总复习初中数学知识点归纳(完整版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总复习初中数学知识点归纳(完整版)

总复习初中数学知识点归纳(完整版)

怎么写总复习初中数学知识点归纳才合适?看看吧。在知识点结构中,知识被表述成为抽象的概念、具体的判断和现实中的案例。因此,我们可以认为知识点是知识体系的微观结构。下面小编给大家带来总复习初中数学知识点归纳,希望大家喜欢!

总复习初中数学知识点归纳

第二章整式的加减

2、1整式

1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数、单项式指的是数或字母的积的代数式、单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式、

2、单项式的系数:是指单项式中的数字因数;

3、单项数的次数:是指单项式中所有字母的指数的和、

4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式、特别注意多项式的项包括它前面的性质符号、

5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

6、单项式和多项式统称为整式。

2、2整式的加减

1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列

顺序无关

3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

6、整式加减的一般步骤:

一去、二找、三合

(1)如果遇到括号按去括号法则先去括号、(2)结合同类项、(3)合并同类项葫芦岛

初中数学公式归纳

1、一元二次方程解法:

(1)配方法:(X±a)2=b(b≥0)注:二次项系数必须化为1

(2)公式法:aX2+bX+C=0(a≠0)确定a,b,c的值,计算b2-4ac≥0

若b2-4ac>0则有两个不相等的实根,若b2-4ac=0则有两个相等的实根,若b2-4ac

若b2-4ac≥0则用公式X=-b±√b2-4ac/2a注:必须化为一般形式

(3)分解因式法

①提公因式法:ma+mb=0→m(a+b)=0

平方差公式:a2-b2=0→(a+b)(a-b)=0

②运用公式法:

完全平方公式:a2±2ab+b2=0→(a±b)2=0

③十字相乘法

2、锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c;

余弦(cos):邻边比斜边,即cosA=b/c;

正切(tan):对边比邻边,即tanA=a/b;

余切(cot):邻边比对边,即cotA=b/a;

3、积的关系

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

4、倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

5、两角和差公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

初中基础数学知识点

1、相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

数a的相反数是-a,这里a表示任意一个实数。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,零的绝对值是0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4、实数与数轴上点的关系

每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

初中数学知识重难点理解

(一)有序数对

1、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)。

2、坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。

(二)平面直角坐标系

1、平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。

2、X轴:水平的数轴叫X轴或横轴。向右方向为正方向。

3、Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。

4、原点:两个数轴的交点叫做平面直角坐标系的原点。

对应关系:平面直角坐标系内的点与有序实数对一一对应。

相关文档
最新文档