四年级。积和商的变化规律

合集下载

积商的变化规律积大小比较

积商的变化规律积大小比较

积的变化规律
两个数相乘,一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

商变化的规律
商变化的规律:除数不变,被除数扩大(或缩小)几倍,商就扩大(或缩小)几倍;被除数不变,除数扩大(或缩小)几倍,商反而缩小(或扩大)几倍。

比较积与第一个因数的大小方法:
1、看第二个因数如果第二个因数大于1,积大于第一个因数;
2、看第二个因数如果第二个因数等于1,积等于第一个因数。

3、看第二个因数如果第二个因数小于1,积小于第一个因数;
商和被除数的大小关系
在小数除法中,(被除数不为0时)
当除数小于1时,被除数小于商
当除数等于1时,被除数=商
当除数大于1时,被除数大于商。

四年级 积和商的变化规律

四年级   积和商的变化规律

第1讲计算与规律1. 掌握乘法中积的位数快速确定方法和积的变化规律;2. 掌握除法中商的位数快速确定方法和商的变化规律。

一. 积的变化规律1. 积的变化规律:两个数相乘,一个因数不变,另一个因数扩大或缩小若干倍(0除外),积也扩大或缩小相同的倍数。

2. 积不变的规律:两个数相乘,一个因数乘(或除以)一个数(0除外),另一个因数同时乘(或除以)相同的数,它们的积不变。

判断对错两个因数(均不为0)相乘,一个因数乘2,另一个因数除以2,积不变。

()1.如果让“48052⨯”的第一因数除以5,第二个因数不变,则积()A.不变B.乘以5 C.除以52.两个数相乘(非零数),把这两个数同时扩大到它们原来的10倍,积()A.不变B.扩大到原来的100倍C.不确定D.扩大到原来的10倍3.在一个乘法算式中,要使积不变,一个乘数扩大10倍,另一个乘数()A.扩大10倍B.缩小10倍C.扩大100倍D.不变4.在1508012000⨯=中,其中一个因数扩大到原来的10倍,另一个因数缩小10倍,积不变。

(判断对错)5.几个数相乘,改变它们原来的运算顺序,它们的积不变。

(判断对错)6. 两个数相乘(非零数),一个乘数扩大10倍,另一个乘数缩小5倍,积()7. 两个数相乘(非零数),一个乘数扩大3倍,另一个乘数缩小12倍,积()二.商的变化规律1. 没有余数(1)在除法算式中,被除数不变,除数乘以(或除以)几(0除外),商反而要除以(或乘以)相同的数。

(2)在除法算式中,除数不变,被除数乘以(或除以)几(0除外),商也要乘以(或除以)相同的数。

简便记法:商与除数的变化方向相反,商与被除数的变化相同。

2. 有余数有余数的除法里,被除数和除数都缩小(或都扩大)相同的倍数(0除外),商不变,但余数也随着缩小(或扩大)相同的倍数。

已知30÷=,如果A除以6,B不变,则商是;如果A不变,B乘6,则A B商是。

1. 32040÷的结果与算式()的结果相等。

四年级上册积和商的变化规律

四年级上册积和商的变化规律

四年级上册积和商的变化规律
在四年级上册,学生开始学习关于积和商的变化规律。

积是指两个或多个数相乘得到的结果,而商则是指一个数被另一个数除后得到的结果。

当学生开始学习乘法时,他们会逐渐掌握乘法表,并了解基本的乘法规律。

例如,当乘数为0时,无论被乘数是多少,积都为0。

当乘数为1时,积等于被乘数本身。

当乘数为10的倍数时,积具有特殊的规律,只需在被乘数末尾添加相应数量的0即可。

随着学生学习进程的推进,他们开始接触更复杂的乘法运算,并学习如何使用分配律、结合律和交换律来简化计算过程。

他们还会学习如何将大数进行估算以及如何使用近似值来计算积。

在商的部分,学生会学习如何用除法来计算两个数之间的商。

他们会学习长除法的方法,并逐步理解如何进行整数除法和小数除法。

学生也会学习如何将分数转化为小数,并通过除法运算来完成这一过程。

总之,在四年级上册,学生会逐步掌握积和商的变化规律,并学会运用这些规律来解决实际问题。

四年级积商的变化规律5条

四年级积商的变化规律5条

四年级积商的变化规律5条一、积的变化规律。

1. 一个因数不变,另一个因数乘几,积也乘几。

- 例如:在算式3×5 = 15中,如果3不变,5变为5×2 = 10,那么积就变为3×10=30,15×2 = 30,积也乘了2。

- 在实际解决问题时,比如一个长方形的长不变,宽扩大到原来的3倍,根据长方形面积公式S =长×宽,面积也会扩大到原来的3倍。

2. 一个因数不变,另一个因数除以几(0除外),积也除以几。

- 例如:4×6 = 24,如果4不变,6变为6÷2 = 3,那么积就变为4×3 = 12,24÷2=12,积也除以了2。

- 假设每箱苹果的个数不变,箱数减少为原来的一半,那么苹果的总个数也会减少为原来的一半。

3. 两个因数同时乘一个数(0除外),积乘这个数的平方。

- 例如:2×3 = 6,如果2变为2×2 = 4,3变为3×2 = 6,那么新的积为4×6 = 24,而6×2^2=6×4 = 24。

- 在计算长方形面积时,如果长和宽都扩大到原来的2倍,那么面积就会扩大到原来的2×2 = 4倍。

4. 两个因数同时除以一个数(0除外),积除以这个数的平方。

- 例如:12×8 = 96,如果12变为12÷2 = 6,8变为8÷2 = 4,新的积为6×4 = 24,而96÷2^2 = 96÷4 = 24。

- 像把一个长方形的长和宽都缩小为原来的一半,面积就会缩小为原来的(1)/(4)。

二、商的变化规律。

1. 被除数不变,除数乘几(0除外),商就除以几。

- 例如:12÷3 = 4,如果被除数12不变,除数3变为3×2 = 6,那么商变为12÷6 = 2,4÷2 = 2,商除以了2。

积商的变化规律

积商的变化规律

积的变化规律(一)如果一个因数扩大m倍,另一个因数不变,那么,它们的积也扩大m倍.(二)如果一个因数缩小m倍,另一个因数不变,那么,它们的积也缩小m倍.(三)如果一个因数扩大m倍,另一个因数缩小相同的倍数,那么它们的积不变(四)如果一个因数扩大m倍,另一个因数扩大n倍,那么,它们的积扩大(m×n)倍.(五)如果一个因数缩小m倍,另一个因数缩小n倍,那么,它们的积就缩小(m ×n)倍(六)如果一个因数扩大m倍,另一个因数缩小n倍,那么,当m>n时它们的积扩大(m÷n)倍,当m<n时,它们的积就缩小(n÷m)倍.商的变化规律(一)如果被除数和除数同时扩大或缩小相同的倍数,那么,它们的商不变.(二)如果被除数扩大(或缩小)m倍,除数不变,那么,它们的商就扩大(或缩小)m 倍(三)如果除数扩大或缩小m倍,被除数不变,那么,它们的商反而缩小或扩大m 倍.(四)如果被除数扩大m倍,除数缩小n倍,那么,它们的商就扩大(m×n)倍(五)如果被除数缩小m倍,除数扩大n倍,那么,它们的商就缩小(m×n)倍.(六))如果被除数扩大m倍,除数扩大n倍,当m>n时,它们的商就扩大(m÷n)倍,当m<n时,它们的商就缩小(n÷m)倍.(七))如果被除数缩小m倍,除数缩小n倍,当m>n时,它们的商就缩小(m÷n)倍,当m<n时,它们的商就扩大(n÷m)倍.试一试]1、两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积是否起变化?2、两数相乘,积是36,如果一个因数扩大2倍,另一个因数缩小3倍,那么积是多少?3、两数相乘,积是72如果一个因数扩大4倍,另一个因数缩小3倍,那么积是多少?4、两个数相除,被除数扩大4倍,除数缩小2倍,商将怎样变化?5、小明在计算除法时,把除数末尾的“0”漏写了,结果得到的商是500,正确的商应该是多少?6、小冬在计算除法时,把除数末尾的“0”漏写了,结果得到的商是70,正确的商应该是多少?判断:①210÷30=(210×15)÷(30×15)……………………()②48÷12=(48×3)÷(12×4)…………………………()③60÷12=(60 ÷3)÷(12×3)…………………………()④63÷7=(63÷10)÷(7÷10)……………………()⑤被除数不变,如果除数除以3,商也会除以3。

积的变化规律和商的变化规律

积的变化规律和商的变化规律

积的变化规律和商的变化规律
积的变化规律是指在进行乘法运算时,两个数相乘得到的结果的变化规律。

一般来说,在进行乘法运算时,随着被乘数或乘数的增加,积也会相应地增加。

例如,5乘以2得到10,而
10乘以2得到20,可以看出乘数增加一倍,积也增加一倍。

商的变化规律是指在进行除法运算时,被除数除以除数得到的商的变化规律。

一般来说,在进行除法运算时,如果被除数保持不变,而除数增加,商会相应地减少。

例如,10除以2得
到5,而10除以5得到2,可以看出除数增加一倍,商减少一倍。

需要注意的是,这里所讨论的变化规律是在其他因素保持不变的情况下观察的。

在实际运算中,还可能存在其他因素的影响,导致变化规律不完全符合上述描述。

四年级上册平时作业(积、商的变化规律)

四年级上册平时作业(积、商的变化规律)

四年级上册平时作业(积、商的变化规律)一、识记积的变化规律1、一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。

2、一个因数扩大(或缩小)几倍,另一个因数缩小(或扩大)相同的倍数,积不变。

3、如果两个因数同时扩大(或缩小)几倍,积也同时扩大(或缩小)它们扩大(或缩小)的乘积倍。

商的变化规律1、除数不变,被除数扩大(或缩小)几倍,商也扩大(或缩小)相同的倍数。

2、被除数不变,除数扩大(或缩小)几倍,商就缩小(或扩大)相同的倍数。

3、被除数和除数同时扩大(或缩小)相同的倍数,商不变,余数也同时扩大(或缩小)相同的倍数。

二、填一填。

1、两数相乘的积是300,一个因数不变,另一个因数乘2,这时积应()。

2、两数相乘的积是4500,如果一个因数除以100,另一个因数不变,积是()。

3、两个因数的积是322,其中一个因数是23,如果把它改成2300,另一个因数不变,这时积是()。

4、一个因数不变,另一个因数乘9,积就()。

如果一个因数乘8,另个因数除以8,积()。

5、在除法算式600÷30=20中如果被除数除以10,要使商仍然是20,除数应(),是()。

如果被除数乘2,除数不变,商是()。

如果被除数不变,除数乘2,商应()。

6、两数相除商是400,如果被除数和除数同时乘5,商应是()。

7、在除法算式56÷5=11……1中,如果被除数和除数同时扩大100,商是(),余数是()。

8、A数是B数的25倍,则A数除以B数的商是()。

如果B数缩小5倍,要使商不变,则A数应()。

9、一个乘法算式的积是182,如果两个因数都同时扩大了10倍,积应()。

是()。

10、一个数是25相乘的积是1500,如果这个数扩大10倍,积变成()。

如果这个数缩小100倍,积应()。

11、两个数相除的商是24,如果被除数和除数同时缩小2倍,现在的商是()。

12、480÷80=6中,480扩大10倍,80缩小10倍,商是()。

积的变化规律和商的变化规律

积的变化规律和商的变化规律

一、积的变化规律1、一个因数不变,另一个因数乘几或除以几(0除外),积也乘几或除以几。

2、两个数相乘,一个因数乘或除以几(0除外),另一个因数除以或乘相同的数,则它们的乘积不变。

(1)42×5= (2)48×16=76842×15= (48×4)×(16÷4)=420×15= (48÷8)×(16×8)=840×15= (48×5)×(16○□)=768(3)7本作业本摞起来高25毫米,全班56本作业本摞起来有多高?(4)一个宽为9米的长方形菜地,面积是252平方米,如果把这块长方形菜地的宽增加到36米,长不变,扩建后的面积是多少?二、商的变化规律1、除数不变,被除数乘几或除以几(0除外),商也乘几或除以几。

2、被除数不变,除数乘几或除以几(0除外),商反而除以几或乘几。

3、被除数和除数都乘或除以一个相同的数(0除外),商不变。

(1)80÷16=(80○□)÷(16÷4)200÷40=(200÷20)÷(40○□)180÷15=(180×3)÷(15○□)(2)1400÷70,如果除数不变,被除数除以10,那么商应当()。

被除数不变,除数乘3,商应当()。

两个数的商是8,如果被除数不变,除数乘4,商就变成()。

一个除法算式,被除数乘15,要使商不变,除数也要()。

两个数相除的商是6,如果被除数和除数都除以12,商是()。

一个除法算式的被除数、除数都除以3后,商是20,那么原来的商是()。

.《除数是两位数的除法》1、商店里卖衣服,29元/件,49元/2件,王阿姨有185元,最多可以买多少件?还剩多少元?2、小李家距离学校520米,小李每分钟走65米,小红每分钟走60米,从家到学校小红比小李多走5分钟,小红家离学校多少米?3、每条裤子75元,商店推出优惠活动,买4条送一条,900元钱最多可以买几条这样的裤子?4、12箱蜜蜂一年可以酿900千克蜂蜜,林叔叔家养了8箱这样蜜蜂,一年可以酿多少千克蜂蜜?5、学校组织四年级的540名学生去植树,要分成9个植树点,每个植树点分成4个小组,平均每个小组有多少人?6、从山顶到山脚共998米,王林爬了14分钟,距山顶还有260米,他平均每分钟爬多少米?【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既. 往为您服务】。

积商变化规律

积商变化规律

和、差、积、商的变化规律1、和的变化规律(1)如果一个加数增加(或减少)一个数,另一加数不变,那么它们的和也增加(或减少)同一个数。

用字母表示:a+b= c→(a+m)+b=c+m或(a-m)+b=c-m(2)如果一个加数增加一个数,另一个加数减少同一个数,那么它们的和不变。

用字母表示:a+b=c→(a+m)+(b-m)=c2、差的变化规律(1)如果被减数增加(或减少)一个数,减数不变,那么它们的差也增加(或减少)一个数。

用字母表示:a-b= c→(a+ m)- b= c+ m或a- b= c→(a- m)- b = c- m(2)如果被减数不变,减数增加(或减少)一个数,那么它们差反而减少(或增加)同一个数。

用字母表示:a- b= c→a-(b+ m)= c- m或a-(b- m)= c+ m(3)如果被减数和减数都增加(或减少)同一个数,那么它们的差不变。

用字母表示:a- b= c→(a+ m)-(b+ m)= c或(a- m)-(b- m)= c3、积的变化规律(1)一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,积不变。

用字母表示:a×b=c→(a×m)×(b÷m)=c或(a÷m)×(b×m)=c(2)一个因数扩大(或缩小)若干倍,另一个因数不变,积也扩大(或缩小)相同的倍数。

用字母表示:a×b=c→(a×m)×b=c×m或(a÷m)×b=c÷m4、商的变化规律(1)商不变的性质:在除法里,被除数和除数同时乘或除以相同的数(0除外),商不变。

用字母表示:a÷b=c→(a×m)÷(b×m)=c或(a÷m)÷(b÷m)=c(2)除数不变,被除数扩大(或缩小)若干倍,商也扩大(或缩小)相同的倍数。

积和商的“变与不变”规律与练习

积和商的“变与不变”规律与练习

积和商的“变与不变”规律㈠、积的变化规律:⑴、一个因数不变,另一个因数乘(或除以)几,积就相应的乘(或除以)几。

字母表示:如果a×b=c,则(a×3)×b=c×3举例:a×b=12 如果(a×3)则积就是12×3=36.⑵、一个数乘一个比1大的数,积比原数大;⑶、一个数乘一个比1小的数,积比原数小。

㈡、积不变规律:一个因数乘(或除以)几,另一个因数相应的除以(或乘)几,积不变。

字母表示:如果a×b=c 则(a×5)×(b÷5)=c㈢、商的变化规律:⑴被除数不变,除数乘或除以几,商就相应的除以或乘几。

字母表示:如果a÷b=c,则a÷(b×3)=c÷3举例:a÷b=12 如果(b×3)则商就是12÷3=4⑵除数不变,被除数乘或除以几,商就相应的乘或除以几。

字母表示:如果a÷b=c ,则(a×3)÷b=c×3举例:a÷b=12 如果(a×3)则商就是12×3=36.被除数大于除数,商就大于1;被除数小于除数,商就小于1.一个数除以一个比1大的数,商比被除数要小;一个数除以一个比1小的数,商比被除数要大。

㈣、商不变规律:被除数和除数同时乘或除以几,商不变。

[问题一]两数相乘,如果一个因数乘3,另一个因数除以12,积将有什么变化?想:如果一个因数扩大3倍,另一个因数不变,积将扩大3倍;如果一个因数不变,另一个因数缩小12倍,积将缩小12倍。

积扩大3倍又缩小12倍,因此,积缩小了12÷3=4倍。

解:12÷3=4答:积缩小了4倍。

[试一试]1、两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积是否起变化?2、两数相乘,积是36,如果一个因数扩大2倍,另一个因数缩小3倍,那么积是多少?3、两数相乘,积是72如果一个因数扩大4倍,另一个因数缩小3倍,那么积是多少?[问题二]两个数相除,被除数扩大30倍,除数缩小6倍,商将怎样变化?想:如果被除数扩大30倍,除数不变,商将扩大30倍;如果被除数不变,除数缩小6倍,商将扩大6倍;商先扩大30倍,又扩大6倍,商将扩大30×6=180倍。

小四数学(积和商的变化规律)

小四数学(积和商的变化规律)
(三)在数量关系中的应用
在学习“积的变化规律”时,已学过“常见的数量关系”:单价×数量=总价、速度×时间=路程、工作效率×工作时间=工作总量。在常见的数量关系式中,单价和数量、速度和时间、工作效率和工作时间是因数,总价、路程、工作总量都是积。因此,可能会遇到下面的题目。
例6填空:如果一件物品的单价扩大2倍,买的数量扩大3倍,用去的总价。
(另一种说法:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。)
A×B=C
一个因数A
另一个因数B
积C
不变
×n
×n
不变
÷n
÷n
×m
不变
×m
÷m
不变
÷m
×m
×n
×mn
÷m
÷n
÷m÷n或者÷(mn)
×m
÷m
不变
×m
÷n
×m÷n
例1:两数相乘,如果一个因数乘3,另一个因数除以12,积将有什么变化?
2.正方形的边长,它的周长扩大13倍。
3.正方形的边长,它的周长缩小15倍。
例2选择:长方形的长与宽同时( ),周长扩大4倍。
A. 缩小2倍 B. 扩大2倍 C. 缩小2倍 D. 扩大4倍
[分析]因为“长方形周长=(长+宽)×2”,长与宽的和与2都是因数,长方形的周长是积,所以,根据“积的变化规律”,一个因数(2)不变,另一个因数(长+宽)扩大4倍,积(周长)就扩大4倍。答案是:D.扩大4倍。想一想:长与宽同时扩大4倍,为什么就是长与宽的和扩大4倍?
想:根据商不变的规律,被除数和除数同时扩大10倍,商不变,余数也扩大10倍,所以商是6,余数是30×10=300。
解:略。

专题:积和商的变化规律

专题:积和商的变化规律

专题:积和商的变化规律一、积的变化规律:因数×因数=积因数与积之间存在什么样的变化规律呢?请看下表:积的变化规律:一个因数不变,另一个因数乘或除以几(0除外)积也要乘或除以相同的数。

(一个因数不变,另一个因数扩大到原来的几倍或者缩小到原来的几分之一,积也要扩大到原来的几倍或者缩小到原来的几分之一。

)入门题:1、两个数相乘(积不为0),一个因数不变,另一个因数扩大到原来的3倍,积应该怎样变化?2、两个数相乘(积不为0),一个因数除以3,另一个因数不变,积应该怎样变化?3、两个数相乘(积不为0),一个因数扩大到原来的6倍,另一个因数扩大到原来的3倍,积应该怎样变化?4、两个数相乘(积不为0),一个因数乘6,另一个因数除以3,积应该怎样变化?二、商的变化规律:被除数÷除数=商被除数、除数与商之间又存在什么样的变化规律呢?请看下表:商的变化规律:除数不变,被除数乘或除以一个数(0除外),商也要乘或除以相同的数;被除数不变,除数乘或除以一个数(0除外),商反而要除以或乘相同的数。

注意:在有余数的除法里,如果被除数和除数同时扩大和缩小相同的倍数(0除外),商不变,余数也随着扩大和缩小相同的倍数。

入门题:1、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数不变,商应该怎样变化?2、两个数相除(商不为0),如果被除数不变,除数扩大到原来的2倍,商应该怎样变化?3、两个数相除(商不为0),如果被除数除以6,除数不变,商应该怎样变化?4、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数扩大到原来的2倍,商应该怎样变化?5、两个数相除(商不为0),如果被除数扩大到原来的3倍,除数缩小到原来的十分之一,商应该怎样变化?6、两个数相除(商不为0),如果除数扩大到原来的9倍,要使商缩小到原来的三分之一,被除数应该怎样变化?随堂检测:1、发现规律直接写得数。

16×17=272 32×17= 32×34=16×34= 48×17= 8×34=16×51= 64×17= 4×68=2、发现规律直接写得数:2000÷25=80(2000×2)÷(25×2)= (2000×15)÷(25×15)=(2000÷5)÷(25÷5)= (2000÷18)÷(25÷18)=(2000÷5)÷25= (2000×20)÷25=2000÷(25÷5)= 2000÷(25×5)=(2000÷5)÷(25×2)= (2000×5)÷(25÷2)=(2000÷2)÷(25÷4)= (2000×2)÷(25×8)=3、两个因数的积是360,如果一个因数除以3,另一个因数不变,积变为()。

四年级寒假班教案第3次课------积、商的变化规律

四年级寒假班教案第3次课------积、商的变化规律

积、商的变化规律知识要点1、积的变化规律(1)一个因数不变,另一个因数扩大(缩小)到原数的a倍,积就扩大(缩小)到原数的a 倍。

(2)一个因数扩大(缩小)到原数的a倍,另一个因数缩小(扩大)到原数的a倍,积不变。

(3)一个因数扩大(缩小)到原数的a倍,另一个因数扩大(缩小)到原数的b倍,积就扩大到原数的a×b倍。

扩展:一个因数扩大到原数的a倍,另一个因数缩小到原数的b倍,当a>b时,积就扩大a ÷b倍;当a<b时,积就缩小到原数的b÷a倍。

2、商的变化规律:(1)被除数和除数同时扩大(缩小)到原数的a倍,商不变。

(2)被除数和商同时扩大(缩小)到原数的a倍,除数不变。

(3)除数扩大(缩小)到原数的a倍,商缩小(扩大)到原数的a倍,被除数不变。

扩展:被除数扩大到原数的a倍,除数缩小到原数的b倍,商就扩大到原数的a×b倍。

被除数缩小到原数的a倍,除数扩大到原数的b倍,商就缩小到原数的a×b倍。

3、周长与面积公式(1)长方形:周长=(长+宽)×2 面积=长×宽(2)正方形:周长=边长×4 面积=边长×边长经典例题【例1】根据已知算式,直接写出下面各题的得数。

105×45=4725 18×24=432(105÷5)×(45×5)= (18×3)×(24×2)=(105×2)×(45÷6)= (18×6)×(24÷2)=【练习1】24×75=1800 36×104=3744(24○6)×(75×6)=1800 (36×4)×(104○4)=3744 (24○3)×(75○□)=1800 (36○□)×(104○□)=374415×24=36015×72=()60×12=()5×72=()30×6=()15×(24×)=3600 15×(24÷10)=()【例2】(1)18 ÷6=3 (2)4800÷10=480 (18×2)÷(6×2)= (4800 ÷2)÷(10 ÷2)= (18×3)÷(6÷3)= (4800÷10)÷(10×2)=(1)24÷8=(24×2)÷(8×)(2)360÷60=(360÷10)÷(10)(3)96÷6=()÷()【例3】1、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数不变,积是()2、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是()3、两数相除,被除数扩大3倍,除数缩小6倍,商( )4、小明在计算除法时,把除数末尾的0漏写了,结果得到的商是500,正确的商是()5、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也缩小到原来的3倍,积是()6、一个因数不变,把其中另一个因数扩大到原来的3倍,积是90,原来两个因数的积是()【练习3】1、一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是90,原来两个因数的积是()2、610×5=3050,把610缩小3倍,把5扩大倍15倍,那么积是()。

积的变化规律和商的变化规律

积的变化规律和商的变化规律

积的变化规律和商的变化规律以积的变化规律和商的变化规律为标题,本文将从数学的角度讨论积和商的变化规律,并探讨其应用领域。

一、积的变化规律积是指两个或多个数相乘的结果。

在数学中,我们经常遇到各种形式的乘法运算,而积的变化规律是乘法运算的核心。

1.1 正数的乘积当两个正数相乘时,积的结果也是正数。

这是因为正数表示具有一定数量的物体或数值,相乘后得到的仍然是正数的数量。

1.2 负数的乘积当一个正数与一个负数相乘时,积的结果为负数。

这是因为正数表示具有一定数量的物体或数值,而负数表示缺少一定数量的物体或数值,相乘后得到的是缺少的数量,所以结果为负数。

1.3 零的乘积任何数与零相乘,积的结果都为零。

这是因为零表示没有物体或数值,与任何数相乘都得到没有的数量。

1.4 小数的乘积当两个小数相乘时,积的结果为更小的数。

这是因为小数表示比1小的数值,相乘后得到更小的数值。

1.5 科学计数法的乘积科学计数法是一种表示大数或小数的方法,它将一个数表示为一个数值与10的幂的乘积。

当两个科学计数法相乘时,可以将指数相加,乘积的结果也是科学计数法形式的数。

二、商的变化规律商是指一个数除以另一个数的结果。

在数学中,商的变化规律是除法运算的核心。

2.1 正数的商当一个正数被另一个正数除时,商的结果为正数。

这是因为正数表示具有一定数量的物体或数值,被除数表示要将这一定数量的物体或数值平均分给除数,所以商的结果仍然为正数。

2.2 负数的商当一个负数被一个正数除时,商的结果为负数。

这是因为负数表示缺少一定数量的物体或数值,被除数表示要将这缺少的数量的物体或数值平均分给除数,所以商的结果为缺少的数量,即负数。

2.3 零的商任何数除以零是没有意义的,因为零表示没有物体或数值,不能将某一数量平均分给零个单位。

2.4 小数的商当一个小数被一个大于1的数除时,商的结果为更小的数。

这是因为小数表示比1小的数值,被除数表示要将这一小部分的数量平均分给除数,所以商的结果更小。

积和商不变规律和变化规律

积和商不变规律和变化规律

积和商不变规律和变化规律积的变化规律:一个因数不变,另一个因数乘或除以几,积就相应的乘或除以几。

积不变规律:一个因数乘或除以几,另一个因数相应的除以或乘几,积不变。

商的变化规律:被除数不变,除数乘或除以几,商就相应的除以或乘几。

除数不变,被除数乘或除以几,商就相应的乘或除以几。

商不变规律:被除数和除数同时乘或除以几,商不变。

1、根据78×12=936,填写下面各题的结果。

7.8×12=() 0.78×12=() 7.8×0.12=() 0.78×()=936 2、根据414÷18=23,填写下面各题的结果。

4.14÷1.8=() 4140÷1.8=() 0.414÷0.18=() 41.4÷18=()3、根据45×63=2835,填写下面各题的结果。

4.5×0.63=() 45×()=283.5 0.45×0.063=() 450×()=28.354、根据512÷8=64,填写下面各题的结果。

5.12÷0.8=( ) 5.12÷( )=0.064 0.512÷8=( ) 51.2÷0.08=( ) 5、根据3968÷32=124,填写下面各题的结果:39.68÷0.32= ( ) 39.68÷0.032=( ) 3.968÷0.32=( ) 0.3968÷3.2=( ) 6、填一填:4.68÷1.2=( ) ÷12 2.38÷0.34=( ) ÷( ) 18÷2.5=( ) ÷258.4÷0.56=0.84÷( ) 5.2÷0.32=( ) ÷32 15÷0.06=1500÷( )8、两个数相除,被除数不变,除数缩小到原数的1/10,商( );若除数不变,被除数扩大到原数的1/100,商就( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级。

积和商的变化规律
第1讲:计算与规律
本讲的研究目标是掌握乘法和除法的变化规律,以及快速确定积和商的位数。

一、积的变化规律
1.两个数相乘,如果一个因数扩大或缩小若干倍(除非为0),那么积也会扩大或缩小相同的倍数。

2.两个数相乘,如果一个因数乘(或除以)一个数(除非
为0),而另一个因数同时乘(或除以)相同的数,它们的积
不变。

判断题:
1.两个非零因数相乘,一个因数乘2,另一个因数除以2,积不变。

(错误)
2.如果让“480×52”的第一因数除以5,第二个因数不变,
则积不变。

(正确)
3.两个非零数相乘,把这两个数同时扩大到它们原来的10倍,积不变。

(正确)
4.在一个乘法算式中,要使积不变,一个乘数扩大10倍,另一个乘数扩大到原来的100倍。

(正确)
5.几个数相乘,改变它们原来的运算顺序,它们的积不变。

(正确)
6.两个非零数相乘,一个乘数扩大10倍,另一个乘数缩
小5倍,积扩大到原来的50倍。

7.两个非零数相乘,一个乘数扩大3倍,另一个乘数缩小12倍,积缩小到原来的1/4.
二、商的变化规律
1.如果没有余数,则在除法算式中,被除数不变,除数乘
以(或除以)几(除非为0),商反而要除以(或乘以)相同
的数。

除数不变,被除数乘以(或除以)几(除非为0),商
也要乘以(或除以)相同的数。

2.如果有余数,则在有余数的除法中,被除数和除数都缩
小(或都扩大)相同的倍数(除非为0),商不变,但余数也
随着缩小(或扩大)相同的倍数。

举例:
已知A÷B=30,如果A除以6,B不变,则商是5.
判断题:
1.320÷40的结果与算式(320×5)÷(40×2)的结果相等。

(正确)
2.如果a÷b=8······5,如果a和b都乘100,那么商是800,余数是500.(错误)
1.两个数相乘,一个因数扩大3倍,另一个因数扩大4倍,那么积会扩大12倍。

2.两个数相乘,一个因数扩大18倍,另一个因数缩小6倍,那么积不变。

3.与4200÷70的商相同的是42÷7.
4.如果a÷b=5÷2,那么(a×10)÷(b×10)=5÷2.
5.根据★÷0=20,得出下面各题的结果:
4)÷(0×4)=undefined。

5)÷0=undefined。

6.a÷b=c,把a扩大10倍,b缩小10倍,商会扩大100倍。

7.把D。

(320×20)÷(40×20)中的乘号改为除号,得到D。

(320÷20)÷(40÷20)。

这个式子的结果是4÷2=2.因此,删除明显
有问题的段落。

相关文档
最新文档