆0200200h h m ,解得:2431<<m .广东省广州市荔湾区高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一个是正确的.1.与﹣60°角的终边相同的角是()A.300°B.240°C.120° D.60°2.不等式x﹣2y+4>0表示的区域在直线x﹣2y+4=0的()A.左上方B.左下方C.右上方D.右下方3.已知角α的终边经过点P(﹣3,﹣4),则cosα的值是()A.﹣ B.C.﹣ D.4.不等式x2﹣3x﹣10>0的解集是()A.{x|﹣2≤x≤5}B.{x|x≥5或x≤﹣2}C.{x|﹣2<x<5}D.{x|x>5或x<﹣2} 5.若sinα=﹣,α是第四象限角,则cos(+α)的值是()A.B.C.D.6.若a,b∈R,下列命题正确的是()A.若a>|b|,则a2>b2B.若|a|>b,则a2>b2C.若a≠|b|,则a2≠b2D.若a>b,则a﹣b<07.要得到函数y=3sin(2x+)图象,只需把函数y=3sin2x图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位8.已知M是平行四边形ABCD的对角线的交点,P为平面ABCD内任意一点,则+++等于()A.4 B.3 C.2 D.9.若cos2α=,则sin4α+cos4α的值是()A.B.C.D.10.已知直角三角形的两条直角边的和等于4,则直角三角形的面积的最大值是()A.4 B.2 C.2 D.11.已知点(n,a n)在函数y=2x﹣13的图象上,则数列{a n}的前n项和S n的最小值为()A.36 B.﹣36 C.6 D.﹣612.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是()A.(1,2) B.(2,+∞)C.[3,+∞)D.(3,+∞)二、填空题:本大题共4小题,每小题5分,满分20分.把答案填在答题卡上.13.若向量=(4,2),=(8,x),∥,则x的值为.14.若关于x的方程x2﹣mx+m=0没有实数根,则实数m的取值范围是.15.已知x,y满足,则z=2x+y的最大值为.16.设f(x)=sinxcosx+cos2x,则f(x)的单调递减区间是.三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.17.已知等比数列{a n}的前n项和为S n,公比为q(q≠1),证明:S n=.18.已知平面向量,满足||=1,||=2.(1)若与的夹角θ=120°,求|+|的值;(2)若(k+)⊥(k﹣),求实数k的值.19.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=acosB+bsinA.(1)求A;(2)若a=2,b=c,求△ABC的面积.20.已知数列{a n}的前n项和为S n,且a1=2,a n=S n(n=1,2,3,…).+1(1)证明:数列{}是等比数列;(2)设b n=,求数列{b n}的前n项和T n.21.某电力部门需在A、B两地之间架设高压电线,因地理条件限制,不能直接测量A、B两地距离.现测量人员在相距km的C、D两地(假设A、B、C、D在同一平面上)测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A、B距离的倍,问施工单位应该准备多长的电线?22.已知A,B,C为锐角△ABC的内角,=(sinA,sinBsinC),=(1,﹣2),⊥.(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;(2)求tanAtanBtanC的最小值.广东省广州市荔湾区高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一个是正确的.1.与﹣60°角的终边相同的角是()A.300°B.240°C.120° D.60°【考点】G2:终边相同的角.【分析】与﹣60°终边相同的角一定可以写成k×360°﹣60°的形式,k∈z,检验各个选项中的角是否满足此条件.【解答】解:与﹣60°终边相同的角一定可以写成k×360°﹣60°的形式,k∈z,令k=1 可得,300°与﹣60°终边相同,故选:A.2.不等式x﹣2y+4>0表示的区域在直线x﹣2y+4=0的()A.左上方B.左下方C.右上方D.右下方【考点】7B:二元一次不等式(组)与平面区域.【分析】根据题意,作出直线x﹣2y+4=0的图形,分析可得原点在直线右下方,将原点坐标(0,0)代入x﹣2y+4,分析即可得答案.【解答】解:根据题意,作出直线x﹣2y+4=0,分析可得:原点(0,0)在直线右下方,将原点坐标(0,0)代入x﹣2y+4可得,x﹣2y+4>0,故不等式x﹣2y+4>0表示的区域在直线x﹣2y+4=0的右下方;故选:D.3.已知角α的终边经过点P(﹣3,﹣4),则cosα的值是()A.﹣ B.C.﹣ D.【考点】G9:任意角的三角函数的定义.【分析】由题意利用任意角的三角函数的定义,求得cosα的值.【解答】解:∵角α的终边经过点P(﹣3,﹣4),∴x=﹣3,y=﹣4,r=|OP|=5,则cosα==﹣,故选:C.4.不等式x2﹣3x﹣10>0的解集是()A.{x|﹣2≤x≤5}B.{x|x≥5或x≤﹣2}C.{x|﹣2<x<5}D.{x|x>5或x<﹣2}【考点】74:一元二次不等式的解法.【分析】把不等式化为(x+2)(x﹣5)>0,求出解集即可.【解答】解:不等式x2﹣x﹣2>0可化为(x+2)(x﹣5)>0,解得x<﹣2或x>5,∴不等式的解集是{x|x<﹣2或x>5}.故选:D.5.若sinα=﹣,α是第四象限角,则cos(+α)的值是()A.B.C.D.【考点】GI:三角函数的化简求值.【分析】利用同角三角函数的基本关系,两角和的余弦公式,求得cos(+α)的值.【解答】解:∵sinα=﹣,α是第四象限角,∴cosα==,则cos(+α)=cos cosα﹣sin sinα=﹣•(﹣)=,故选:B.6.若a,b∈R,下列命题正确的是()A.若a>|b|,则a2>b2B.若|a|>b,则a2>b2C.若a≠|b|,则a2≠b2D.若a>b,则a﹣b<0【考点】R3:不等式的基本性质.【分析】根据题意,由不等式的性质易得A正确,利用特殊值法分析可得B、C、D错误,即可得答案.【解答】解:根据题意,依次分析选项:对于A、若a>|b|,则有|a|>|b|>0,则a2>b2,故A正确;对于B、当a=1,b=﹣2时,a2<b2,故B错误;对于C、当a=﹣1,b=1时,满足a≠|b|,但有a2=b2,故C错误;对于D、若a>b,则a﹣b>0,故D错误;故选:A.7.要得到函数y=3sin(2x+)图象,只需把函数y=3sin2x图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数y=3sin2x图象向左平移个单位,可得y=3sin2(x+)=3sin(2x+)的图象,故选:C.8.已知M是平行四边形ABCD的对角线的交点,P为平面ABCD内任意一点,则+++等于()A.4 B.3 C.2 D.【考点】9A:向量的三角形法则.【分析】根据向量的三角形的法则和平行四边形的性质即可求出答案【解答】解:∵M是平行四边形ABCD的对角线的交点,P为平面ABCD内任意一点,∴=+,=+,=+,=+,∵M是平行四边形ABCD对角线的交点,∴=﹣,=﹣,∴+++=+++++++=4,故选:A9.若cos2α=,则sin4α+cos4α的值是()A.B.C.D.【考点】GH:同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系、二倍角的余弦公式,求得sin2α和cos2α 的值,可得sin4α+cos4α的值.【解答】解:∵cos2α=2cos2α﹣1=,∴cos2α=,∴sin2α=1﹣cos2α=,则sin4α+cos4α=+=,故选:A.10.已知直角三角形的两条直角边的和等于4,则直角三角形的面积的最大值是()A.4 B.2 C.2 D.【考点】3W:二次函数的性质;7F:基本不等式.【分析】本题考查二次函数最大(小)值的求法.设一条直角边为x,则另一条为(4﹣x),则根据三角形面积公式即可得到面积S和x之间的解析式,求最值即可.【解答】解:设该三角形的一条直角边为x,则另一条为(4﹣x),则其面积S=x(4﹣x)=﹣(x﹣2)2+2,(x>0)分析可得:当x=2时,S取得最大值,此时S=2;故选:C.11.已知点(n,a n)在函数y=2x﹣13的图象上,则数列{a n}的前n项和S n的最小值为()A.36 B.﹣36 C.6 D.﹣6【考点】8E:数列的求和.【分析】点(n,a n)在函数y=2x﹣13的图象上,的a n=2n﹣13,a1=﹣11,=n2﹣12n由二次函数性质,求得S n的最小值【解答】解:∵点(n,a n)在函数y=2x﹣13的图象上,则a n=2n﹣13,a1=﹣11=n2﹣12n∵n∈N+,∴当n=6时,S n取得最小值为﹣36.故选:B12.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是()A.(1,2) B.(2,+∞)C.[3,+∞)D.(3,+∞)【考点】HQ:正弦定理的应用.【分析】设三个角分别为﹣A,, +A,由正弦定理可得m==,利用两角和差的正弦公式化为,利用单调性求出它的值域.【解答】解:钝角三角形三内角A、B、C的度数成等差数列,则B=,A+C=,可设三个角分别为﹣A,, +A.故m====.又<A<,∴<tanA<.令t=tanA,且<t<,则m=在[,]上是增函数,∴+∞>m>2,故选B.二、填空题:本大题共4小题,每小题5分,满分20分.把答案填在答题卡上.13.若向量=(4,2),=(8,x),∥,则x的值为4.【考点】9K:平面向量共线(平行)的坐标表示.【分析】利用向量平行的性质直接求解.【解答】解:∵向量=(4,2),=(8,x),∥,∴,解得x=4.故答案为:4.14.若关于x的方程x2﹣mx+m=0没有实数根,则实数m的取值范围是(0,4).【考点】3W:二次函数的性质.【分析】由二次函数的性质可知:△<0,根据一元二次不等式的解法,即可求得m的取值范围.【解答】解:由方程x2﹣mx+m=0没有实数根,则△<0,∴m2﹣4m<0,解得:0<m<4,∴实数m的取值范围(0,4),故答案为:(0,4).15.已知x,y满足,则z=2x+y的最大值为3.【考点】7C:简单线性规划.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:,在坐标系中画出图象,三条线的交点分别是A(﹣1,﹣1),B(,),C(2,﹣1),在△ABC中满足z=2x+y的最大值是点C,代入得最大值等于3.故答案为:3.16.设f(x)=sinxcosx+cos2x,则f(x)的单调递减区间是[kπ+,kπ+],(k∈Z).【考点】GL:三角函数中的恒等变换应用.【分析】推导出f(x)=sin(2x+)+,由此能求出f(x)的单调递减区间.【解答】解:∵f(x)=sinxcosx+cos2x==sin(2x+)+,∴f(x)的单调递减区间满足:,k∈Z,∴,k∈Z.∴f(x)的单调递减区间是[kπ+,kπ+],(k∈Z).故答案为:[kπ+,kπ+],(k∈Z).三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.17.已知等比数列{a n}的前n项和为S n,公比为q(q≠1),证明:S n=.【考点】89:等比数列的前n项和.【分析】由,得,利用错位相减法能证明S n=.【解答】证明:因为,…所以,…qS n=,…所以(1﹣q)S n=,…当q≠1时,有S n=.…18.已知平面向量,满足||=1,||=2.(1)若与的夹角θ=120°,求|+|的值;(2)若(k+)⊥(k﹣),求实数k的值.【考点】9S:数量积表示两个向量的夹角;9T:数量积判断两个平面向量的垂直关系.【分析】(1)利用两个向量数量积的定义,求得的值,可得|+|=的值.(2)利用两个向量垂直的性质,可得(k+)•(k﹣)=k2•a2﹣=0,由此求得k的值.【解答】解:(1)||=1,||=2,若与的夹角θ=120°,则=1•2•cos120°=﹣1,∴|+|====.(2)∵(k+)⊥(k﹣),∴(k+)•(k﹣)=k2•﹣=k2﹣4=0,∴k=±2.19.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=acosB+bsinA.(1)求A;(2)若a=2,b=c,求△ABC的面积.【考点】HP:正弦定理.【分析】(1)由已知及正弦定理,三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可得:tanA=1,结合范围A∈(0,π),可求A的值.(2)由三角形面积公式及余弦定理可求b2的值,进而利用三角形面积公式即可计算得解.【解答】(本小题满分12分)解:(1)由c=acosB+bsinA及正弦定理可得:sinC=sinAcosB+sinBsinA.…在△ABC中,C=π﹣A﹣B,所以sinC=sin(A+B)=sinAcosB+cosAsinB.…由以上两式得sinA=cosA,即tanA=1,…又A∈(0,π),所以A=.…(2)由于S△ABC=bcsinA=bc,…由a=2,及余弦定理得:4=b2+c2﹣2bccosB=b2+c2﹣,…因为b=c,所以4=2b2﹣b2,即b2==4,…故△ABC的面积S=bc=b2=.…20.已知数列{a n}的前n项和为S n,且a1=2,a n+1=S n(n=1,2,3,…).(1)证明:数列{}是等比数列;(2)设b n=,求数列{b n}的前n项和T n.【考点】8H:数列递推式;8E:数列的求和.【分析】(1)a n+1=S n+1﹣S n=S n,整理为=2.即可证明.(2)由(1)得:=2n,即S n=n•2n.可得b n====﹣,利用裂项求和方法即可得出.【解答】(1)证明:因为,a n+1=S n+1﹣S n=S n,所以=2,又a1=2,故数列{}是等比数列,首项为2,公比为2的等比数列.(2)解:由(1)得:=2n,即S n=n•2n.所以b n====﹣,故数列{b n}的前n项和T n=++…+=1﹣=.21.某电力部门需在A、B两地之间架设高压电线,因地理条件限制,不能直接测量A、B两地距离.现测量人员在相距km的C、D两地(假设A、B、C、D在同一平面上)测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A、B距离的倍,问施工单位应该准备多长的电线?【考点】HU:解三角形的实际应用.【分析】在△ACD中求出AC,在△BCD中求出BC,在△ABC中利用余弦定理求出AB.【解答】解:在△ACD中,∵∠ADC=30°,∠ACD=75°+45°=120°,∴∠CAD=30°,∴AC=CD=,在△BCD中,∵∠BDC=30°+45°=75°,∠BCD=45°,∴∠CBD=60°,由正弦定理得:,∴BC===.在△ABC中,由余弦定理得:AB2=AC2+BC2﹣2AC•BC•cos∠ACB=3+()2﹣2••=5,∴AB=.故施工单位应该准备电线长为=5km.22.已知A,B,C为锐角△ABC的内角,=(sinA,sinBsinC),=(1,﹣2),⊥.(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;(2)求tanAtanBtanC的最小值.【考点】9T:数量积判断两个平面向量的垂直关系.【分析】(1)依题意有sinA=2sinBsinC,从而2sinBsinC=sinBcosC+cosBsinC,再由cosB>0,cosC >0,能推导出tanB,tanBtanC,tanC成等差数列.(2)推导出tanAtanBtanC=tanA+tanB+tanC,从而tanAtanBtanC≥8,由此能求出tanAtanBtanC 的最小值为8.【解答】(本小题满分12分)解:(1)依题意有sinA=2sinBsinC.…在△ABC中,A=π﹣B﹣C,所以sinA=sin(B+C)=sinBcosC+cosBsinC,…所以2sinBsinC=sinBcosC+cosBsinC.…因为△ABC为锐角三角形,所以cosB>0,cosC>0,所以tanB+tanC=2tanBtanC,…所以tanB,tanBtanC,tanC成等差数列.…(2)在锐角△ABC中,tanA=tan(π﹣B﹣C)=﹣tan(B+C)=﹣,…即tanAtanBtanC=tanA+tanB+tanC,…由(1)知tanB+tanC=2tanBtanC,于是tanAtanBtanC=tanA+2tanBtanC≥,…整理得tanAtanBtanC≥8,…当且仅当tanA=4时取等号,故tanAtanBtanC的最小值为8.…广东省恵州市高一(下)期末数学试卷一.选择题1.一元二次不等式﹣x2+x+2>0的解集是()A.{x|x<﹣1或x>2}B.{x|x<﹣2或x>1}C.{x|﹣1<x<2}D.{x|﹣2<x<1} 2.已知α,β为平面,a,b,c为直线,下列说法正确的是()A.若b∥a,a⊂α,则b∥αB.若α⊥β,α∩β=c,b⊥c,则b⊥βC.若a⊥c,b⊥c,则a∥bD.若a∩b=A,a⊂α,b⊂α,a∥β,b∥β,则α∥β3.在△ABC中,,AC=1,∠A=30°,则△ABC面积为()A.B.C.或D.或4.设直线l1:kx﹣y+1=0,l2:x﹣ky+1=0,若l1∥l2,则k=()A.﹣1 B.1 C.±1 D.05.已知a>0,b>0,a+b=1,则+的最小值是()A.4 B.5 C.8 D.96.若{a n}为等差数列,且a2+a5+a8=39,则a1+a2+…+a9的值为()A.114 B.117 C.111 D.1087.如图:正四面体S﹣ABC中,如果E,F分别是SC,AB的中点,那么异面直线EF与SA所成的角等于()A.90°B.45°C.60°D.30°8.若直线与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围()A.B.C.D.9.若实数x,y满足约束条件,则x﹣2y的最大值为()A.﹣9 B.﹣3 C.﹣1 D.310.在△ABC中,角A,B,C所对边分别为a,b,c,若a,b,c成等比数列,且A=60°,则()A.B.C.D.11.由直线y=x+2上的一点向圆(x﹣3)2+(y+1)2=2引切线,则切线长的最小值()A.4 B.3 C.D.112.已知a n=log(n+1)(n+2)(n∈N*).我们把使乘积a1•a2•a3•…•a n为整数的数n叫做“优数”,则在区间(1,2004)内的所有优数的和为()A.1024 B.2003 C.2026 D.2048二.填空题13.cos45°sin15°﹣sin45°cos15°的值为.14.圆心在y轴上,半径为1,且过点(1,2)的圆的标准方程是.15.公差不为零的等差数列的第1项、第6项、第21项恰好构成等比数列,则它的公比为.16.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为.三.解答题解答须写出文字说明、证明过程和演算步骤。

相关文档
最新文档