液压缸设计分析
液压缸的设计计算
液压缸的设计计算液压缸设计计算是液压系统设计的关键部分之一,液压缸通过液压油的压力作用,将液压能转化为机械能。
液压缸的设计需要考虑液压缸的工作条件、负载要求、速度要求等多个因素。
下面是液压缸设计计算的一些关键要点。
液压缸设计前需要明确以下几个参数:(1)负载:液压缸要承受的最大负载。
(2)行程:液压缸的活塞行程,即活塞从一个极限位置到另一个极限位置的移动距离。
(3)速度:液压缸的移动速度要求。
(4)传动方式:液压缸的传动方式有单杆式和双杆式,单杆式主要用于简单操作,而双杆式适用于更复杂的应用场景。
(5)工作压力:液压缸的额定工作压力,一般由液压系统的工作压力决定。
在设计液压缸时,需要进行以下计算和选型:(1)工作压力的计算:根据液压缸所需承受的最大负载和速度要求,计算出液压缸所需的工作压力。
工作压力计算公式为:工作压力=功率÷斜杠(活塞面积×张角因数)活塞面积=π×活塞直径²÷4张角因数根据活塞材料和工作环境选取合适的值。
(2)液压缸尺寸的计算:根据所需承受的最大负载和工作压力,计算出液压缸的尺寸。
液压缸尺寸计算公式为:活塞面积=承受的负载÷工作压力活塞直径=(4×活塞面积÷π)^0.5根据液压缸的类型和具体要求,还需要进行一些其他计算,如活塞杆直径、带式液压缸的带宽和带材厚度的计算等。
(3)液压缸速度的计算:根据液压缸的移动速度要求,结合液压缸的流量特性和阀门的流量系数等参数,计算出所需的液压缸速度。
液压缸速度计算公式为:流量=活塞面积×速度速度=流量÷活塞面积其中,流量需要根据阀门流量系数、压差等因素计算得出。
为了确保液压缸的工作效果和可靠性,设计时还需要考虑液压缸的密封性、液压阀的选型、活塞材料的选择和润滑等方面的计算和选型。
总结起来,液压缸的设计计算包括工作压力的计算、液压缸尺寸的计算以及液压缸速度的计算等。
液压油缸的主要设计技术参数
液压油缸的主要设计技术参数
真实
一、安装和机械
1、安装
在安装液压油缸时应考虑如下因素:
(1)确定油缸的中心位置;
(2)确定油缸的正确位置,以便便于操作和维护;
(3)清楚理解油缸安装的物理限制,以便充分发挥油缸的机动性能;
(4)液压油缸的支架安装要紧固,以保证液压油缸稳定可靠;
(5)液压油缸的安装位置应尽量避免受污染;
(6)支撑架应具有良好的抗震性能;
(7)液压油缸的支架安装位置不应有明显裂缝;
(8)液压油缸安装的支架应考虑温度和机动性能;
2、轴座
(1)液压油缸的轴座是油缸安装和固定的重要部件,如果不进行正
确的轴座设计,可能会导致油缸工作不正常。
(2)液压油缸的轴座可以采用多种不同的材料,如钢板、木材、铝
合金、铁材等,依据实际情况选择。
(3)液压油缸的轴座不仅要考虑抗静态荷载的问题,还要设计具有可靠的抗振性能,以保证液压油缸能够正常工作。
(4)液压油缸的轴座设计时应考虑表面处理问题,严禁使用油污、焊渣等粗糙的表面处理方法,以保证液压油缸的精度和寿命。
液压缸结构设计及运行特性分析
液压 缸结构 设计及 运行特性分析
刘 晓 明. 叶 玮
( 沈 阳工业 大学 电气 工程 学 院 , 辽宁 沈 阳 1 1 0 8 7 0 )
摘 要: 液 压 缸 作 为 液 压传 动 系统 关 键 零 部 件 之 一 . 其 动 作 可 靠 性 直 接影 响液 压 系 统 工 作 性 能 好 坏 。从 液 压 缸 可 靠 性 设 计 出 发 , 基 于液
析 了不 同结 构 参 数 下 速 度一 时 间特 性
关键词 : 液压缸 : 活塞 ; 缓 冲; 速 度 特性 中 图分 类 号 : T H1 3 7 . 5 1 文献标识码 : A 文章编号 : 1 0 0 8 — 0 8 1 3 ( 2 0 1 3 ) 0 7 — 0 0 1 7 — 0 5
h y d r a u l i c s y s t e m p e r f o r ma n c e . Co n s i d e i r n g t h e r e l i a b i l i t y d e s i g n o f h y d r a u l i c c y l i n d e r ,d e s c i r b i n g t h e s t r u c t u r e a n d wo r k i n g p i r n c i p l e o f t h e
压 缸 组 成 结 构 及 工 作原 理 . 对 液 压 缸 主要 结构 参 数 进 行 了设 计 与 强 度 校核 , 分 析 了液 压 缸 运 动 过 程 中 不 同 的 缓 冲 状 态 , 并 建 立 了相 应 的 流量方程 , 基 于能 最 守 恒 定 律 建 立 了 液压 缸往 复运 动 过 程 活 塞 力 平衡 方程 。通 过 建 模 仿 真 求 得 液 压 缸 运 动 过 程 速 度 一 时间特性曲线 , 分
液压缸的设计和计算
液压缸设计和计算液压缸的设计和计算液压缸的设计是整个液压系统设计中的一部分,它是在对整个系统进行了工况分析,编制了负载图,选定了工作压力之后进行的; 一、设计依据:1了解和掌握液压缸在机械上的用途和动作要求;2了解液压缸的工作条件;3了解外部负载情况;4了解液压缸的最大行程,运动速度或时间,安装空间所允许的外形尺寸以及缸本身的动作;5设计已知液压系统的液压缸,应了解液压系统中液压泵的工作压力和流量的大小、管路的通径和布置情况、各液压阀的控制情况;6了解有关国家标准、技术规范及参考资料;二、设计原则:1保证缸运动的出力、速度和行程;2保证刚没各零部件有足够的强度、刚度和耐用性;3保证以上两个条件的前提下,尽量减小缸的外形尺寸;4在保证刚性能的前提下,尽量减少零件数量,简化结构;5要尽量避免缸承受横向负载,活塞杆工作时最好承受拉力,以免产生纵向弯曲;6缸的安装形式和活塞杆头部与外部负载的连接形式要合理,尽量减小活塞杆伸出后的有效安装长度,增加缸的稳定性;三、设计步骤:1根据设计依据,初步确定设计档案,会同有关人员进行技术经济分析;2对缸进行受力分析,选择液压缸的类型和各部分结构形式;3确定液压缸的工作参数和结构尺寸;4结构强度、刚度的计算和校核;5根据运动速度、工作出力和活塞直径,确定泵的压力和流量;6审定全部设计计算资料,进行修改补充;7导向、密封、防尘、排气和缓冲等装置的设计;8绘制装配图、零件图、编写设计说明书;四、液压缸设计中应注意的问题液压缸的设计和使用正确与否,直接影响到它的性能和是否易于发生故障;所以,在设计液压缸时,必须注意以下几点:1、尽量使液压缸的活塞杆在受拉状态下承受最大负载,或在受压状态下具有良好的稳定性;2、考虑液压缸行程终了处的制动问题和液压缸的排气问题;3、正确确定液压缸的安装、固定方式;4、液压缸各部分的结构需根据推荐的结构形式和设计标准进行设计,尽可能做到结构简单、紧凑、加工、装配和维修方便;5、在保证能满足运动行程和负载力的条件下,应尽可能地缩小液压缸的轮廓尺寸;6、要保证密封可靠,防尘良好;五、计算液压缸的结构尺寸1、缸筒内径D 根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348-80标准中选取最近的标准值作为所设计的缸筒内径;液压缸的有效工作面积为…… 24D p F A π== 以无杆腔作工作腔时………… p FD π4=以有杆腔作工作腔时………… 24d p F D +=π 2、活塞杆外径d 通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性;若速度比为v λ,则 vv Dd λλ1-= 也可根据活塞杆受力状况来确定:受拉力作用时,d =~; 受压力作用时,则有3、缸筒长度L 缸筒长度L 由最大工作行程长度加上各种结构需要来确定,即:l —— 活塞的最大工作行程;B —— 活塞宽度,一般为~1D ;A —— 活塞杆导向长度,取~D ;M —— 活塞杆密封长度,由密封方式定;C —— 其他长度; 注意:从制造工艺考虑,缸筒的长度最好不超过其内径的20倍;六、强度校核对液压缸的缸筒壁厚δ、活塞杆直径d和缸盖固定螺栓的直径,在高压系统中必须进行强度校核;1、缸筒壁厚校核δ 缸筒壁厚校核分薄壁和厚壁两种情况;当D/δ≥10时为薄壁,壁厚按下式进行校核:δ≥δδδ2[δ]当D/δ<10时为厚壁,壁厚按下式进行校核:δ≥δ2(√[δ]+0.4δδ[δ]−1.3δδ−1)pt ——缸筒试验压力,随缸的额定压力的不同取不同的值D ——缸筒内径σ——缸筒材料许用应力2、活塞杆直径校核活塞杆的直径d按下式进行校核:3、液压缸盖固定螺栓直径校核液压缸盖固定螺栓直径按下式计算:F ——液压缸负载k ——螺纹拧紧系数~Z ——固定螺栓个数σ——螺栓材料许用应力七、液压缸稳定性校核活塞杆轴向受压时,其直径d一般不小于长度L的1/15;当L/d≥15时,须进行稳定性校核,应使活塞杆承受的力F不能超过使它保持稳定工作所允许的临界负载Fk ,以免发生纵向弯曲,破坏液压缸的正常工作;Fk 的值与活塞杆材料性质、截面形状、直径和长度以及缸的安装方式等因素有关,验算可按材料力学有关公式进行;• 当活塞杆细长比 21/ψψ>k r l 时,则• 当活塞杆细长比21/ψψ≤k r l 且120~2021=ψψl -- 安装长度,其值与安装方式有关;Ψ1 -- 柔性系数,对钢取Ψ1=85;Ψ2 -- 末端系数,由液压缸支承方式决定;E -- 活塞杆材料的弹性模量,对钢取E=× 1011Pa ;J -- 活塞杆横截面惯性矩;A -- 活塞杆横截面面积;f -- 由材料强度决定的实验数值,对钢取f=×108 N /m2; α--系数,对钢取α=1/5000;rk --活塞杆横截面的最小回转半径;八、缓冲计算液压缸的缓冲计算主要是估计缓冲时缸中出现的最大冲击压力,以便用来校核缸筒强度、制动距离是否符合要求;液压缸在缓冲时,缓冲腔内产生的液压能E 1和工作部件产生的机械能E 2分别为:当E 1=E 2时,工作部件的机械能全部被缓冲腔液体所吸收,则有九、油缸的试验1.油缸试验压力,低于16MPa乘以工作压力的,高于16乘以工作压力的;2.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;3.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同;4.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置;。
液压缸结构设计的特点分析
液压缸结构设计的特点分析摘要这篇结构设计论文发表了液压缸结构设计的特点分析,当前液压技术正在向高压、高速、大功率、高效率、低噪音、高可靠性和安全性、高集成化方向发展, 研发轻量化高性能的液压元这篇结构设计论文发表了液压缸结构设计的特点分析,当前液压技术正在向高压、高速、大功率、高效率、低噪音、高可靠性和安全性、高集成化方向发展, 研发轻量化高性能的液压元件是其重要的一环[1]。
液压缸作为液压系统的核心零部件之一, 轻量化是其发展的一个重要趋势。
关键词:结构设计论文投稿,液压缸;结构设计;运行特点随着机械工艺的不断发展与提升,液压传统系统已经被广泛地应用于各种不同类型的机械中,而液压缸则是液压传统系统中的核心部件,发挥着最为重要的作用。
液压缸的主要职责是借助液压油完成能量的传递,而能量的传递则是液压传统系统的中心环节,且借助于液压缸的运动,能够使液压转变为机械动能,从而使传动系统中的各个环节执行相应的运动指令。
1液压缸结构设计在液压传统系统中,液压缸是非常重要的能源执行元件,在特定功能的实现中发挥着关键性的作用,不仅如此,液压缸对液压传统系统的影响是全方位的,任何层面的问题,比如结构尺寸、性能等,都会对液压传动系统带来非常大的影响,甚至使得液压传统系统难以实现预期功能,因此,液压缸设计,特别是液压缸的结构设计就显得尤为必要。
在液压缸结构设计中重点需要处理好以下几点内容:第一、当液压缸没有活塞杆,直接连通油箱时,需要将活塞向右断开,同样的情形也表现在当有活塞杆但没有与高压油侧通时;第二、当活塞的两侧与高压油同时连通,在设计中需要根据两侧实际的承压面积,将活塞向左关闭;第三、活塞杆作为结构设计中的重点,在实际应用中经常出现滑动的现象,而导致此种现象的主要因素则是活塞杆的直径存在问题,因此,在活塞杆设计时,需要根据实际情况与需求,合理的设计活塞杆的直径,避免故障的发生。
不仅如此,在液压缸的结构设计中,还要做好直径计算与校核、厚度计算与校核、长度计算与校核的工作。
液压油缸的主要设计技术参数
液压油缸的主要设计技术参数液压油缸是一种将液压能转化为机械能的装置,广泛应用于各种工业设备和机械系统中。
它主要由活塞、油缸、活塞杆、密封件等组成。
设计液压油缸时需考虑诸多技术参数,以下是其中一些重要的参数和设计技术。
1.力量参数:液压油缸的力量参数是指油缸的额定工作压力和最大工作压力。
额定工作压力是指油缸可承受的标准工作压力,最大工作压力是指油缸在短时间内承受的最大压力。
2.动作方式:液压油缸的动作方式可分为单作用和双作用两种。
单作用油缸只能在一侧施加力量,复位需要外力或其他方式来实现;双作用油缸既可以在两侧施加力量,也可以通过外力和其他方式复位。
3.排量:液压油缸的排量是指油缸在单位时间内所能排出的工作油量。
排量大小直接影响油缸的工作速度和效率。
4.动作速度:液压油缸的动作速度是指油缸在工作过程中活塞移动的速度。
速度大小取决于油缸的排量和工作流量。
5.有效工作行程:液压油缸的有效工作行程是指活塞在油缸内可移动的距离,也即活塞杆的伸缩长度。
有效工作行程需要根据具体工作需要进行设计。
6.密封性能:液压油缸在工作过程中需要保持较好的密封性能,以防止液压油泄露,影响工作效果。
常用的密封件有活塞密封、油缸密封、活塞杆密封等。
7.轴向刚度和载荷特征:液压油缸的轴向刚度和载荷特征是指油缸在承受力量时的变形情况。
设计时需考虑油缸的承载能力和支撑结构的稳定性。
8.外部环境适应性:液压油缸在设计时还需考虑其外部环境适应性,包括耐腐蚀性、抗震性、抗冲击性等。
9.运行可靠性:设计液压油缸时需确保其运行可靠性,包括油缸的长寿命、稳定性和操作可靠性。
10.成本和效益:液压油缸的设计还需考虑成本和效益问题,以确保在满足需求的基础上,尽量降低成本和提高效益。
综上所述,液压油缸的设计技术参数包括力量参数、动作方式、排量、动作速度、有效工作行程、密封性能、轴向刚度和载荷特征、外部环境适应性、运行可靠性以及成本和效益等。
这些参数的合理设计和选择,对液压油缸的性能和工作效果至关重要。
液压油缸设计手册
液压油缸设计手册第一章:液压油缸概述1.1 液压油缸的定义和作用液压油缸是一种常用的液压执行元件,利用液压油在缸体中的压力变化,产生线性运动或者转动,用于实现各种机械装置的动作控制。
液压油缸广泛应用于冶金、石化、建筑、造船、机械制造等领域。
1.2 液压油缸的结构和工作原理液压油缸通常由缸体、活塞、密封件、进出油口、安装支架等组成。
其工作原理是通过控制油液的流入和流出,使得油缸内部产生一定的压力,从而驱动活塞做直线运动或旋转运动。
第二章:液压油缸设计原理2.1 液压油缸的选型原则在设计液压油缸时,应考虑载荷大小、工作环境、运动速度、活塞行程等因素,选择适合的型号和规格的液压油缸。
2.2 液压油缸的密封性能设计密封性是液压油缸的重要性能指标,设计时应考虑密封件的选择、布局和工作条件,以确保液压油缸的密封可靠性。
2.3 液压油缸的安全性设计在设计液压油缸时,应考虑其在工作过程中可能遇到的过载、压力变化、温度变化等情况,设计相应的安全保护装置和控制系统,以确保液压油缸的安全可靠运行。
第三章:液压油缸的结构设计3.1 缸体和活塞的材料选择液压油缸的缸体和活塞通常由优质碳素钢、合金钢或不锈钢制成,设计时需考虑材料的强度、刚性、耐磨性和耐腐蚀性等性能。
3.2 活塞杆的设计活塞杆是液压油缸的重要部件,设计时需考虑其长度、直径、表面硬度和表面光洁度等参数,以确保活塞杆的工作可靠性和寿命。
3.3 密封件的设计液压油缸的密封件包括活塞密封、杆密封、缸体密封等,设计时需选择适合的密封材料和结构,以确保液压油缸具有良好的密封性能。
第四章:液压油缸的应用和维护4.1 液压油缸的应用范围液压油缸广泛应用于各种工程机械、航空航天、船舶、起重装备、冶金设备等领域,可实现各种复杂机械动作的控制。
4.2 液压油缸的维护和保养液压油缸在使用过程中需要定期检查和维护,包括液压油的更换、密封件的检查、活塞杆的清洁和润滑等,以保证液压油缸的正常工作。
液压油缸设计手册
液压油缸设计手册摘要:1.液压油缸设计概述2.液压油缸的组成部分3.液压油缸的设计原则与方法4.液压油缸的性能参数5.液压油缸的应用领域6.液压油缸的选用与安装7.液压油缸的维护与故障排除8.液压油缸的设计案例分析正文:一、液压油缸设计概述液压油缸作为液压传动系统的重要组成部分,广泛应用于各种工程机械、自动化设备和工业领域。
液压油缸的设计涉及到力学、材料科学、热处理技术等多个方面,合理的設計可以提高液压油缸的使用寿命、工作效率和安全性。
二、液压油缸的组成部分液压油缸主要由缸体、活塞、密封装置、导向装置、驱动装置等组成。
各部分之间相互配合,完成液压油的吸入、压力传递、动作控制等功能。
三、液压油缸的设计原则与方法1.设计原则:液压油缸设计应满足使用要求,确保安全可靠,力求结构简单、紧凑,降低成本。
2.设计方法:根据液压油缸的使用条件,确定其主要尺寸、材料、密封形式等,进行结构设计,然后校核强度、刚度、稳定性等性能。
四、液压油缸的性能参数液压油缸的性能参数主要包括工作压力、行程、活塞面积、承载能力等。
设计时应根据实际工况,合理选择性能参数,使之满足使用要求。
五、液压油缸的应用领域液压油缸在工程机械、冶金设备、汽车制造、航空航天、船舶等领域有着广泛的应用。
不同领域的液压油缸有着不同的使用要求和技术特点。
六、液压油缸的选用与安装1.选用液压油缸时,应根据使用条件选择合适的结构形式、材料、密封形式等。
2.安装液压油缸时,要注意安装位置、方向、支撑结构等,确保液压油缸能正常工作。
七、液压油缸的维护与故障排除1.定期检查液压油缸的密封性能、油液质量、活塞运动情况等,及时更换密封件、添加油液。
2.遇到故障时,可通过外观检查、拆卸检查、试验等方法,找出故障原因,并进行排除。
八、液压油缸的设计案例分析通过对实际工程中的液压油缸设计案例进行分析,探讨液压油缸设计中应注意的问题,为液压油缸设计提供参考。
液压缸设计步骤和液压缸计算方法档
液压缸设计步骤和液压缸计算方法档液压缸(油缸)设计步骤:1.确定液压缸的工作参数:包括工作压力、负荷要求、行程长度、作用力、运动速度等。
这些参数可以根据设备的应用需求来确定。
2.选择液压缸的类型:有单作用和双作用两种,单作用液压缸只能在一个方向上产生推或拉力,而双作用液压缸可以在两个方向上产生推拉力。
3.计算活塞直径和活塞杆直径:活塞直径和活塞杆直径是根据负荷要求和工作压力来计算的。
一般来说,活塞直径越大,液压缸的承载能力越大,但也会增加摩擦阻力和油液消耗量。
4.确定液压缸筒体和活塞杆材料:根据工作环境的要求和负荷的性质选择合适的材料,一般常用的材料有铸铁、钢等。
5.完成液压缸内部部件的设计:包括密封件、液压缸密封结构、液压缸的阻尼装置等。
密封结构的设计需要考虑到液压缸的工作环境和工作温度。
6.进行液压缸的强度计算:计算液压缸各个部件的强度,包括活塞杆、筒体和密封结构等。
强度计算需要考虑到工作压力和作用力等参数。
7.进行液压缸的动态计算:根据液压缸的运动速度和所需的加速度等参数,进行液压缸的动态计算。
1.计算缸体容积:液压缸的容积可以通过下式计算得到:V=π/4*D^2*L其中,V为缸体容积,D为活塞直径,L为活塞行程长度。
2.计算活塞面积:根据活塞直径计算活塞面积,可以通过下式计算得到:A=π/4*D^2其中,A为活塞面积,D为活塞直径。
3.计算活塞杆面积:根据活塞杆直径计算活塞杆面积,可以通过下式计算得到:A'=π/4*D'^2其中,A'为活塞杆面积,D'为活塞杆直径。
4.计算推力:根据工作压力和活塞面积计算液压缸的推力,可以通过下式计算得到:F=P*A其中,F为液压缸的推力,P为工作压力,A为活塞面积。
5.计算液压缸的速度:液压缸的速度可以通过可控阀门来调节,一般使用油流量来计算液压缸的速度,可以通过下式计算得到:V=Q/A其中,V为液压缸的速度,Q为油流量,A为活塞面积。
第11讲液压缸结构、设计
螺纹连接<
> 重量轻,外径小,但端部复杂,
外螺纹 装卸不便,需专用工具
焊接连接
拉杆连接
通用性好,缸体加工方便,装拆方 便,但端盖体积大,重量也大,拉 杆受力后会拉伸变形,影响端部密 封效果,只适于中低压.
活塞和活塞杆的连接
∵ 工作压力、安装方式、 工作条件的不同。
∴ 活塞组件有多种结构形式。 整体式:常用于小直径液压缸,
1、缸筒壁厚δ
中低压系统,无需校核
确定原则 <
高压大直径时,必须校核δ
薄壁缸体(无缝钢管):
当D/δ≥ 10时 δ≥ptD/2[б]
[б]= бb /n Pt 为缸筒的试验压力,由液压缸的额定压力来确定 [б] 缸筒材料的许用压力 бb 缸筒材料的抗拉强度
n一般取为5
厚壁缸体(铸造缸体):
当D/δ ≤ 10时 δ≥D/2[√[б]+ 0.4 pt/[б] -1.3pt-1] 若 液压缸缸筒与缸盖采用半环连接,δ应取 缸筒壁最小处的值。
d为:
d D 1
缸的速度比 过大会使无杆腔产生过大的背压,速 度比 过小则活塞杆太细,稳定性不好。
2 根据执行机构速度要求和选定液压 泵流量 来确定
以单杆缸为例: 无杆腔进油时
1
q A1
v
4q
D2
有杆腔进油时
2
q A2
4qvD2 dຫໍສະໝຸດ 2(二)活塞杆直径d原则:活塞杆直径可根据工作压力或设 备类型选取液压缸的往复速度比 有一定要求时
V1
液压缸内径和活塞杆直径的确定
(一)液压缸内径D
(二)活塞杆直径d
液压缸内径D
一 双杆缸
F
A p1 p2 m
摆动液压缸的液压系统设计与分析
摆动液压缸的液压系统设计与分析摆动液压缸是一种常用于工业机械中的液压执行元件,它通过液压系统提供的压力和流量来产生机械运动。
本文将针对摆动液压缸的液压系统设计与分析进行讨论,介绍其基本原理、设计要点和性能分析方法。
1. 液压系统设计要点在设计摆动液压缸的液压系统时,需要考虑以下要点:1.1 工作压力和流量摆动液压缸的设计应根据实际工作负荷确定所需的压力和流量。
工作压力决定了系统的稳定性和安全性,而流量决定了液压缸的速度和响应时间。
在确定工作压力和流量时,需要综合考虑液压缸的负载、摩擦、机械阻力等因素。
1.2 液压油的选择和处理摆动液压缸所使用的液压油应具有良好的润滑性、抗磨性和热稳定性。
在选用液压油时,需要考虑工作温度、粘度等因素,并进行定期维护和更换,以确保系统的正常运行。
1.3 液压泵和液压阀的选择摆动液压缸所需的压力和流量由液压泵提供,因此需要选择合适的液压泵。
同时,还需要根据实际需要选择合适的液压阀,包括单向阀、调速阀等,以实现对液压缸的控制。
1.4 液压系统的布置和管路设计摆动液压缸的液压系统应与其它机械元件紧密结合,以确保系统的稳定性和工作效率。
在进行管路设计时,需要遵循液压传动的基本原理,合理设计管道的直径、长度和弯曲等参数,以减少能量损失和压力损失。
2. 性能分析方法在设计摆动液压缸的液压系统时,需要进行性能分析,以评估系统的工作效果和可靠性。
以下是一些常用的性能分析方法:2.1 压力分析通过在液压系统中加入压力传感器,可以实时监测液压缸所受的压力变化。
通过分析压力曲线,可以评估系统的稳定性和工作负荷。
2.2 流量分析流量分析可以帮助了解液压系统中液体流动的情况,包括流速、流量分布和液压损失等。
通过在系统中添加流量计,可以实时监测液压流量,并进行相应的分析和优化。
2.3 功率分析功率分析主要通过监测液压系统的输入功率和输出功率来评估系统的能量转换效率。
通过分析功率曲线,可以了解系统的能量损失和能效改进的空间。
液压缸课程设计总结
液压缸课程设计总结在液压技术领域,液压缸是一种常用的执行元件。
液压缸的设计与应用在工程实践中具有重要意义。
本文将对我在液压缸课程设计中的经验和收获进行总结。
在液压缸课程设计中,我对液压系统的工作原理和组成部分有了更深入的理解。
液压缸作为液压系统中的核心部件,通过转换液压能为机械能,实现了力的传递和工作机构的运动控制。
我学会了如何根据工作要求选择合适的液压缸类型、尺寸和工作压力,以及如何设计合理的液压系统来满足实际工程需求。
在液压缸的设计过程中,我掌握了液压缸的结构和工作原理。
液压缸主要由筒体、活塞、密封件和导向装置等组成。
活塞在液压力的作用下进行往复运动,实现了工作机构的运动控制。
我学会了如何根据工作负荷和运动要求选择合适的密封件和导向装置,并合理设计液压缸的结构参数,以提高液压缸的工作效率和可靠性。
在液压缸课程设计中,我还学会了如何进行动力学分析和性能评价。
通过对液压缸的动力学特性进行分析,我可以评估液压缸的运动速度、加速度、力矩和功率等性能指标,以及液压缸的稳定性和可靠性。
我还学会了如何进行液压缸的材料选择和热力学优化,以提高液压缸的工作效率和经济性。
在液压缸课程设计中,我深刻认识到液压技术在工程领域的重要性和广泛应用。
液压系统具有传动力大、传动效率高、速度可调和动态响应快等优点,广泛应用于机床、建筑、冶金、矿山和航空等领域。
通过对液压缸的设计和应用研究,我对液压技术的理论和实践能力得到了提升。
液压缸课程设计是我在液压技术领域的一次重要实践和学习经历。
通过这次设计,我对液压系统的工作原理和液压缸的设计和应用有了更深入的了解。
我相信这次设计经验对于我的工程实践和专业发展具有重要意义。
我将继续学习和研究液压技术,不断提高自己的专业能力,为实现工程技术的创新和进步做出贡献。
液压缸动力学特性的仿真分析和优化
液压缸动力学特性的仿真分析和优化液压动力传动系统是机械传动中的一种重要的动力传递方式,液压缸作为液压动力传递的主要执行部件,在各种工业生产中都得到了广泛的应用。
液压缸具有体积小、重量轻、传递力矩大等优点,在现代工业中起着至关重要的作用。
本篇文章将会探讨液压缸动力学特性的仿真分析和优化,先介绍液压缸的工作原理和结构,然后介绍液压缸的动力学模型分析方法,其次分析液压缸的动态响应特性和液压缸优化设计,最后探究液压缸在应用中存在的问题和解决方法。
一、液压缸的工作原理液压缸是液压动力传动系统中的一种机械执行部件,主要由缸筒、活塞、活塞杆、密封件等部件组成。
液压缸的工作原理是将液体压力转化为线性运动的力,通过阀门控制,将液体进行压缩和扩张,使得活塞在缸筒内做直线运动,从而实现机械设备的动作。
二、液压缸的动力学模型分析液压缸采用的主要控制方式是位置、速度和力的控制,而描述液压缸的动力学特性需要建立动力学模型。
液压缸的动力学模型通常采用质量、弹簧、阻尼系统的等效模型进行建模。
质量元件代表活塞质量,弹簧元件代表液体弹性和密封元件的弹性,阻尼元件代表液体的黏性和液体因口数量不足所引起的摩擦阻尼。
液压缸动力学仿真可以帮助我们了解液压缸在运动过程中的响应特性,从而可以为优化设计提供理论支持。
三、液压缸的动态响应特性液压缸的动态响应特性主要是指液压缸在激励下的动态响应特性,包括自振频率、阻尼比、环境激励等方面。
液压缸在工作中,由于受到外界环境因素的影响,会产生强烈的振动。
因此,在设计液压缸时需要考虑其动态响应特性,以减少机械设备的振动幅度和机械故障率。
四、液压缸优化设计液压缸的优化设计可以从结构设计和控制设计两个方面入手。
液压缸的结构设计要保证强度和可靠性,在尽可能减小自身重量的前提下,提高其负载能力。
液压缸的控制设计要提高控制精度和运动速度,减少机械设备的响应时间和能耗。
五、液压缸在应用中存在问题和解决方法液压缸在应用中可能会存在液体泄露、密封不良、振动幅度大等问题,需要多方面进行解决。
基于有限元分析的液压缸优化设计
基于有限元分析的液压缸优化设计引言:液压系统在现代工程中扮演着重要的角色,其中液压缸作为液压系统的核心元件之一,被广泛应用于各个领域。
液压缸的设计优化是提高系统效率和可靠性的关键环节之一。
本文将探讨基于有限元分析的液压缸优化设计方法,旨在提高其工作性能和使用寿命。
1. 液压缸工作原理液压缸是将液压能转化为机械能的装置,通常由缸筒、活塞和活塞杆组成。
液压油通过控制阀进入液压缸的两端,推动活塞和活塞杆产生线性运动。
2. 液压缸设计参数液压缸设计的关键参数包括缸径、缸程、工作压力、活塞杆直径等。
这些参数的合理选择对液压缸的性能至关重要。
3. 有限元分析在液压缸设计中的应用有限元分析是一种工程设计常用的计算方法,通过将结构分割成有限个小单元,在每个小单元上建立近似方程,然后通过求解方程组得到结构的应力、应变和位移等物理量。
在液压缸设计中,有限元分析可以用于评估结构的强度、刚度和疲劳寿命等重要指标。
4. 优化设计目标液压缸的设计优化目标是提高其工作效率、减少能耗和延长使用寿命。
通过有限元分析,可以对液压缸各个部件进行结构优化,以实现这些目标。
5. 液压缸缸筒设计优化液压缸缸筒的设计优化主要包括减少重量和提高刚度两个方面。
通过有限元分析,可以确定更合理的材料和结构参数,减少结构的应力集中和变形。
6. 液压缸密封件设计优化液压缸的密封件对其密封性能和工作寿命有着重要影响。
通过有限元分析,可以评估密封件的接触压力、温度分布和变形情况,以优化密封设计。
7. 液压缸活塞杆设计优化液压缸活塞杆承受着很大的弯曲和拉压力,其设计的合理性直接影响液压缸的使用寿命。
有限元分析可以评估活塞杆的强度和刚度,优化其设计以提高液压缸的可靠性。
8. 液压缸循环寿命预测通过有限元分析,可以预测液压缸的循环寿命,以评估其可靠性。
根据结构的应力水平和载荷循环数,可以采取合适的方法进行寿命预测和结构改进。
结论:基于有限元分析的液压缸优化设计方法可以有效地提高其工作性能和使用寿命。
双作用多级液压缸设计分析
双作用多级液压缸设计分析摘要:双作用多级液压缸的制作难度、维修难度相比于传统液压缸来说更高。
本文重点分析了一种双作用多级液压缸的结构,说明了其在工作时的大致过程,并给出了相应的工作原理,提出了优化改进方案。
关键词:双作用多级液压缸;结构;设计双作用多级液压缸是一种区别于传统液压缸的新型液压机器,与后者相比,前者的优点是结构非常紧凑,且外形很小,可以满足空间不大的环境,还能够满足外伸内缩时带动负载的功能。
但相比普通液压缸,其结构又比较复杂,成本与加工难度很高,都必须由专业的工厂设计。
1.液压结构设计在系统对负载的运动速度没有具体要求,而只是对其推力和行程有要求的情况下,对液压缸的结构进行了设计。
其结构设计图如图1所示。
此液压缸是双作用两级活塞式的。
由第一级活塞,第二级活塞还有缸筒构成,其中1为缸筒,2为第一级活塞,3为第二级活塞。
首先将第一级的活塞筒部做成双层的结构,并在外层的左端开有一个小孔(D),内层的右侧开有小孔E,液压缸的油口A在第二级的活塞杆上面,并在第二级活塞杆上开一小孔C,且C与B相通,B口通过其通道与液压缸的右半部分相连[1]。
2.双作用多级液压缸工作过程我们将第一级的活塞左半部分的有效面积称为S1,右半部分面积为S2,第二级活塞左端部分的面积为S2,有端部分的有效面积为S2a.一般情况下,我们将液压缸活塞向外伸展时分为两种情况,第一种为第二级活塞不动,第一级活塞运动,两级活塞一起向外翻。
第二种是每当第一级到达右面的点时,其所受的压力等于第二级活塞左半部分所受的压力,将第二级活塞推到第一级活塞的右半部分。
在上述分析活塞外伸过程中,考虑到活塞的右端有效面积相对于左端面积比较小,而且外伸时有杆腔的压力比较低,忽略了作用在活塞右端上的液压力,这与实际是符合的[2]。
我们从多级液压缸的工作过程可以看出这种液压缸较单级液压缸的效率更高,需注意方面更多。
3.二级双作用液压缸的设计注意点在二级双作用液压缸中,其一级活塞杆制作过程比较复杂,在设计时要详细地考虑合理的设置。
液压缸设计说明范文
液压缸设计说明范文液压缸是一种通过压缩液体来产生力和运动的装置。
液压缸的设计非常关键,因为它直接影响到液压系统的性能和效率。
在本文中,将详细介绍液压缸的设计说明,包括液压缸的工作原理、结构设计、性能要求等。
一、液压缸的工作原理液压缸基本上是由一个活塞和一个圆筒组成的。
当液体从液压泵流入液压缸时,由于液体的压力作用在活塞上,活塞开始移动。
活塞上的力产生的推力通过轴承传递给机器或装置,使其产生运动。
液压缸的工作原理十分简单,但是涉及到的流体力学原理十分复杂。
二、液压缸的结构设计液压缸的结构设计应考虑以下几个方面:1.缸体和活塞材料的选择:缸体和活塞应使用高强度、耐腐蚀的材料,如优质铸铁或钢材。
这些材料具有良好的承载能力和耐用性。
2.传动杆的设计:传动杆应具备足够的强度和刚度,以抵抗液体的推力。
为了减轻传动杆的重量,可以使用轻质合金材料制造。
3.密封结构的设计:液压缸的密封结构非常重要,它直接影响着液压缸的性能和寿命。
常见的密封结构包括密封圈、密封垫和密封堵等。
三、液压缸的性能要求液压缸的性能要求包括负载能力、速度、精度和可靠性等方面的要求。
1.负载能力:液压缸的负载能力是指其能承受的最大推力。
根据具体的应用场景和需要,液压缸的负载能力应足够强大,能满足设备的工作需求。
2.速度:液压缸的速度是指活塞的移动速度。
为了加快工作效率,液压缸应具备快速移动和缓慢移动的能力。
可以通过调整液压泵的流量和压力来控制液压缸的速度。
3.精度:液压缸的精度是指活塞移动的精确度。
对于一些需要高精度的应用场景,液压缸需要具备较高的精度,以确保机器或装置的准确操作。
4.可靠性:液压缸的可靠性是指其工作稳定性和寿命。
液压缸应具备抗压能力强、密封性好、耐磨损和耐腐蚀等特点,以确保其长时间稳定运行。
四、液压缸的应用液压缸广泛应用于各种机械设备和工程项目中,如挖掘机、起重机、冶金设备、农业机械等。
液压缸的优势在于其高负载能力、稳定性和调节性能,能够满足不同工作环境和需求。
液压缸的密封性能分析与优化设计
液压缸的密封性能分析与优化设计液压技术在各个工业领域中起着至关重要的作用,而液压缸则是其中不可或缺的关键部件。
液压缸的密封性能对其正常运行和使用寿命有着重要的影响。
本文将着重分析液压缸的密封性能,并提出相关的优化设计思路。
首先,我们来介绍一下液压缸的工作原理。
液压缸通过液压系统提供的液体力量,将液体的动能转化为机械的线性运动力。
在液压缸中,密封件的作用是防止液体泄漏以及阻止外界杂质进入。
因此,液压缸的密封性能直接影响到液压系统的效率和可靠性。
在液压缸的密封件中,O型密封圈是最常见的一种。
其结构简单且价格较为经济,但是密封效果相对较差。
因此,在实际应用中,有时会采用多个O型密封圈或者其他辅助密封结构来提高密封性能。
此外,还可以选择其他类型的密封圈,如V型密封圈、U型密封圈等,以满足不同的应用要求。
然而,即便采用了有效的密封结构,液压缸的密封性能仍然会受到一些因素的影响。
例如,液压缸在工作过程中产生的高压力和高温会对密封件造成一定的损伤,进而导致泄漏。
因此,在液压缸的设计中,需考虑到材料的选择和加工工艺,以提高密封件的耐压性和耐温性。
此外,液压缸的密封性能还与工作介质的性质密切相关。
不同介质的黏度、pH 值和化学性质等都会对密封件产生不同的影响。
因此,在液压缸的设计中,需根据具体的工作条件选择合适的密封材料,并对密封结构进行合理的调整。
在实际应用中,灰尘、颗粒等外界杂质的进入也是影响液压缸密封性能的一个重要因素。
通常情况下,液压缸都会安装有防尘套或保护罩来避免杂质的侵入。
同时,定期清洗和维护也是保持液压缸密封性能的重要措施。
最后,为了进一步优化液压缸的密封性能,我们可以考虑引入一些先进的技术手段。
例如,利用密封润滑剂或者涂层技术来减少密封间的摩擦损耗,提高密封效果;将液压缸与传感器相结合,实现实时监测和控制,从而减少泄漏和故障率等。
综上所述,液压缸的密封性能对液压系统的正常运行具有重要的影响。
通过选择合适的密封结构、材料和工艺,并采取有效的保护措施,我们可以不断优化液压缸的密封性能,从而提高液压系统的工作效率和可靠性。
液压缸结构设计范文
液压缸结构设计范文
一、液压缸简介
液压缸是一种由活塞和缸套组成的液压油缸,它可以由液压油的压力产生较大的推力,用于改变或传送动力。
液压缸系统由液压驱动和液压控制组成。
液压驱动部分由电动机、液压泵、油缸、活塞和活塞杆组成,液压控制部分包括电磁阀、液压节流阀、启闭阀、按钮、指示灯和文字显示仪表等。
二、液压缸结构
液压缸由活塞和缸套组成。
活塞由活塞盖、活塞缘、活塞密封圈和活塞杆组成,活塞就是一个圆筒,外侧装有活塞缘,内侧装有密封环,上面装有活塞盖,顶端伸出变径活塞杆,将活塞和活塞杆固定在一起。
活塞的表面与缸内表面之间可以形成负压,从而起到密封的作用。
缸套的结构与活塞相似,但是缸套内表面不像活塞,它有多个孔,用于连接各种液压控制元件。
三、液压缸材料
液压缸的材料有很多种,它们的特性不同,所以在选择的时候需要考虑它们的用途。
常见的液压缸材料有铸铁、碳钢、镍钢、高温合金、不锈钢等。
(1)铸铁。
铸铁是一种普通材料,具有良好的抗压性能,适合制造大尺寸、重量较重的液压缸,但其韧性和抗磨性较差,不适用于液压泵的大功率或超高。
液压缸设计
第一章液压系统设计1.1液压系统分析1.1.1 液压缸动作过程3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。
工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。
按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。
1.1.2液压系统设计参数(1)合模力;(2)最大液压压28Mp;(3)主缸行程700㎜;(4)主缸速度υ快=38㎜/s、υ慢=4.85㎜/s。
1.1.2分析负载(一)外负载压制过程中产生的最大压力,即合模力。
(二)惯性负载设活塞杆的总质量m=100Kg,取△t=0.25s(三)阻力负载活塞杆竖直方向的自重活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。
静摩擦阻力动摩擦阻力由此得出液压缸在各个工作阶段的负载如表****所示。
表*** 液压缸在各个工作阶段的负载F工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。
F/N v/mm s-1537 491981 384.850 l/mm 0 l/mm-491 -981由已知速度υ快=38㎜/s、υ慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如图***所示。
1.2确定执行元件主要参数1.2.1 液压缸的计算(一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。
鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。
在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。
由合模力和负载计算液压缸的面积。
将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:由此得液压缸两腔的实际有效面积(二)确定液压缸壁厚根据公式计算液压缸壁厚。
液压缸的结构设计
液压缸的结构设计1. 引言液压缸是液压系统中的重要组成部分,常用于工程机械、冶金设备、船舶等领域。
它通过液体的压力将机械能转化为线性运动,具有结构简单、负载能力大、工作平稳可靠等优点。
本文将详细介绍液压缸的结构设计。
2. 液压缸的基本结构液压缸主要由缸体、活塞、密封装置和连接件等部分组成。
2.1 缸体液压缸的缸体一般采用铸铁或钢制成,具有足够的强度和刚度以承受工作时的载荷。
为了减少摩擦损失和提高密封性能,缸体内表面通常经过精加工或镀硬铬处理。
2.2 活塞活塞是液压缸中起到推动作用的部件,一般由铝合金或钢制成。
活塞与缸体之间留有一定间隙,以便活塞在工作时能自由移动。
为了提高密封性能,活塞上通常设有密封圈。
2.3 密封装置液压缸的密封装置主要包括活塞密封、杆子密封和缸体密封。
活塞密封一般采用双向活塞密封圈,杆子密封一般采用双向油封,缸体密封一般采用O型圈。
这些密封件的选材和结构设计对液压缸的使用寿命和性能有重要影响。
2.4 连接件液压缸的连接件包括杆子、油管和连接螺栓等。
杆子连接在活塞上,通过连接螺栓与其他机械部件相连。
油管用于输送液压油,连接液压缸与液压泵或控制阀。
3. 液压缸的结构设计要点液压缸的结构设计需要考虑以下几个要点:3.1 负载能力液压缸在工作时承受较大的负载,因此结构设计需要保证足够的强度和刚度,以防止变形或破坏。
3.2 密封性能良好的密封性能是液压缸的关键要求之一。
密封装置的选材和结构设计需要考虑工作环境的温度、压力和介质等因素,以确保可靠的密封效果。
3.3 运动平稳性液压缸在工作时需要实现平稳的线性运动,避免震动和冲击。
结构设计需要考虑减小摩擦阻力、提高液压缸的刚度和稳定性等因素。
3.4 维修与维护液压缸在使用过程中可能会出现泄漏、磨损等问题,因此结构设计需要考虑方便维修与维护。
活塞上的密封圈应易于更换,缸体应设有排水孔等。
4. 结论液压缸的结构设计是确保其正常运行和使用寿命的关键因素之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章液压系统设计1.1液压系统分析1.1.1 液压缸动作过程3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。
工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。
按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。
1.1.2液压系统设计参数(1)合模力;(2)最大液压压28Mp;(3)主缸行程700㎜;(4)主缸速度υ快=38㎜/s、υ慢=4.85㎜/s。
1.1.2分析负载(一)外负载压制过程中产生的最大压力,即合模力。
(二)惯性负载设活塞杆的总质量m=100Kg,取△t=0.25s(三)阻力负载活塞杆竖直方向的自重活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。
静摩擦阻力动摩擦阻力由此得出液压缸在各个工作阶段的负载如表****所示。
表*** 液压缸在各个工作阶段的负载F工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。
F/N v/mm·s-1537 491981 384.850 l/mm 0 l/mm-491 -981 -38由已知速度υ快=38㎜/s、υ慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如图***所示。
1.2确定执行元件主要参数1.2.1 液压缸的计算(一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。
鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。
在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。
由合模力和负载计算液压缸的面积。
将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:由此得液压缸两腔的实际有效面积(二)确定液压缸壁厚根据公式计算液压缸壁厚。
式中:δ=管壁厚 mmP=最大压力 kg/cm2D=液压缸内径 mm许用应力,[]=,n为安全系数,此处取n=5。
=抗拉强度最低值设定油缸用料45#,抗拉强度600Mp,最大压力28MP,管内径400mm,则最小壁厚,此处取壁厚δ=60㎜。
(三)液压缸及活塞杆长度的确定(1)液压缸工作行程长度 =700mm。
(2)最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度。
如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。
对一般的液压缸,最小导向长度H应满足以下要求:式中:L——活塞杆的最大行程;D——液压缸的内径。
l,根据液压缸内径D而定;活塞的宽度B一般取B=(0.610)D;缸盖滑动支承面的长度1当D<80mm时,取;当D>80mm时,取。
l和B都是不适宜的,必要时可在缸盖与活塞之间为保证最小导向长度H,若过分增大1增加一隔套K来增加H的值。
隔套的长度C由需要的最小导向长度H决定,即滑台液压缸:最小导向长度:取 H=240mm活塞宽度:B=0.6D=240mm缸盖滑动支承面长度:㎜隔套长度:。
液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。
缸体外形长度还要考虑到两端端盖的厚度。
一般液压缸缸体长度不应大于内径的2030倍。
液压缸:缸体内部长度,即活塞杆长度(四)活塞杆稳定性校核活塞杆受轴向负载,其值F超过某一临界值,就会失去稳定。
活塞杆稳定性按下式进行校核。
式中:——安全系数,一般取2 4,此处取。
活塞杆长细比940/280=3.36当活塞杆的长细比时,且时式中:——安装长度,其值与安装方式有关;——活塞杆横截面最小回转半径,;——柔性系数;——由液压缸支撑方式决定的末端系数;E——活塞杆材料的弹性模量,对钢,可取——活塞杆横截面惯性矩;——活塞杆横截面积;——由材料强度决定的实验值;——系数。
以上各值参考章宏甲主编《液压与气压传动》第二版130页液压缸强度校核中表3-4、表3-5所取。
2.2 液压缸的结构设计液压缸主要尺寸确定以后,就进行各部分的结构设计。
主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。
由于工作条件不同,结构形式也各不相同。
设计时根据具体情况进行选择。
设计计算过程1)缸体与缸盖的连接形式缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。
本次设计中采用外半环连接,如下图所示:缸体与缸盖外半环连接方式优点:(1)结构较简单;(2)加工装配方便。
缺点:(1)外型尺寸大;(2)缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构。
参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。
如下图2所示:图2 活塞杆与活塞螺纹连接方式特点:结构简单,在振动的工作条件下容易松动,必须用锁紧装置。
应用较多,如组合机床与工程机械上的液压缸。
2)活塞杆导向部分的结构(1)活塞杆导向部分的结构,包括活塞杆与端盖、导向套的结构,以及密封、防尘和锁紧装置等。
导向套的结构可以做成端盖整体式直接导向,也可做成与端盖分开的导向套结构。
后者导向套磨损后便于更换,所以应用较普遍。
导向套的位置可安装在密封圈的内侧,也可以装在外侧。
机床和工程机械中一般采用装在内侧的结构,有利于导向套的润滑;而油压机常采用装在外侧的结构,在高压下工作时,使密封圈有足够的油压将唇边张开,以提高密封性能。
参阅<<液压系统设计简明手册>>P16表2-9,在本次设计中,采用导向套导向的结构形式,其特点为:导向套与活塞杆接触支承导向,磨损后便于更换,导向套也可用耐磨材料。
盖与杆的密封常采用Y形、V形密封装置。
密封可靠适用于中高压液压缸。
防尘方式常用J形或三角形防尘装置活塞及活塞杆处密封圈的选用活塞及活塞杆处的密封圈的选用,应根据密封的部位、使用的压力、温度、运动速度的范围不同而选择不同类型的密封圈。
参阅<<液压系统设计简明手册>>P17表2-10,在本次设计中采用O形密封圈。
活塞杆的计算及校核1.强度校核由以上计算有:活塞杆直径d=0.3m。
按公式进行校核。
式中:F——活塞杆上的作用力。
--活塞杆材料的许用应力,。
经过计算得=96.7mm,显然d=300mm﹥96.7mm。
2. 稳定性校核活塞杆受轴向压缩时,其值F 就会超过某一临界值F k ,就会失去稳定性。
活塞杆的稳定性按下式进行校核。
式中:——安全系数,一般取24。
此处取4。
1.强度校核由以上计算有:活塞杆直径d=0.3m 。
按公式进行校核。
式中:F ——活塞杆上的作用力。
--活塞杆材料的许用应力,经过计算得=96.7mm ,显然d=300mm ﹥96.7mm 。
2. 稳定性校核活塞杆受轴向压缩时,其值F 就会超过某一临界值F k ,就会失去稳定性。
活塞杆的稳定性按下式进行校核。
式中:——安全系数,一般取24。
此处取4。
1.3确定液压系统方案 1.3.1设计液压系统方案由于该热压成型机是固定式机械,且不存在外负载对系统做功的工况,由表***知,此热压机液压系统功率大,运动速度小,工作负载变化也小。
表***液压缸在不同工作阶段的压力、流量和功率值工况负载 F/N回油腔压力 /Mp进油腔压力 /Mp 输入流量 输入功率 P/kW计算式启动 981 0 0.508 ——/加速 537 0.70.811恒速4910.8104.776 3.869慢速下0.7200.61212.2/保压0.726.4600 0/返回103010.7 1.796 2.09 6.002/注:液压缸的机械效率取,从表中可以看出,在此液压系统的工作循环内,液压缸要求油源交替的提供低压大流量和高压小流量的油液。
液压缸完成工作所需的时间范围为:设活塞杆快速行进的长度为620mm,慢速行进的路程为80mm,则有:液压缸一个循环的工时间较长,可选用双联泵的方式进行供油。
1.3.2确定系统方案,拟定液压系统图(一)设计液压系统方案由于该液压机是固定式机械,存在负载制动过程,由表***知,此液压机属于中等功率、中高压系统,工作负载变化大,根据液压机设计规范,液压系统宜采用容积调速的开环为宜。
为解决系统卸荷后的活塞杆下滑,在回油路上设置单向阀和背压阀。
(二)选择基本回路1.选择快速回路和换向回路系统中采用容积调速回路,必须具有单独的油路直接通向液压缸两腔,以实现快速运动。
在本系统中,快进、快退换向回路采用图***所示的形式。
2.选择速度换接回路由工况图***********(图*****)中的q l曲线可知,当活塞杆从快进转为慢进时,输入液压缸的流量由286.56L/min降至为36.6L/min,活塞杆的速度变化较大,可选用行程阀来控制速度的换接,以减小液压冲击。
当活塞杆由慢退改为快退时,回路中通过的流量很大——进油路中通过125.4L/min,回油路中通过125.4×(0.1257/0.0550)L/min=286.6L/min。
为了保证液压系统平稳起见,采用换向时间可调的电磁换向阀换接回路。
3.选择调压和卸荷回路油源中有溢流阀调定系统工作压力,因此调压问题已在油源中解决,无须另外再设调压回路。
而且系统采用容积调速,故溢流阀常开,即使活塞杆被卡住,系统压力也不会超过溢流阀的调定值,所以溢流阀又起安全阀的作用。
在此液压系统中使用了M型三位四通阀,当活塞杆停止时,液压泵可经此阀卸荷。
因而不需要再设置卸荷回路。
4.保压回路系统要在某一个设定的压力下维持工作一定的时间,因此,应该设有保压回路。
在液压缸进口处安装一个单向阀,液压泵提供的流量通过单向阀进入液压缸,,当达到设定的工作压力后,压力继电器动作,使系统处于卸荷状态下,此时,液压缸内的油液由于有单向阀的作用,因此不能够流动,液压缸内的压力保持恒定。
因此单向阀基能保压同时又能保证在液压泵出现故障时,液压缸中的油液不会被倒吸。
5.补压回路保压过程维持一定的时间后,由于系统有泄漏,液压缸内的压力有所损失,以至于影响工件的加工,为了能够保证系统绝对的达到所需要的压力,需要对系统进行补压。
补压无需另设回路,即按照加压时的回路进行。
(三)将液压回路综合成液压系统1. 将已确定的各种液压回路组合在一起,就可得到一张图*****所示的液压系统原理图。
如图****所示。
在此基础上,对液压系统图进行完善。
(1)为了解决活塞杆在自重的作用下快速下滑时进油腔形成无油区,在液压缸上腔设置上位补偿油箱,当油液出现真空区时自动补上。