数学模型第四版姜启源第十章--统计回归模型

合集下载

第姜启源数学模型复习总结

第姜启源数学模型复习总结

第四版姜启源数学模型复习总结第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。

建模的一般方法及其在建模中的应用。

建模的一般步骤(每步的主要内容与问题)。

建模的全过程(框图)4个环节的含义。

模型的特点(技艺性)。

模型分类(表现特征),建模中的能力培养。

数学建模实例的建模思想及其步骤§1 数学模型的概念:模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。

模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。

抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。

数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。

§2 建模的重要意义(1)数学以空前的广度和深度向一切领域渗透在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了;数学进入一些新领域,为数学建模开辟了许多处女地.数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。

§3实例1:椅子问题:实际问题转换为数学问题的方法:位置用角度,放平问题转化为连续函数的零点问题(连续函数的零点定理)矩形椅子问题:(1)用θ表示椅子对角线AC 与x 轴的夹角,因为假设地面是连续曲面,椅子各点到地面的距离是θ的连续函数。

设相邻的,A B 两点到地面的的距离之和为()f θ,,C D 两点到地面的距离之和为()g θ,令()()()h f g θθθ=-,则()h θ是θ的连续函数。

(2)因为假设地面是相对平坦的,在任一位置至少三只脚着地,不妨设0θ=时,(0)0,g(0)0f >=,(0)(0)(0)0h f g =->。

(3)将椅子旋转π,则,A B 旋转到原来,C D 的位置,,C D 旋转到,A B 的位置,即AB 与CD 的位置互换,因此有()(0)0,()f(0)0f g g ππ===>,因此()()()g(0)f(0)0h f g πππ=-=-<, 即连续函数()h θ在[0,]π两端点异号,由连续函数的介值定理(零点定理),知存在一点*θ使*()0h θ=,即**()()f g θθ=。

数学模型姜启源 ppt课件

数学模型姜启源 ppt课件
6
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介

数模学习(姜启源笔记)

数模学习(姜启源笔记)

天大万门数模写在开始今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。

可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是~~ 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:一,“实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;二,模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了;三,用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。

从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。

最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。

也可以作为未读过、准备读这本书的同学的参考~第1章建立数学模型关键词:数学模型意义特点第1章是引入的一章,对数学模型的意义来源,做了很好的解释。

其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。

数学模型第四版课后答案姜启源版

数学模型第四版课后答案姜启源版

《数学模型》作业答案第二章(1)(2012年12月21日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴《数学模型》作业解答第三章1(2008年10月14日)01. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rT c T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),( 2223322221222TkQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QCTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022)()()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kT T r k r c 2)(2⋅-= 于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dTdC令, 得)(221r k r c kc T -=*易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况.0 ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b kc b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TTt <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+---)(2)822(12011bp a TT T q T p b p -+---=∂∂β )(2)8322(22022bp a TT t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(max 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元);每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100k k T C 100309302500)(0+⨯+==353.33+100k )(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为: max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l925002+-=TdT dC以及x=0,y=0组成的凸四边形区域.直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 max S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 max x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x 90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为: max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .max S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim.0)18(t ==∞→∞t i i 即式知又由书上0 .)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了0.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为()(),,0t x t f 中心室药量为()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt 3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β0(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbla eb a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx0().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()((1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ ,(1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点;②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20Nx =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dt dx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rN h N x --=, 2412N rN hN x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max N xrx h -=,易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2N x >,且尽量接近2N ,但不能等于2N.2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln )(① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .0∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;Ex()x f② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x f --= ,即0 dt dx ∴0x 不稳定; ③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..m a x x f t s h即 )1(max Nx rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和0第一章作业解答第 21 页 共 55 页)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k由(2)得 )3()(0102 y y x x k k -=-++β0(1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则0第一章作业解答第 23 页 共 55 页⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-= 则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得0 ,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ0第一章作业解答第 25 页 共 55 页∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换 B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.0第一章作业解答第 27 页 共 55 页32154→→→→13542→→→→42135→→→→→→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()Te 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==, ()()()T AS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0= 数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有0第一章作业解答第 29 页 共 55 页()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n n npq q m npq m q m 于是带走产品的平均数是 ()122-+-n n npq q m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n ) ∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n n p q q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'mn n D ---≈当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:0 由上知:m nE 4≈,226'mn E ≈ ∴ mnE E 32/'=,当n m 时,132 m n , ∴ E E '.所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章01. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型2. 数学模型对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中著名的牛顿第二定律使用公式22dt xd mF =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N 随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用 5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型c. 按建模目的来分类 数学模型 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧控制模型决策模型优化模型预报模型分析模型描述模型d.层次分析法的基本步骤:1.建立层次结构模型2.构造成对比较阵3.计算权向量并作一致性检验4.计算组合权向量并作组合一致性检验e.n 阶正互反正A 是一致阵的充要条件为A 的最大特征值为nf.正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有。

姜启源数学建模资料

姜启源数学建模资料

姜启源数学建模资料简单的优化模型3.1 3.2 3.3 3.4 存贮模型生猪的出售时机森林救火最优价格3.5 血管分支3.6 消费者均衡3.7 冰山运输<i>姜启源数学建模资料</i>静态优化模型现实世界中普遍存在着优化问题静态优化问题指最优解是数不是函数静态优化问题指最优解是数(不是函数不是函数) 建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数求解静态优化模型一般用微分法<i>姜启源数学建模资料</i>问题3.1存贮模型配件厂为装配线生产若干种产品,配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。

备要付生产准备费,产量大于需求时要付贮存费。

该厂生产能力非常大,即所需数量可在很短时间内产出。

生产能力非常大,即所需数量可在很短时间内产出。

已知某产品日需求量100件,生产准备费5000元,贮存费件生产准备费已知某产品日需求量元每日每件1元试安排该产品的生产计划,每日每件元。

试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。

),每次产量多少一次(生产周期),每次产量多少,使总费用最小。

不只是回答问题,而且要建立生产周期、要不只是回答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系。

求需求量、准备费、贮存费之间的关系。

<i>姜启源数学建模资料</i>问题分析与思考日需求100件,准备费5000元,贮存费每日每件元。

件准备费日需求元贮存费每日每件1元每天生产一次,每次每天生产一次,每次100件,无贮存费,准备费件无贮存费,准备费5000元。

元每天费用5000元元每天费用10天生产一次,每次天生产一次,天生产一次每次1000件,贮存费件贮存费900+800+…+100 =4500 准备费5000元,总计元,准备费元总计9500元。

元平均每天费用950元元平均每天费用50天生产一次,每次天生产一次,天生产一次每次5000件,贮存费件贮存费4900+4800+…+100 =*****元,准备费元准备费5000元,总计元总计*****元。

姜启源编数学模型第四版

姜启源编数学模型第四版
第26页/共76页
一般模型 x(t) ~甲方兵力,y(t) ~乙方兵力
模型 假设
• 每方战斗减员率取决于双方的兵力和战斗力. • 每方非战斗减员率与本方兵力成正比. • 甲乙双方的增援率为u(t), v(t).
x(t) f (x, y) x u(t), 0
tm~传染病高潮到来时刻
tm
1
ln
1 i0
1
t i 1 ?
(日接触率) tm
病人可以治愈!
第6页/共76页
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染. SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
di
dt
i(1 i)
i
i[i (1 1 )]
i(0) i0
/
~ 日接触率 1/ ~感染期
~ 一个感染期内每个病人的
有效接触人数,称为接触数.
第7页/共76页
模型3
di/dt
di i[i (1 1 )]
dt
接触数 (感染期内每个
病人的有效接触人数)
i
i
>1
i0
>1
1
1-1/
接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di
i(1 i)
dt
i(0) i0
第5页/共76页
模型2
i
di
i(1 i)
dt
i(0) i0
Logistic 模型
1
i(t)

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。

通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。

通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。

并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。

【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。

第二节数学建模的重要意义基本要求:了解数学建模的重要性。

第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。

第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。

第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。

第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。

第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。

第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。

难点:建立模型的过程。

第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。

第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。

第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。

数学建模姜启源统计回归模型

数学建模姜启源统计回归模型
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 yˆ 8.2933 (百万支)
区间 [7.8230,8.7636]
yˆ 8.3272 (百万支)
yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
区间 [7.8953,8.7592]
yˆ 略有增加
预测区间长度更短
两模型yˆ 与x1,x2关系的比较
Stats~ 检验统计量
R2,F, p
R2=0.9054 F=82.9409 p=0.0000
结果分析 y 0 1x1 2 x2 3x22
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ]
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进 y 0 1x1 2 x2 3x22
x1和x2对y 的影响独立
参数
0 1
参数估计值 17.3244 1.3070
置信区间 [5.7282 28.9206] [0.6829 1.9311 ]
• 对软件得到的结果进行分析,对模型进行改进
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
收集了30个销售周期本公司牙膏销售量、价格、
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1 2 29 30
本公司价 格(元) 3.85 3.75 3.80 3.70
数学建模的基本方法 机理分析 测试分析

数学建模之统计回归模型

数学建模之统计回归模型

数学建模大作业摘要某公司想用全行业的销售额作为自变量来预测公司的销售额,题目给出了1977—1981此公司的销售额和行业销售额的分季度数据表格。

通过对所给数据的简单分析,我们可以看出:此公司的销售额有随着行业销售额的增加而增加的趋势,为了更加精确的分析题目所给的数据,得出科学的结论,从而达到合理预测的目的。

我们使用时间序列分析法,参照课本统计回归模型例4,做出了如下的统计回归模型。

在问题一中,我们使用MATLB数学软件,画出了数据的散点图,通过观察散点图,发现公司的销售额和行业销售额之间有很强的线性关系,于是我们用线性回归模型去拟合,发现有很好的拟合性。

但是这种情况下,并没有考虑到数据的自相关性,所以我们做了下面几个问题的分析来对这个数学模型进行优化。

在问题二中,通过建立了公司销售额对全行业销售额的回归模型,并使用DW检测诊断随机误差项的自相关性。

通过计算和查DW表比较后发现随即误差存在正自相关,也就是说前面的模型有一定的局限性,预测结果存在一定的偏差,还有需要改进的地方。

在问题三中,因为在问题二中得出随即误差存在正自相关,为了消除随机误差的自相关性,我们建立了一个加入自相关后的回归模型。

并对其作出了分析和验证,我们发现加入自相关后的回归模型更加合理。

通过使用我们建立的模型对公司的销售额进行预测,发现和实际的销售额很接近,也就是说模型效果还不错。

关键词:销售额、回归模型、自相关性一、问题提出某公司想用全行业的销售额作为自变量来预测公司的销售额,下表给出了1977-1981年公司销售额和行业销售额的分季度数据(单位:百万元).(1)画出数据的散点图,观察用线性回归模型拟合是否合适。

(2)监理公司销售额对全行业销售额的回归模型,并用DW检验诊断随机误差项的自相关性。

二、基本假设假设一:模型中ε(对时间t )相互独立。

三、符号说明公司销售额:y (百万)行业销售额:x (百万) 概念介绍:1.自相关:自相关(auto correlation ),又称序列相关(serial correlation )是指总体回归模型的随机误差项之间存在的相关关系。

笔记-数学模型(第四版) 姜启源等编

笔记-数学模型(第四版) 姜启源等编
x(t t ) x(t ) kx(t ) t
dx kx 当 t 0 得微分方程: dt x(0) x0
解微分方程
dx kdt x 1 x dx kdt ln( x) kt c1 x ce kt , c x0 x x0 e kt
dm dm 由死亡率的定义可得: dr ( r , t ), (r , t )dr m m
解得
( r ,t ) dr m( ) ln(m) | (r , t )dr , e m( )



t 时刻年龄为 的人的存活时间之和为: h( ) 所以时刻 t 年龄为 的人的期望寿命为:
P174 习题 4 1.设 x(t ), y (t ) 分别为 t 时刻甲乙双方的兵力,满足下列微分方程
x ay , (1) y bx, (2) x ( 0) x 0 , y ( 0) y 0 a 4, x 0 y 0 则当乙方取胜时,乙方的剩余兵力是多少?战斗时间 b 是多少? (2) 若甲方在战斗开始后,有后备兵力以不变的速率 r 增援,试重新建立模 型, 讨论如何判断双方的胜负
0

( r , t ) dr
0

d
解:
设 t 时刻年龄为 的人的数目随时间变化的规律为: m m( r ), r 0
dm dm 由死亡率的定义可得: dr ( r , t ), (r , t )dr m m
解得
( r ,t ) dr m( ) ln(m) | (r , t )dr , e 0 0 m(0)
2.试推导 logistic 人口增长模型.即设时刻 t 的人口为 x(t ) ,单位时间内人口的 增量与 x(1

第十章统计回归模型-清华大学数学模型电子教案

第十章统计回归模型-清华大学数学模型电子教案

基本模型 n ( t 1 ) n ( t)Q ( w T r ) M ( t) r
PQwTr n (t 1 ) n (t)P M (t)r
k
k
P 的行和为 1
Q{pij} , pijw i 1,ri 1
p q 0 Pp/2 1/2 q/2
0 p q
pab,qbc
a2bc1
a(0)任意,稳 ww 态P 分 (p2,2布 p,qq2)
自然界中通常p=q=1/2 稳态分布D:H:R=1/4:1/2:1/4
解释“豆科植物的茎,绿色:黄色=3:1”
基因类型为D和H, 优势表征——绿色, (D+H):R=3:1 基因类型为R, 劣势表征——黄色。
1/ 4 0
P 0 R 0
0 0 1/ 2
0 00
00
0
0
0 1/ 4 0
马氏链是吸收链——不论初 始如何,经若干代近亲繁殖,
0
0Q 1
0
将全变为优种或劣种.
1/16 1/16 1/ 4 1/8 1/ 4 1/ 4
0 1/ 4 0 0 1/ 4 1/ 2
8/3 1/6 4/3 2/3
计算从任一非吸收态 出发,平均经过几代
k
W(t)wini(t)n(t)wT ~t年退出总人 i1
调r 入 ( r ,r , 比 r )r, ~ 每 例 i年 的调 比 12 k i
R(t)~t年调入r总 iR(t)~ 人 t年 数 调 i的 , 入 人数
k
p , w , r 0,
ij
ii
r i
1
i1
k
pij
wi
1,
i 1,k
j 1
M(IQ)14/3 4/3 8/3 4/3 4/3 1/3 8/3 4/3 2/3 1/6 4/3 8/3

《数学建模》教学大纲

《数学建模》教学大纲

《数学建模》教学大纲课程编码:1511101303课程名称:数学建模学时/学分:54/3先修课程:《数学分析》、《高等代数》、《数学软件与实验》、《概率论与数理统计》、《常微分方程》适用专业:数学与应用数学开课教研室:应用数学教研室一、课程性质与任务1.课程性质:本课程是数学与应用数学专业的专业基础课。

2.课程任务:本课程是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

通过数学建模有关的概念、特征的学习和数学建模实例的介绍,使学生较为系统地掌握利用数学工具建立数学模型的基本步骤、基本技能与常见方法,培养学生双向翻译能力,数学推导计算和简化分析能力和用数学方法和思想分析、解决实际问题的初步能力。

二、课程教学基本要求《数学建模》是一门应用性较强的新兴课程,主要培养学生应用数学理论和数学思想方法,利用计算机技术等辅助手段,分析、解决实际问题的综合能力。

由于该课程的性质、特点、内容不同于其它课程,教学形式应该是讲授与个人作业相结合,教学方法则是以启发式教学为主,学生动手实践为辅的双向教学模式。

本课程开设在第5学期,共54学时,其中课堂讲授36学时,课内实践18学时。

成绩考核形式:末考成绩(开卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。

成绩评定采用百分制,60分为及格。

三、课程教学内容第一章 数学建模概论1.教学基本要求让学生了解数学建模相关基本概念,了解课程特点,为后继学习奠定基础。

2.要求学生掌握的基本概念、理论、技能通过本章教学使学生了解数学模型、数学建模的概念,了解数学模型的特点和分类,初步掌握数学建模的基本方法和步骤,培养学生把实际问题翻译成数学问题的能力。

3.教学重点和难点教学重点是数学建模的基本步骤。

教学难点是如何把实际问题翻译成数学问题。

姜启源《大学数学实验》第10章

姜启源《大学数学实验》第10章

第二类:数理统计(抽查) 全部产品中随机抽取100件,发现2件次品
随机调查了200位居民,得到月平均支出为788元 次品率:2%;月平均支出788元
优点:调查、收集的数据量小,经费投入小,适合 不允许全部检验的产品,如灯泡、电器的寿命等 缺点:结果是随机的,是否可信? 任务:怎样用它来估计整体的状况(全部产品的 次品率,全体居民的月平均支出)
4
3
6
8
12
5
4
2
2
作用:推测出总体的某些简单性质。 如上表表明选择柜台高度在107.10至125.90的有31人, 占总人数的62%,柜台高度设计在这个范围内,会得到 大多数顾客的满意。
直方图(histogram):频数分布图
12
10
8
6
4
2
0 90
95
100
105
110
115
120
125
130
MATLAB数据描述的常用命令
命令 [n,y]=hist(x,k) hist(x,k) mean(x) median(x) range(x) 名称
频数表 直方图 均值 中位数 极差
输入
x: 原始数据行向量 k:等分区间数 同上 x: 原始数据行向量 同上 同上
输出
n: 频数行向量 y: 区间中点行向量 直方图 中位数 极差


期望和方差
随机变量X的期望就是平均值的意思,记作EX或
EX xp( x)dx


方差
DX ( x EX ) p( x)dx
2

总体均值(方差)与样本均值(方差)的关系:
1 n Ex Exi EX n i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.80
0.55
9.26
基本模型
y 10
9.5
y ~公司牙膏销售量
9
x1~其他厂家与本公司价格差
8.5 8
x2~公司广告费用
y 0 1x1 2 x2 3 x22
7.5
7
-0.2
0
0.2
0.4
0.6
y 0 1x1 x1
y~被解释变量(因变量)
y 10
9.5
x1, x2~解释变量(回归变量, 自变量) 9 8.5
x22项显著
可将x2保留在模型中
销售量预测 yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22
价格差x1=其他厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=6.5百万元
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 8.2933 (百万支)
Stats~ 检验统计量
R2,F, p,s2
R2=0.9054 F=82.9409 p<0.0001 s2=0.0490
结果分析
参数
0 1 2 3
R2=0.9054
y 0 1x1 2 x2 3 x22
参数估计值
置信区间
17.3244
[5.7282 28.9206]
1.3070
[0.6829 1.9311 ]
参数
参数估计值
置信区间
0
29.1133
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]
4
-1.4777
[-2.8518 -0.1037 ]
R2=0.9209 F=72.7771 p<0.0001 s2=0.0490
两模型销售量预测比较
控制价格差x1=0.2元,投入广告费x2=6.5百万元
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 预测值 yˆ 8.2933 预测区间 [7.8230,8.7636]
yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
预测值 yˆ 8.3272 预测区间 [7.8953,8.7592]
广告费用,及同期其他厂家同类牙膏的平均售价 .
销售 本公司价 其他厂家 广告费用 价格差 销售量 周期 格(元) 价格(元) (百万元) (元) (百万支)
1
3.85
3.80
5.50
-0.05
7.38
2
3.75
4.00
6.75
0.25
8.51
29
3.80
3.85
5.80
0.05
7.93
30
3.70
4.25
参数
参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p<0.0001 s2=0.0426
y 0 1x1 2 x2 3x22 4 x1x2
yˆ 略有增加
预测区间长度更短
两模型yˆ 与x1,x2关系的比较
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2


9
9
8.5
x2=6.5 8.5
8
8
7.5 -0.2

10 9.5
9 8.5
8 7.5
5
0
0.2
0.4
6
7
0.6 x1
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进
x1和x2对y 的影响独立
x1和x2对y 的影响有 交互作用
y 0 1x1 2 x2 3 x22
0, 1 , 2 , 3 ~回归系数
8
7.5
~随机误差(均值为零的
正态分布随机变量)
7 5
5.5
6
6.5
x 7
7.5
2
y 0 1x2 2 x22
模型求解 MATLAB 统计工具箱 y 0 1x1 2 x2 3 x22 由数据 y,x1,x2估计
[b,bint,r,rint,stats]=regress(y,x,alpha)
-3.6956
[-7.4989 0.1077 ]
0.3486
[0.0379 0.6594 ]
F=82.9409 p<0.0001 s2=0.0490
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从ห้องสมุดไป่ตู้体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y 的 影响不太显著
第十章 统计回归模型
10.1 牙膏的销售量 10.2 软件开发人员的薪金 10.3 酶促反应 10.4 投资额与国民生产总值和物价指数 10.5 教学评估 10.6 冠心病与年龄
数学建模的基本方法 机理分析 测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型. 通过对数据的统计分析,找出与数据拟合最好的模型.
x1=0.2
8 x2
7.5 -0.2

10.5 10 9.5 9 8.5 8 5
0
0.2
0.4
6
7
0.6 x1 8 x2
交互作用影响的讨论 yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
价格差 x1=0.1
回归模型是用统计分析方法建立的最常用的一类模型. • 不涉及回归分析的数学原理和方法 . • 通过实例讨论如何选择不同类型的模型 . • 对软件得到的结果进行分析,对模型进行改进.
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型; 题 预测在不同价格和广告费用下的牙膏销售量.
收集了30个销售周期本公司牙膏销售量、价格、
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22 ] ~n4数
据矩阵, 第1列为全1向量
bint~b的置信区间 r ~残差向量y-xb
alpha(置信水平,0.05)
rint~r的置信区间
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ]
相关文档
最新文档