高中数学竞赛资料-数论部分 (1)
全国高中联赛--数论部分
全国高中数学联赛赛前集训资料整理——数论部分1.求所有的质数对(,)p q ,使得|(55)p q pq +.解:若2|pq ,不妨设2p =,则2|(55)|(525)p q q q q +⇒+,由费马小定理知|(55)q q -,得|30q ,验证知(2,5)符合.若,p q 为奇数,且5|pq ,此时不妨设5p =,则有515|(55)|(6255)q q q q -+⇒+,当5q =时,(5,5)符合要求,当5q ≠时,由费马小定理有1|(51)q q --,故|626q ,由于q 为奇质数,但626的奇质因子只有313,故313q =.验证知符合要求,若,p q 都不等于2和5,则11|(55)p q pq --+,故11550(m od )p q p --+≡① 由费马小定理知151(m od )p p -≡② 由①②知151(m od )q p -≡-③设12(21)k p r -=-,12(21)l q s -=-,,,,k l r s 为正整数,若k l ≤,则由②③易知:2(21)12(21)2(21)(21)1212111(5)5(5)(1)1(m od )l kl kls p s r s q r r p ----------=≡==≡-≡-,这与2p ≠矛盾,因此k l >,由,p q 对称性有k l <,矛盾.此时无解.故(,)p q 为(2,3),(3,2),(2,5),(5,2),(5,5),(5,313),(313,5).2.设3k ≥,数列{}n a 满足2k a k =,且对n k >都有1 1 2 n n n n a a n a n a n -+⎧=⎨⎩与互质与不互质,证明:数列1{}n n a a --中有无穷多项是质数.证明:假设2()l a l l k =≥,p 为1l -的最小质因子,则 1 1(1,) i p l i p i p≤<⎧-=⎨=⎩.故有 1 1(22,1) i p l i l i p i p≤<⎧+-+-=⎨=⎩,由题设知12 1 1(22 l i l i i p a l p i p+-+-≤<⎧=⎨+-=⎩. 则12(222)(22)l p l p a a l p l p p +-+--=+--+-=(质数),故12(1)l p a l p +-=+-,由以上讨论,可知有无穷多个l k ≥使得2l a l =且12l p l p a a p +-+--=为1l -的最小质因子.3.已知1110()m m m m f x c x c xc x c --=++++ ,其中(0,1,,)i c i m = 是非零整数,数列{}n a 满足:10a =, 1()()n n a f a n N ++=∈,求证:(1)对于正整数,()i j i j <,1j j a a +-是1i i a a +-的倍数;(2)证明:20080a ≠. 证明:(1)当10i i a a +-=时,成立;当10i i a a +-≠时,211111()()()()m mi i i i m i i i i a a f a f a c a a c a a +++++-=-=-++- .故21i i a a ++-能被1i i a a +-整除,余下的可用数学归纳法证明.(2)假设20080a =,则1020092008(0)a a f a a -==-,由(1)可知,2007个差值213220082007,,,a a a a a a --- 都等于(0)f ±,且这些差值的和为200810a a -=,由于2007为奇数,且0(0)0f c =≠,矛盾! 故20080a ≠.第49届I MO预选题(四)第50届IMO预选题(四)费马小定理和欧拉定理的应用关于组合数的几个整除问题多项式一、带余除法与因式定理1、余数定理:多项式()f x 除以x a -的余数为()f a .2、因式定理:()()0x a p x p a -⇔=注:高次多项式因式分解常用因式定理例 1 设,,a b c 为互异的实数,()p x 为实系数多项式,如果()p x 除以x a -的余式为a ,()p x 除以x b -的余式为b ,()p x 除以x c -的余式为c .求()p x 除以()()()x a x b x c ---的余式.解:因为 (),(),()p a a p b b p c c ===所以设()()()()()()p x x a x b x c q x r x =---+,其中(())2r x ∂≤ 则 ()(),()(),()()r a p a a r b p b b r c p c c ======, 所以,,a b c 一定是()0r x x -=的根而 (())2r x x ∂-≤,所以 ()0r x x -≡即 ()r x x ≡所以()p x 除以()()()x a x b x c ---的余式为x .例2 已知()p x 是整系数多项式,1234,,,m m m m 是互不相同的整数,且1234()()()()7p m p m p m p m ====,试证:没有整数m 使得()14p m =.分析:即证()14p x =没有整数解证:因为1234,,,m m m m 是()70p x -=的根所以 1234()7()()()()()p x x m x m x m x m q x -=----,其中()q x 一定是整系数多项式 若存在整数m 使()14p m =,则有 12347147()()()()()m m m m m m m m q m =-=---- 而7为素数,矛盾.故没有整数m 使得()14p m =.注:可以根据例2中规律命制试题()i p m =素数即可.例3 设()p x 是非常数的整系数多项式,()n p 表示满足2(())10p x -=的所有不同整数x 的个数,则()deg(())2n p p x -≤,其中deg(())p x 表示()p x 的次数.分析:2(())1(()1)(()1)0()10p x p x p x p x =⇔-+=⇔-=或()10p x +=()n p 为()10p x -=与()10p x +=的整数解的个数设()10p x -=有k 个整数解12,,,k m m m ⋅⋅⋅,()10p x +=有s 个整数解12,,,s n n n ⋅⋅⋅, 则有 121()1()()()()k p x x m x m x m q x -=--⋅⋅⋅- ①122()1()()()()s p x x n x n x n q x +=--⋅⋅⋅- ②②-①得1221212()()()()()()()()s k x n x n x n q x x m x m x m q x =--⋅⋅⋅----⋅⋅⋅-证:我们证明方程 ()10p x -= ③与()10p x += ④中至少有一个方程的正根的个数不超过2.下用反证法证明.若结论不成立,设方程③与方程④均至少有3个正根.设123,,m m m 是③的3个不同正根,123,,n n n 是④的3个不同正根, 则 1231()1()()()()p x x m x m x m q x -=--- ⑤ 1232()1()()()()p x x n x n x n q x +=--- ⑥ ⑥-⑤,得123212312()()()()()()()()x n x n x n q x x m x m x m q x =------- ⑦ 不妨设 {}3123123max ,,,,,m m m m n n n =将3x m =代入⑦式得 313233232()()()()m n m n m n q m =---因为2是素数,而313233,,m n m n m n ---是互不相同的正整数,故矛盾. 所以结论得证.二、多项式恒等定理如果次数不超过n 的多项式()f x 有1n +个根,则()f x 必为零多项式,即()0f x ≡. 例4 已知自然数1m >,求出所有满足条件(())(())m p p x p x =的所有多项式()p x . 证明:当()p x c =(常数)时,由m c c =有0c =或22cossin,(0,1,,2)11k k c i k m m m ππ=+=⋅⋅⋅---当(())1p x ∂≥时,则对任意复数β,方程()p x β=一定有解,即0x ∃使0()p x β=,又00(())(())m p p x p x =,即()m p ββ=.故一切复数均为()0m p x x -=的解,即()0m p x x -=有无穷多个解,故由多项式恒等定理有()m p x x =.例5 求所有满足条件22(2)(2),f x x f x x R -=-∈的多项式()f x分析:因为222(1)1x x x -=--,2(1)1x x -=--,所以22(2)(2)f x x f x -=- 可化为2((1)1)((1)1)f x f x --=--. 解:令1y x =-,则有22(1)(1)f y f y -=- ① 令()(1)g y f y =-,则有22()(1)g y f y =-,故①式变为22()()g y g y = ② 设 1110(),n n n n g y a y a y a y a --=++⋅⋅⋅++其中0n a ≠ 则②式左边222(1)2110()n n n n g y a y a y a y a --==++⋅⋅⋅++ ②式右边212110()()n n n n g y a y a y a y a --==++⋅⋅⋅++所以有22(1)212110110()n n n n n n n n a y a y a y a a y a y a y a ----++⋅⋅⋅++=++⋅⋅⋅++ ③ 下证122100n n a a a a a --==⋅⋅⋅====,用反证法,设1221,,,,n n a a a a --⋅⋅⋅0,a 中有一个不为0,设k a 是使得0i a ≠的下标最大者, 即1210,0k k k n a a a a ++-≠==⋅⋅⋅==比较2()g y 与2()g y 中n k y +的系数,因为22k n k n <+<,所以③式等号左边n k y +的系数为0,而③式右边n k y +的系数为n k a a ,所以 0n k a a =.这与0,0n k a a ≠≠矛盾,所以 122100n n a a a a a --==⋅⋅⋅====,故()n n g y a y = 再由②式有 222n n n n a y a y =. 又因0n a ≠,所以 1n a =故 ()n g y y =即(1)n f y y -=,所以有()(1)n f x x =+. 例6 确定所有符合下列条件的多项式)(x P :0)0(1)()1(22=+=+P x P x P 且. 解:构造不动点,令.)(,0,1021n n n n x x P x x x ==+=+下证 用数学归纳法:当0000)0()(,00x P x P x n =====时,; 假设kk x x P k n ==)(时,结论成立,即.222111()(1)()111.()0()0().k k k k k n n k P x P x P x x x n k x P x x P x x P x x ++=+=+=+=+==+∴-=∴-≡≡当时,即当时,结论成立是的根,即例 7 试确定所有实系数多项式)(x P ,使得 )()2()1(t P t t tP -=- (1)对所有实系数t 均成立.(1995年 澳大利亚)解:取.0)0(10==P t ),得代入( 取.0)1(12==P t ),得代入(则设 )()1()(x q x x x P -=代入(1),有)()1()2()1()2)(1(t q t t t t q t t t --=---, 当时,2,1,0≠t )1()(-=t q t q 则 c t q ≡)(则R c x cx x P ∈-=),1()( 另一方面,若)1()(,-=∈x cx x p R c 满足条件中的等式, 因此所求的多项式为.),1()(R c x cx x P ∈-=三、根与系数的关系例8 (1996 澳大利亚)设)(x P 是三次多项式,321,,x x x 是)(x P 的三个根,已知323121111,1000)0()21()21(x x x x x x P P P ++=-+求的值.解:设d cx bx ax x P +++=23)(,又323121111x x x x x x ++=d b ad ab x x x x x x =--=++321321 且 ,212221)0()21()21(1000d b d db P P P ⋅+=+=-+= 则1996=a b ,于是.1996111323121=++x x x x x x 四、拉格朗日插值公式拉格朗日插值公式:设)(x P 为n 次多项式,则)()())(()())(()()())(()())(()()())(()())(()(1101101121012000201021n n n n n n n n n n x P x x x x x x x x x x x x x P x x x x x x x x x x x x x P x x x x x x x x x x x x x P --------++------+------=推论:若.)(,)()()(10c x P c x P x P x P n ≡====则 例9 设n P P P ,,,21 是半径为1的圆周上的n 个不同的点,.11,11121≥⋅⋅=∑=+-nk kn k k k k k k k k d P P P P P P P P P P d 求证:证明:以单位圆的圆心为原点,建立复平面,令k P 所对应的复数为k Z ,.,,2,1n k =则nk k k k k k k k Z Z Z Z Z Z Z Z Z Z d --⋅--⋅-=+- 1121,令)())(()())(()())(()())(()(1211211312132--------++------=n n n n n n n Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z f (1)则)(Z f 的次数不超过.1-n 1)()()(21====n Z f Z f Z f .1)(≡∴Z f 特别地,取0=Z 代入(1),有1)()()1()()()1()0(111211121321=--⋅-++---=----n n n n n n nn Z Z Z Z Z Z Z Z Z Z Z Z Z Z f则 )()()1()()()1(1111211121321-------++---=n n n n n n nn Z Z Z Z Z Z Z Z Z Z Z Z Z Z)()()1()()()1(111211121321-------++---≤n n n n n n nn Z Z Z Z Z Z Z Z Z Z Z Z Z Z nd d d 11121+++==∑=nk kd 11已知10n z -=,其单位根为22cossini w i n nππ=+,则解的集合为{}011,,,n w w w -….结论1:若{}12 n m m m ,,…,是模n 的完全剩余系,则{}{}1211,,,,,,nm m m n w w w ww w-=……结论2:设{}{}01112,,,,,,n n z z z w w w -=……,则 (1)120n z z z +++=…;(2)112(1)n n z z z +=-…;(3)12 0 (,)1m m mn n n m z z z n m ⎧+++=⎨=⎩,…,.例 10 设)(),(),(),(x S x R x Q x P 均为多项式,且满足)()1()())(()(2345255x S x x x x x R x x Q x x P ++++=++ (1),求证:1-x 是)(x P 的因式.(美国) 证明:令52sin52cosππωi +=,取),得代入(1k x ω=0)1()1()1(2=++R Q P k k ωω)4,3,2,1(=k ,)1()()1()()1(48642432=++++++++R Q P ωωωωωωωω则0)1()1()1(4=--R Q P (2) 由得,)1(k ω⨯.4,3,2,1,0)1()1()1(32==++k R Q P k k k ωωω 将4个等式相加,得0)1()()1()()1()(4333231342322212432=+++++++++++⋅⋅⋅⋅⋅⋅⋅⋅R Q P ωωωωωωωωωωωω故0)1()1()1(=---R Q P (3) 得),3()2(-0)1(5=P ,则0)1(=P ,由因式定理得).(1x P x -平方差型不定方程的解法数论中的不等式问题一道巴尔干地区竞赛题的思考一道印度竞赛题的简解一道预赛题的简证一道数论题的新证法一道重要的二元二次不定方程——佩尔方程。
高中数学竞赛《数论基础》
3 最大公因数数, n≥2. 若ai|m, 1≤i≤n, 则称m是 a1,a2,…,an的公倍数.
(b±c) mod n
加法消去律: 如果a+b a+c(mod n), 则 b c(mod n)
乘法消去律:
如果ab ac(mod n)且gcd(a,n)=1,则 b c(mod n)
如果ab dc(mod n)且 a d(mod n)以 及 gcd(a,n)=1,则 b c(mod n)
在个数不少于3个的互素正整数中, 不一 定是每二个正整数都是互素的.
例: (6,10,15)= 1, 但(6,10)=2, (6,15)=3, (10,15)=5.
3 最大公因数和最小公倍数
最大公因子有下列性质: 任何不全为0的两个整数的最大公因子存在且
唯一 设整数a与b不全为0,则存在整数x和y,使得
887 mod 187=(132 X 77 X88) mod 187=11
例A.4 参见教材P146。
消去律的条件
逆元的概念
加法逆元:设a,n∈Z且n>1,如果存在b∈Z使得 a+b≡0(modn),则称a、b为互为模n的加法逆元,也 称负元,记为b≡-a(modn)
乘法逆元:设a,n∈Z且n>1,如果存在b∈Z使得 ab≡1(modn),则称a、b为互为模n的乘法逆元,记为 b≡a-1(modn)
1 带余除法
若a,b是二个正整数,b≠0, 则唯一存在二 个整数k和r, 使得下式成立: a=bk+r, 0≤r<b.
赣县中学高中数学竞赛数论第1一讲因式分解(上)
第一讲 因式分解(一)1、 几种常用的因式分解方法①、拆项和添项:把代数式中的某项拆成两项或更多项的代数和,叫做拆项;把代数式添上两个符号相反的项,叫做添项。
一般情况下,如何拆项或添项,依赖于对题目特点的观察和分析。
例1、分解因式:⑴、2426923+++x x x ⑵、15++x x例2、分解因式:24222)1()1(2)1(y x y x y -++-+例3、分解因式:abc c b a 3333-++例4、若a 为正整数,则9324+-a a 是质数还是合数?给出你的证明。
②、按一个变量降次排列:按一个变量降次排列在代数式变换中,是常用的方法之一,按一个变量降次排列的方法,常有利于因式分解的进行。
例5、分解因式:1+++++++z y x zx yz xy xyz例6、分解因式:a x a x a x +++++)12()2(23③、换元法:在作代数式变换时,常常要考虑把一个式子看成一个数(或字母),从而应用基本知识解决问题。
例7、分解因式:2)1()2)(2(ab b a ab b a -+-+-+例8、分解因式:333)42()323()(a b c c b a c b a -++--+++例9、证明:四个连续自然数的积与1之和必是一个完全平方数。
④、待定系数法:待定系数法也是代数式变换的一个常用方法,这个方法的特点是假设变换已经完成,然后再去求出那些尚未确定的系数。
例10、分解因式:35825322-+--+y x y xy x例11、化简912104234++++x x x x例12、分解因式:4925322-++-+y x y xy x例13、求证:y x y xy x +++-22不能分解成两个一次因式的乘积。
例14、求证:1234++++x x x x 可表示成两个多项式的平方差第一讲 因式分解(一)练习1、分解因式:①、32422+++-b a b a =___________________________.②、.____________________262793223=-+-a x a ax x③、._____________________20)5)(3)(1(2=-++-x x x④、._________________________2414723522=-+--+y x y xy x⑤、.__________________________12)2)((42222=-++++y y xy x y xy x ⑥、.___________________________)1)(1)(1(=++++xy y x xy⑦、._______________________)1()2)(2(2=++++-+ab b a ab b a⑧、.___________________________)(3333=---++c b a c b a2、m 为何值时,多项式m y x y xy x +-++-5112101222能分解成两个一次因式的积?3、求满足19832222=-++-x x y xy y x 的整数对),(y x .4、在实数范围内分解因式:1)2(3+++-a x a x .5、已知33332222,,c z y x b z y x a z y x =++=++=++,求xyz 。
数论竞赛题
数论竞赛题数论竞赛题是在数学竞赛中常见的一类题型,主要考察学生在数论领域的理解和运用能力。
数论是研究整数性质及其运算规律的数学分支,涉及到诸多定理和性质。
以下是一个典型的数论竞赛题目,供参考。
题目:证明对于任意正整数 n,都存在一个正整数 k,使得 n(n+1)(n+2)(n+3) 可以被 24 整除。
解法:我们可以通过数学归纳法来证明这一命题。
首先,观察到 24 可以分解为 3 × 2^3。
我们分两种情况进行讨论:情况一:n 是 4 的倍数。
设 n=4k,其中 k 是一个正整数。
则有:n(n+1)(n+2)(n+3) = 4k(4k+1)(4k+2)(4k+3)= 4 × k × (4k+1) × 2 × (2k+1) × 3 × (2k+2) 。
我们发现此时,n(n+1)(n+2)(n+3) 能够被 24 整除。
情况二:n 不是 4 的倍数。
设 n=4k+r,其中 k 是一个正整数,r 是余数,r=1,2 或 3。
则有:n(n+1)(n+2)(n+3) = (4k+r)(4k+r+1)(4k+r+2)(4k+r+3)我们观察到,至少存在一个连续的四个数中,必然包含一个数能被 2 整除,一个数能被 4 整除,一个数能被 3 整除,因而有 2×4×3=24,即可以被 24 整除。
综上所述,对于任意的正整数 n,都存在一个正整数 k,使得 n(n+1)(n+2)(n+3) 能够被 24 整除。
证毕。
数论竞赛题通常涉及到数的整除性质、奇偶性、模运算等概念,要求学生具备较强的逻辑推理和数学证明能力。
通过解决这类题目,学生可以加深对数论相关概念和方法的理解,培养思考和解决问题的能力。
高中竞赛数学辅导:数论专题
数论数论素有“数学皇后”的美称。
由于其形式简单,意义明确,所用知识不多而又富于技巧性,千姿百态,灵活多样。
有人曾说:“用以发现数学天才,在初等数学中再也没有比数论更好的课程了。
”因此在理念的国内外数学竞赛中,几乎都离不开数论问题,使之成为竞赛数学的一大重要内容。
1. 基本内容竞赛数学中的数论问题主要有:(1)整除性问题;(2)数性的判断(如奇偶性、互质性、质数、合数、完全平方数等);(3)余数问题;(4)整数的分解与分拆;(5)不定方程问题;(6)与高斯函数[]x有关的问题。
有关的基本知识:关于奇数和偶数有如下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.两个数之和是奇(偶)数,则这两个数的奇偶性相反(同).若干个整数之和为奇数,则这些数中必有奇数,且奇数的个数为奇数个;若干个整数之和为偶数,则这些数中若有奇数,奇数的个数必为偶数个.奇数g奇数=奇数;奇数g偶数=偶数;偶数g偶数=偶数.若干个整数之积为奇数,则这些数必为奇数;若干个整数之积为偶数,则这些数中至少有一个偶数.若a是整数,则a与a有相同的奇偶性;若a、b是整数,则a b-奇偶性+与a b相同。
关于整数的整除性:设,,a b c是整数,则○1a a;○2若,a b b c,则a c;○3若,a b b c,则对任意整数,m n,+.有a bm cn若在等式11m ni i i i a b ===∑∑中,除某一项外,其余各项都能被c 整除,则这一项也能被c整除.若(,)1a b =,且a bc ,则a c .若(,)1a b =,且,a b b c ,则ab c .设p 是素数,若p ab ,则p a 或p b .关于同余:若0(mod )a m ≡,则m a .(mod )a b m ≡⇔,a b 分别被m 除,余数相同.同余具有反身性:(mod )a a m ≡、对称性:若(mod )a b m ≡,则(mod )b a m ≡、传递性:若,(mod )a b b c m ≡≡,则(mod )a c m ≡.2. 方法评析数论问题综合性强,以极少的知识就可生出无穷的变化。
高中数学竞赛数论
高中数学竞赛数论数论作为数学的一个重要分支,研究自然数的性质及其相关的运算规律,是高中数学竞赛中的一道重要题型。
本文将从数论的基本概念、常见题型以及解题技巧三个方面来介绍高中数学竞赛中的数论问题。
一、基本概念1.1 整数与自然数整数是由自然数和其相反数构成的数集,用Z表示。
自然数是人们日常生活中使用的正整数,用N表示。
1.2 质数与合数质数是只能被1和自身整除的自然数,合数是除了1和自身之外还有其他因数的自然数。
1.3 最大公约数与最小公倍数对于两个自然数a和b,最大的能够同时整除它们的自然数称为它们的最大公约数,用gcd(a, b)表示;最小的能够同时被它们整除的自然数称为它们的最小公倍数,用lcm(a, b)表示。
1.4 同余定理如果两个整数a和b,它们除以某个正整数n得到的余数相同,即a 和b对n取余相等,可以表示为a≡b(mod n)。
二、常见题型2.1 求因数、质因数分解求一个数的因数,可以通过试除法来找到它的所有因数。
质因数分解是将一个数分解为质数的乘积,通过不断地除以最小的质因数来完成。
2.2 同余关系通过同余关系的性质,可以解决一些数的性质问题。
例如,通过同余定理可以求解方程、证明数的整除关系等。
2.3 数列问题数论中的数列问题是指根据给定的数列规律,求解数列的性质或是推导数列的通项公式。
三、解题技巧3.1 取模运算大多数数论问题都可以通过取模运算来简化问题的复杂度。
当计算一个数的幂时,可以通过取模运算降低计算量。
3.2 数论恒等式熟练掌握一些常见的数论恒等式对于解题非常有帮助。
例如费马小定理、欧拉定理等,适时运用可以大大简化问题的解答过程。
3.3 奇偶性讨论对于一些数论问题,可以通过分别讨论奇数和偶数的情况来解决,从而得到问题的解。
3.4 数论规律数论中存在一些常见的规律,比如质数取值范围、奇偶性的性质等。
通过深入研究这些规律,可以更好地理解数论问题,并找到有效的解题方法。
结语高中数学竞赛数论作为数学竞赛中的一个重要部分,涉及的内容较为广泛。
成都市第七中学高一年级竞赛数学数论专题讲义:1整除
成都七中高一竞赛数论专题1.整除设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b Œ. 整除关系的基本性质 (1)|,||.a b b c a c ⇒(2)|,|a b a c ⇔对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a1.设12,a a 是两个不全为零的整数,证明对任意整数q ,都有12121(,)(,).a a a a qa =+2.设(,)1,a b =证明(1)若|,|a c b c 则|.ab c (2)若|a bc 则|.a c3.(Bezout 定理)设,a b 是不全为零的整数,证明(,)1a b =的充要条件是存在整数,x y 使得 1.ax by +=4.证明对任意整数n ,65222n n n n +--能被120整除.5.设m 是一个大于2正整数,若存在正整数n 使得21|21mn-+.求m 的所有可能取值.6.证明:正整数M 是完全平方数的充要条件是对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.7.已知整数,x y 满足1,1,x y ≠-≠-且使得441111x y y x --+++是整数,求证4441x y -能被1x +整除.8.证明:对于任何自然数n 和k ,数3(,)2410kk f n k n n =++都不能分解成若干个连续的自然数之积.9.对于所有素数p 和所有正整数()n n p ≥,证明:p n n C p⎡⎤-⎢⎥⎣⎦能被p 整除.10.(1)求所有的素数数列12n p p p <<<,使得11(1)nk kp =+∏是一个整数. (2)是否存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)nk ka =+∏为整数?.11.设,m n 是正整数, 证明(,)(21,21)2 1.mnm n --=-12.任给2n ≥,证明:存在n 个互不相同的正整数,其中任意两个的和整除这n 个数的积.高一竞赛数论专题1.整除解答设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b Œ. 整除关系的基本性质 (1)|,||.a b b c a c ⇒(2)|,|a b a c ⇔对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a1.设12,a a 是两个不全为零的整数,证明对任意整数q ,都有12121(,)(,).a a a a qa =+证明:记121(,),a a d =1212(,)a a qa d +=.121(,),a a d =即1112|,|.d a d a 于是11121|,|.d a d a qa +所以12.d d ≤1212(,)a a qa d +=,即21221|,|.d a d a qa +于是2122112|,|().d a d a qa qa a +-=所以21.d d ≤所以12.d d =命题得证.2.设(,)1,a b =证明(1)若|,|a c b c 则|.ab c(2)若|a bc 则|.a c证明(,)1,a b =则1.ax by =+于是1().c c c ax by acx bcy =⋅=+=+(1)|,|a c b c ,则12,.c aq c bq ==于是2121().c abq x baq y ab q x q y =+=+所以|.ab c (2)|,a bc 则|.a acx bcy +即|.a c3.(Bezout 定理)设,a b 是不全为零的整数,证明(,)1a b =的充要条件是存在整数,x y 使得 1.ax by +=证明:当,a b 中有一个为零时,结论是显然的. 不妨设,a b 都不为零,且||||.a b ≤一方面若存在整数,x y 使得 1.ax by +=注意到(,)|,(,)|a b a a b b . 所以(,)|.a b ax by +即(,)|1.a b 所以(,)1a b =.另一方面设11111,0||,,b aq r r a q r =+≤<为整数,若10,r =则辗转相除到此为止;否则继续.1222122,0,,a r q r r r q r =+≤<为整数,若20,r =则辗转相除到此为止;否则继续. 12333233,0,,r r q r r r q r =+≤<为整数,若30,r =则辗转相除到此为止;否则继续.由于123r r r >>>且123,,,r r r 均为自然数,所以经过有限步辗转相除可得0.k r =即3211.k k k k r r q r ----=+21(0).k k k k k r r q r r --=+=引理:设,a b 是两个整数且0,a ≠,0||,,b aq r r a q r =+≤<为整数.则(,)(,).a b a r = 证明:因为(,)(,).a b a b aq =-又.r b aq =-所以(,)(,).a b a r = 回到原题:利用引理我们可得112211(,)(,)(,)(,)(,).k k k k a b a r r r r r r r ---=====注意到0.k r =所以11(,)(,0).k k a b r r --==由辗转相除的过程知道1321.k k k k r r r q ----=-2432.k k k k r r r q ----=-3123.r r r q =- 212.r a r q =- 11r b aq =-所以11,r b aq =-212122()(1),r a b aq q q q a q b =--=+-311223123123[(1)][(1)](1),r b aq q q a q b q q q q q a q q b =--+-=+-++所以1k r -是,a b 的线性组合即存在整数,x y 使得1.k r ax by -=+即(,).a b ax by =+ 所以若(,)1,a b =则存在整数,x y 使得 1.ax by +=4.证明对任意整数n ,65222n n n n +--能被120整除.证明:65254222(2)(2)(2)(1)(2)(1)(1)(1)n n n n n n n n n n n n n n n n +--=+-+=+-=+-++22(2)(1)(1)(45)(2)(1)(1)(2)5(1)(1)(2)n n n n n n n n n n n n n n =+-+-+=--+++-++.5!|(2)(1)(1)(2),n n n n n --++4!|(1)(1)(2),5!|5(1)(1)(2),n n n n n n n n -++-++所以65222n n n n +--能被120整除.5.设m 是一个大于2正整数,若存在正整数n 使得21|21mn-+.求m 的所有可能取值.解: 因为21|21mn-+,所以2121n m +≥-所以n m ≥(若不然,则 1.n m ≤-于是1212121m n m-+≥+≥-,即2m ≤矛盾).因为n m ≥,所以存在正整数,q r 使得,0.n mq r r m =+≤<1212122212(21)212(21)[(2)21]21n mq r mq r r r r mq r r m m q m r ++-+=+=-++=-++=-+++++.因为21|21mn-+,所以21|21mr-+.从而212 1.r m+≥- 注意到0.r m ≤<所以 1.r m ≤-于是121212 1.m r m -+≥+≥-即2m ≤矛盾.所以不存在这样的.m6.证明:正整数M 是完全平方数的充要条件是对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.证明:()⇒正整数M 是完全平方数,则2.M d =222222()()()()M i M d i d d d i d d i +-=+-=++-+.2d d i -+对于1,2,,i n =是连续n 个正整数,所以一定存在某个i 使得2|.n d d i -+于是2|().n M i M +-所以对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.()⇐假设正整数M 不是完全平方数,则M 中一定有一个素因数p ,它的指数是奇数即存在正整数k 使得212|,.k k p M p M -Œ因为对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.故取2kn p =,对于21,2,,k i p =一定存在某个i 使得22|().k p M i M +-注意到2k p M Œ.所以22()kp M i +Œ( 若不然, 22|(),k p M i +又22|().k p M i M +-于是2k p M Œ矛盾). 由于22|(),kpM i M +-于是212|().k p M i M -+-注意到21|k p M -.所以212|().k p M i -+我们得到212|()k pM i -+且22()k p M i +Œ.这与2()M i +是完全平方数矛盾.所以假设错误.所以正整数M 是完全平方数.7.已知整数,x y 满足1,1,x y ≠-≠-且使得441111x y y x --+++是整数,求证4441x y -能被1x +整除.证明:设4411,.11x a y cy b x d--==++其中(,)1,(,)1,0,0.a b c d b d ==>> 则a c ad bcb d bd++=是整数.即|.bd ad bc + 从而|,|.b ad bc d ad bc ++于是|,|.b ad d bc 注意到(,)1,(,) 1.a b c d == 所以|,|.b d d b 又0,0b d >>,所以.b d =因为44222211(1)(1)(1)(1)(1)(1)(1)(1)(1)(1).1111a c x y x x x y y y x x y yb d y x y x ---++-++⋅=⋅=⋅=-+-+++++ 所以a cb d⋅是整数,结合.b d = 所以2|.b ac 于是|b ac ,又(,)1a b =,则|,b c 又(,) 1.b c =且0.b >所以 1.b =也就是411y c x -=+.即41| 1.x y +-又44444444441049421(1)1(1)[()()1](1)(1)(1)x yx y x x y y y y x x x -=-+-=-++++++-+.所以4441| 1.x x y +-8.证明:对于任何自然数n 和k ,数3(,)2410kk f n k n n =++都不能分解成若干个连续的自然数之积.证明: 我们知道数(,)f n k 能分解成n 个连续的自然数之积,则一定能被!n 整除.所以只需要证明数(,)f n k 不能被一个很小的自然数n 整除即可.33333(,)2410(339)13(3)()1k k k k k k k k k k f n k n n n n n n n n n n =++=++-++=++--+ 33(3)(1)(1)1k k k k k n n n n n =++--++. 33|3(3),3|(1)(1),3 1.k k k k k n n n n n ++-+Œ所以3(,).f n k Œ也就是数(,)f n k 不能分解成3个或3个以上的连续的自然数之积. 下面再证明数(,)f n k 不能分解成2个连续的自然数之积.由上可知(,)31f n k q =+.因此只需要证明31(1)q x x +=+无自然数解. 当3x m =时,(1)3(31)3[(31)]x x m m m m +=+=+,故无解.当31x m =+时,2(1)(31)(32)3(33)2x x m m m m +=++=++,故无解. 当32x m =+时,(1)(32)(33)3(1)(32)x x m m m m +=++=++故无解. 所以数(,)f n k 不能分解成2个连续的自然数之积. 于是我们证明了对于任何自然数n 和k ,数3(,)2410k k f n k n n =++都不能分解成若干个连续的自然数之积.9.对于所有素数p 和所有正整数()n n p ≥,证明:p n n C p⎡⎤-⎢⎥⎣⎦能被p 整除.证明:,1,2,,1n n n n p ---+这连续p 个数有且仅有一个被p 整除,设这个数为.N 则,.N pq q Z =∈则.n Nq p p ⎡⎤==⎢⎥⎣⎦且,1,,1,1,1n n N N n p -+--+除以p 的余数不计次序为1,2,,1p -.于是(1)(1)(1)(1)(1)!.n n N N n p p pA -+--+=-+(1)(1)(1)(1)(1)(1)(1)(1)1!(1)!p n n n n N N N n p n n N N n p C q q p p p ⎡⎤⎡⎤-+--+-+--+-=-=-⎢⎥⎢⎥-⎣⎦⎣⎦(1)!1(1)!(1)!p pA pqAq p p ⎡⎤-+=-=⎢⎥--⎣⎦. 因为p 与1,2,,1p -互素,所以(,(1)!) 1.p p -=于是(1)!|..(1)!p n n qAp qAC p p p ⎡⎤--=⋅⎢⎥-⎣⎦所以|.p n n p C p ⎡⎤-⎢⎥⎣⎦10.(1)求所有的素数数列12n p p p <<<,使得11(1)nk kp =+∏是一个整数. (2)是否存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)nk ka =+∏为整数?. 解(1)111(1)1(1).nk nk n k k kk p p p ===++=∏∏∏ 当3n ≥时,1,1 1.n k p p k n >+≤≤-故11((1),) 1.n knk p p -=+=∏所以|1.nn pp +又|.n n p p 所以|1.n p于是1n p =矛盾.所以2n ≤.当1n =时,111N p +∉. 当2n =时,1212121212(1)(1)111(1)(1)1.p p p p N p p p p p p ++++++==+∈ 1212|1p p p p ++,21221|1,|1.p p p p p +++又211p p ≥+.所以211.p p =+于是1111|11,|2.p p p p +++ 所以122, 3.p p ==综上,所求的数列只有一个122, 3.p p == (2)不存在. 当121n a a a <<<<时,设.n a m ≤2222222212222111(!)21(1)(1) 2.(1)!1(1)(1)1(1)!2nm m m m k k k k k k k k k m mm a k k k k k m m =====+<+≤+=<===<+--++-∏∏∏∏∏所以211(1)nk k N a =+∉∏.所以不存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)nk ka =+∏为整数.11.设,m n 是正整数, 证明(,)(21,21)21.mnm n --=-解:不妨设.m n ≥有带余除法得1111(1,0)m q n r q r n =+≥≤<. 我们有111111111212122212(21)2 1.q n r q n r r r r q n r m++-=-=-+-=-+-因为121|21q nn--,所以1(21,21)(21,21).r m n n --=--注意到1(,)(,).m n n r =若10,r =则1(,)(,).m n n r n ==于是1(21,21)(21,21)(0,21)2 1.rmnnnn--=--=-=-结论成立. 若10,r >则作辗转相除.,212221(1,0)n q r r q r r =+≥≤<. 我们有212221221212(21)2 1.q r r r q r r n+-=-=-+-因为12121|21rq r --,所以112(21,21)(21,21)(21,21)r r r m n n --=--=--.若20,r >则继续处理,直到10k r +=为止.由辗转相除法知(,).k m n r =1112(,)(21,21)(21,21)(21,21)(21,21)(21,0)212 1.k k k k r r r r r r r m n n m n +--=--=--==--=-=-=-至此,我们证得了结论.12.任给2n ≥,证明:存在n 个互不相同的正整数,其中任意两个的和整除这n 个数的积.证明:我们任取n 个互不相同的正整数12,,,,n a a a 并选取一个正整数参数,K 希望12,,,n Ka Ka Ka 的积12n n K a a a 被任意两项的和i j Ka Ka +()i j ≠整除,取1().i j i j nK a a ≤<≤=+∏12,,,n Ka Ka Ka 互不相同, 1()().i j i j i j i j nKa Ka a a a a ≤<≤+=++∏12121(()).n n n i j n i j nK a a a a a a a a ≤<≤=+∏显然有12|.ni j n Ka Ka K a a a +。
四川省成都七中高中数学竞赛数论专题讲义及详解:1整除
高一竞赛数论专题1.整除设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b Œ. 整除关系的基本性质(1)|,||.a b b c a c ⇒(2)|,|a b a c ⇔对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a1.设12,a a 是两个不全为零的整数,证明对任意整数q ,都有12121(,)(,).a a a a qa =+2.设(,)1,a b =证明(1)若|,|a c b c 则|.ab c(2)若|a bc 则|.a c3.(Bezout 定理)设,a b 是不全为零的整数,证明(,)1a b =的充要条件是存在整数,x y 使得 1.ax by +=4.证明对任意整数n ,65222n n n n +--能被120整除.5.设m 是一个大于2正整数,若存在正整数n 使得21|21m n -+.求m 的所有可能取值.6.证明:正整数M 是完全平方数的充要条件是对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.7.已知整数,x y 满足1,1,x y ≠-≠-且使得441111x y y x --+++是整数,求证4441x y -能被1x +整除.8.证明:对于任何自然数n 和k ,数3(,)2410k k f n k n n =++都不能分解成若干个连续的自然数之积.9.对于所有素数p 和所有正整数()n n p ≥,证明:p n n C p ⎡⎤-⎢⎥⎣⎦能被p 整除.10.(1)求所有的素数数列12n p p p <<<,使得11(1)n k kp =+∏是一个整数. (2)是否存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)n k ka =+∏为整数?.11.设,m n 是正整数, 证明(,)(21,21)21.m n m n --=-12.任给2n ≥,证明:存在n 个互不相同的正整数,其中任意两个的和整除这n 个数的积.高一竞赛数论专题1.整除解答设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b Œ. 整除关系的基本性质(1)|,||.a b b c a c ⇒(2)|,|a b a c ⇔对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a1.设12,a a 是两个不全为零的整数,证明对任意整数q ,都有12121(,)(,).a a a a qa =+证明:记121(,),a a d =1212(,)a a qa d +=.121(,),a a d =即1112|,|.d a d a 于是11121|,|.d a d a qa +所以12.d d ≤1212(,)a a qa d +=,即21221|,|.d a d a qa +于是2122112|,|().d a d a qa qa a +-=所以21.d d ≤所以12.d d =命题得证.2.设(,)1,a b =证明(1)若|,|a c b c 则|.ab c(2)若|a bc 则|.a c证明(,)1,a b =则1.ax by =+于是1().c c c ax by acx bcy =⋅=+=+(1)|,|a c b c ,则12,.c aq c bq ==于是2121().c abq x baq y ab q x q y =+=+所以|.ab c(2)|,a bc 则|.a acx bcy +即|.a c3.(Bezout 定理)设,a b 是不全为零的整数,证明(,)1a b =的充要条件是存在整数,x y 使得 1.ax by +=证明:当,a b 中有一个为零时,结论是显然的.不妨设,a b 都不为零,且||||.a b ≤一方面若存在整数,x y 使得 1.ax by +=注意到(,)|,(,)|a b a a b b .所以(,)|.a b ax by +即(,)|1.a b 所以(,)1a b =.另一方面设11111,0||,,b aq r r a q r =+≤<为整数,若10,r =则辗转相除到此为止;否则继续.1222122,0,,a r q r r r q r =+≤<为整数,若20,r =则辗转相除到此为止;否则继续.12333233,0,,r r q r r r q r =+≤<为整数,若30,r =则辗转相除到此为止;否则继续.由于123r r r >>>且123,,,r r r 均为自然数,所以经过有限步辗转相除可得0.k r =即3211.k k k k r r q r ----=+21(0).k k k k k r r q r r --=+=引理:设,a b 是两个整数且0,a ≠,0||,,b aq r r a q r =+≤<为整数.则(,)(,).a b a r =证明:因为(,)(,).a b a b aq =-又.r b aq =-所以(,)(,).a b a r =回到原题:利用引理我们可得112211(,)(,)(,)(,)(,).k k k k a b a r r r r r r r ---=====注意到0.k r =所以11(,)(,0).k k a b r r --==由辗转相除的过程知道1321.k k k k r r r q ----=- 2432.k k k k r r r q ----=-3123.r r r q =-212.r a r q =-11r b aq =-所以11,r b aq =-212122()(1),r a b aq q q q a q b =--=+-311223123123[(1)][(1)](1),r b aq q q a q b q q q q q a q q b =--+-=+-++所以1k r -是,a b 的线性组合即存在整数,x y 使得1.k r ax by -=+即(,).a b ax by =+所以若(,)1,a b =则存在整数,x y 使得 1.ax by +=4.证明对任意整数n ,65222n n n n +--能被120整除.证明:65254222(2)(2)(2)(1)(2)(1)(1)(1)n n n n n n n n n n n n n n n n +--=+-+=+-=+-++ 22(2)(1)(1)(45)(2)(1)(1)(2)5(1)(1)(2)n n n n n n n n n n n n n n =+-+-+=--+++-++.5!|(2)(1)(1)(2),n n n n n --++4!|(1)(1)(2),5!|5(1)(1)(2),n n n n n n n n -++-++所以65222n n n n +--能被120整除.5.设m 是一个大于2正整数,若存在正整数n 使得21|21m n -+.求m 的所有可能取值.解: 因为21|21m n -+,所以2121n m +≥-所以n m ≥(若不然,则 1.n m ≤-于是1212121m n m -+≥+≥-,即2m ≤矛盾).因为n m ≥,所以存在正整数,q r 使得,0.n mq r r m =+≤<1212122212(21)212(21)[(2)21]21n mq r mq r r r r mq r r m m q m r ++-+=+=-++=-++=-+++++. 因为21|21m n -+,所以21|21m r -+.从而212 1.r m+≥- 注意到0.r m ≤<所以 1.r m ≤-于是121212 1.m r m -+≥+≥-即2m ≤矛盾.所以不存在这样的.m6.证明:正整数M 是完全平方数的充要条件是对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.证明:()⇒正整数M 是完全平方数,则2.M d = 222222()()()()M i M d i d d d i d d i +-=+-=++-+.2d d i -+对于1,2,,i n =是连续n 个正整数,所以一定存在某个i 使得2|.n d d i -+于是2|().n M i M +- 所以对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.()⇐假设正整数M 不是完全平方数,则M 中一定有一个素因数p ,它的指数是奇数即存在正整数k 使得212|,.k k p M p M -Œ因为对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除. 故取2k n p =,对于21,2,,k i p =一定存在某个i 使得22|().k p M i M +-注意到2k p M Œ.所以22()k p M i +Œ( 若不然, 22|(),k p M i +又22|().k p M i M +-于是2k p M Œ矛盾). 由于22|(),k p M i M +-于是212|().k p M i M -+-注意到21|k p M -.所以212|().k p M i -+我们得到212|()k pM i -+且22()k p M i +Œ.这与2()M i +是完全平方数矛盾. 所以假设错误.所以正整数M 是完全平方数.7.已知整数,x y 满足1,1,x y ≠-≠-且使得441111x y y x --+++是整数,求证4441x y -能被1x +整除.证明:设4411,.11x a y cy b x d--==++其中(,)1,(,)1,0,0.a b c d b d ==>> 则a c ad bcb d bd++=是整数.即|.bd ad bc + 从而|,|.b ad bc d ad bc ++于是|,|.b ad d bc 注意到(,)1,(,) 1.a b c d == 所以|,|.b d d b 又0,0b d >>,所以.b d =因为44222211(1)(1)(1)(1)(1)(1)(1)(1)(1)(1).1111a c x y x x x y y y x x y yb d y x y x ---++-++⋅=⋅=⋅=-+-+++++ 所以a cb d⋅是整数,结合.b d = 所以2|.b ac 于是|b ac ,又(,)1a b =,则|,b c 又(,) 1.b c =且0.b >所以 1.b =也就是411y c x -=+.即41| 1.x y +-又44444444441049421(1)1(1)[()()1](1)(1)(1)x y x y x x y y y y x x x -=-+-=-++++++-+.所以4441| 1.x x y +-8.证明:对于任何自然数n 和k ,数3(,)2410k kf n k n n =++都不能分解成若干个连续的自然数之积.证明: 我们知道数(,)f n k 能分解成n 个连续的自然数之积,则一定能被!n 整除.所以只需要证明数(,)f n k 不能被一个很小的自然数n 整除即可.33333(,)2410(339)13(3)()1k k k k k k k k k k f n k n n n n n n n n n n =++=++-++=++--+ 33(3)(1)(1)1k k k k k n n n n n =++--++. 33|3(3),3|(1)(1),3 1.k k k k k n n n n n ++-+Œ所以3(,).f n k Œ也就是数(,)f n k 不能分解成3个或3个以上的连续的自然数之积. 下面再证明数(,)f n k 不能分解成2个连续的自然数之积.由上可知(,)31f n k q =+.因此只需要证明31(1)q x x +=+无自然数解. 当3x m =时,(1)3(31)3[(31)]x x m m m m +=+=+,故无解.当31x m =+时,2(1)(31)(32)3(33)2x x m m m m +=++=++,故无解.当32x m =+时,(1)(32)(33)3(1)(32)x x m m m m +=++=++故无解. 所以数(,)f n k 不能分解成2个连续的自然数之积.于是我们证明了对于任何自然数n 和k ,数3(,)2410k kf n k n n =++都不能分解成若干个连续的自然数之积.9.对于所有素数p 和所有正整数()n n p ≥,证明:pn n C p ⎡⎤-⎢⎥⎣⎦能被p 整除. 证明:,1,2,,1n n n n p ---+这连续p 个数有且仅有一个被p 整除,设这个数为.N 则,.N pq q Z =∈则.n Nq p p⎡⎤==⎢⎥⎣⎦且,1,,1,1,1n n N N n p -+--+除以p 的余数不计次序为1,2,,1p -.于是(1)(1)(1)(1)(1)!.n n N N n p p pA -+--+=-+(1)(1)(1)(1)(1)(1)(1)(1)1!(1)!p n n n n N N N n p n n N N n p C q q p p p ⎡⎤⎡⎤-+--+-+--+-=-=-⎢⎥⎢⎥-⎣⎦⎣⎦(1)!1(1)!(1)!p pA pqAq p p ⎡⎤-+=-=⎢⎥--⎣⎦. 因为p 与1,2,,1p -互素,所以(,(1)!) 1.p p -=于是(1)!|..(1)!p n n qAp qAC p p p ⎡⎤--=⋅⎢⎥-⎣⎦所以|.pn n p C p ⎡⎤-⎢⎥⎣⎦10.(1)求所有的素数数列12n p p p <<<,使得11(1)nk kp =+∏是一个整数. (2)是否存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)nk k a =+∏为整数?.解(1)111(1)1(1).nk nk n k k kk p p p ===++=∏∏∏ 当3n ≥时,1,1 1.n k p p k n >+≤≤-故11((1),) 1.n knk p p -=+=∏所以|1.nn pp +又|.n n p p 所以|1.n p于是1n p =矛盾.所以2n ≤.当1n =时,111N p +∉. 当2n =时,1212121212(1)(1)111(1)(1)1.p p p p N p p p p p p ++++++==+∈ 1212|1p p p p ++,21221|1,|1.p p p p p +++又211p p ≥+.所以211.p p =+于是1111|11,|2.p p p p +++ 所以122, 3.p p ==综上,所求的数列只有一个122, 3.p p == (2)不存在. 当121n a a a <<<<时,设.n a m ≤2222222212222111(!)21(1)(1) 2.(1)!1(1)(1)1(1)!2nm m m m k k k k k k k k k m mm a k k k k k m m =====+<+≤+=<===<+--++-∏∏∏∏∏所以211(1)nk k N a =+∉∏.所以不存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)nk k a =+∏为整数.11.设,m n 是正整数, 证明(,)(21,21)21.m n m n --=- 解:不妨设.m n ≥有带余除法得1111(1,0)m q n r q r n =+≥≤<.我们有111111111212122212(21)2 1.q n r q n r r r r q n r m++-=-=-+-=-+-因为121|21q nn--,所以1(21,21)(21,21).r m n n --=--注意到1(,)(,).m n n r =若10,r =则1(,)(,).m n n r n ==于是1(21,21)(21,21)(0,21)2 1.rm n n n n--=--=-=-结论成立.若10,r >则作辗转相除.,212221(1,0)n q r r q r r =+≥≤<.我们有212221221212(21)2 1.q r r r q r r n+-=-=-+-因为12121|21rq r --,所以112(21,21)(21,21)(21,21)r r r m n n --=--=--.若20,r >则继续处理,直到10k r +=为止.由辗转相除法知(,).k m n r =1112(,)(21,21)(21,21)(21,21)(21,21)(21,0)212 1.k k k k r r r r r r r m n n m n +--=--=--==--=-=-=-至此,我们证得了结论.12.任给2n ≥,证明:存在n 个互不相同的正整数,其中任意两个的和整除这n 个数的积.证明:我们任取n 个互不相同的正整数12,,,,n a a a 并选取一个正整数参数,K 希望12,,,n Ka Ka Ka 的积12n n K a a a 被任意两项的和i j Ka Ka +()i j ≠整除,取1().i j i j nK a a ≤<≤=+∏12,,,n Ka Ka Ka 互不相同, 1()().i j i j i j i j nKa Ka a a a a ≤<≤+=++∏12121(()).n n n i j n i j nK a a a a a a a a ≤<≤=+∏显然有12|.ni j n Ka Ka K a a a +。
高中数学竞赛 数论部分
初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。
1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。
(1894年首届匈牙利 数学竞赛第一题) (2) ①设n Z ∈,证明2131n -是168的倍数。
②具有什么性质的自然数n ,能使123n ++++能整除123n ⋅⋅⋅(1956年上海首届数学竞赛第一题)(3) 证明:3231122n n n ++-对于任何正整数n 都是整数,且用3除时余2。
(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数214143n n ++不可约简。
(1956年首届国际数学奥林匹克竞赛第一题)(5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证:[][][][]()()()()22,,,,,,,,,,a b c a b c a b b c c a a b b c c a =⋅⋅(1972年美国首届奥林匹克数学竞赛第一题)这些例子说明历来数论题在命题者心目中首当其冲。
2.再看以下统计数字:(1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。
(2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占% 。
这说明:数论题在命题者心目中总是占有一定的分量。
如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。
3.请看近年来国内外重大竞赛中出现的数论题:(1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( )A 、 0B 、1C 、3D 、无穷多(2007全国初中联赛5)(2)已知,a b 都是正整数,试问关于x 的方程()2102x abx a b -++=是否有两个整数解如果有,请把它们求出来;如果没有,请给出证明。
高中数学竞赛——数论
高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类((2)2.(1)a r ,得m 个数特别地,完全为偶数时,,2-m (2)证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系,因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm),矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m 1,m 2是两个互质的正整数,而x,y 分别遍历模m 1,m 2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.(1).在与模m的一个(2)(ϕm)x1≡x2,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m的一个既约剩余系.(ⅴ)设m1,m2是两个互质的正整数,而x,y分别历遍模m1,m2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1,(m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,1m 2的既)(2m ϕ)., 1,α(4.欧拉欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ)(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例(m 整除,.例m,使得2011|f n f 3因所以,例,是整数序列负整数假设对每个正整数:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.得到:例,(i,j)也历mod2n 的和≡例可被,且是周期数列,所以, 数列{a n }中存在无穷多项可被2011整除.例7证明:存在无穷多个正整数n,使得n 2+1∤n!.证明:引理1对素数p >2,⇔≡)4(mod 1p 存在x(1≤x ≤p -1)使)(m od 12p x -≡. 证:充分性:因对1≤x ≤p -1,( p ,x)=1,所以,)(mod 1)(2121p x x p p ≡=--,≡-212)(p x)(mod 1)1(21p p ≡--,所以,21-p 为偶数,即).4(mod 1≡p 必要性:因1≤x ≤p -1时,x,2x,…,(p -1)x 构成modp 的既约剩余系,所以,存在1≤a ≤p -1,使得a x ≡-1(mod p ),若不存在a (1≤a ≤p -1), a =x,使a x ≡-1(mod p ),则这样的a ,x 共配成21-p 对,则有)(mod 1)!1()1(21p p p -≡-≡--,即21-p 为奇数,与 p 2证a =4(p 1p 设2p 1 p 2…12x -≡,相应的x 例(1)(2)n n+1n (n=1,2, …),且每个a n 都是f(x)的周期.证明:(1)设T=nm (正整数m,n 互质,且n ≥2),因(m,n)=1,所以,m,2m,…,nm 构成 modn 的完系,故存在k ∈N *使得km ≡1(modn),即存在t ∈N *使得km=nt+1,因f(x)=f(x+kT)=f(x+n km )=f(x+t+n 1)=f(x+n 1),所以n1是周期. 设n=kp ,其中k ∈N *, p 为素数,则n k p 11⋅=是周期.故存在素数p,使p 1是周期. (2)当T 为无理数时,取a 1=T,则T 为无理数, 0<T<1.设k≤n 时存在无理数a k ,使得0<a k <a k-1<1,且a k 是周期.对k+1,总存在存在u,v ∈N *,使得0<u a k -v<a k <1,取例解:,对任意}包含了modn+1零剩余,≤k ≤n, a 1+a 2+取例. 例11求所有的奇质数p ,使得∑=-11|k p k p .例12求所有质数p ,使得2122213)()()(|-+++p p p p C C C p .例13设n 为大于1的奇数,k 1,k 2,…,k n 是n 个给定的整数,对1,2,…,n 的每一个排列a=(a 1,a 2,…,a n ),记S(a)=∑=ni i i a k 1.证明:存在两个1,2,…,n 的排列b 和c(b ≠c),使得n!|S(b)-S(c).证明:如果对1,2,…,n 的任意两个不同排列b 和c(b ≠c),都有n!∤S(b)-S(c),那么当a 取遍所有排列时(共n!个),S(a)遍历模n!的一个完系, 因此,有∑a a S )(≡1+2+…+n!≡2!2)1!(!n n n ≡+(modn!) ①, 另一方面,我们有 ∑a a S )(=)!(mod 0)1(!])!1[(n k n n j n k a k a k n i n n in i i n i i ≡+=-==∑∑∑∑∑∑∑ ②. 由①∑a .例modm 因(m,2n 例x 例在A同余方程与同余方程组1.同余方程(组)及其解的概念定义1 给定正整数m 及n 次整系数多项式0111)(a x a x a x a x f n n n n ++++=--,则同余式f(x)≡0(modm)①叫做模m 的同余方程,若a n 0(modm),则n 叫做方程①的次数.若x=a是使f(a)≡0(modm)成立的一个整数,则x≡a(modm)叫做方程①的一个解,即把剩余类a(modm)叫做①的一个解.若a1(modm),a2(modm)均为方程①的解,且a1,a2对模m不同余,就称它们是方程①的不同解.由此可见,只需在模m的任一组完系中解方程①即可.例12解:例2解:.2.设a x解,例3解:tx即)8-≡x.3,1-(mod≡t),1,08(mod1=4+例4解方程12x≡6(mod9).因(12,9)=3,且-1是一个特解,所以,方程12x≡6(mod9)的解为:(modx即)8t5,2,1,≡t≡-x.(mod),2,1,083+1=-3.同余方程组定义3给定正整数m 1,m 2,…,m k 和整系数多项式f 1(x),f 2(x),…,f k (x),则同余式组 ⎪⎪⎩⎪⎪⎨⎧≡≡≡)(mod 0)()(mod 0)()(mod 0)(2211k k m x f m x f m x f ②,叫做同余方程组.若x=a 是使f j (a )≡0(modm j )(1≤j ≤k)成立的一个整数,则x ≡a (modm)叫做方程组②的一个解,即把剩余类a (modm)叫做②的一个解.例5解:⎩⎨⎧-≡≡13x x .M=m 1m ⎪⎪⎩⎪⎪⎨⎧≡≡≡21k a x a x a x 其中M j ).(2)j j j j 则x ≡y (modm j ),即m j |x -y ,因m 1,m 2,…,m k 两两互质,所以M| x-y 即x ≡y (modM). 注:(1)存在无穷多个整数x 满足同余方程组③,这些x 属于同一模m 的剩余类;(2)同余方程组③仅有一个解x ≡a 1M 1M 1-1+a 2M 2M 2-1+…+a k M k M k -1(modM).(3)当(a ,m i )=1(=1,2,…,n)时,同余方程组⎪⎪⎩⎪⎪⎨⎧≡≡≡⇔⎪⎪⎩⎪⎪⎨⎧≡≡≡---)(mod )(mod )(mod )(mod )(mod )(mod 12211112211k k k k m a a x m a a x m a a x m a ax m a ax m a ax仍然具有定理结论. 这在数论解题中具有重要应用.例6“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何”.解,352115≡x 例.解:210×210-1≡210-1≡1(mod11)⇔210-1≡1(mod11),所以,同余方程组的解为: )2310(mod 2111637121010330438553462≡=⨯+⨯+⨯+⨯≡x ,即x=2310k+2111(k ∈N).例8证明:对任意n 个两两互质的正整数:m 1,m 2,…,m n ,总存在n 个连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).证明:由剩余定理知,总存在整数k 使得⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡)(mod )(mod 2)(mod 121n m n k m k m k,即存在连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).例9证明:对任意n ∈N *,存在n 个连续正整数它们中每一个数都不是素数的幂(当 数⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡21n m m m例,且A 例 {k +a n }⎩⎨⎧-≡≡)(mod 102p x x 123⎪⎩-≡)(mod 232p x 2的最小正整数a 2=38.假定a 1,a 2,…,a n 都已确定,则取a n+1适合⎪⎪⎩⎪⎪⎨⎧-≡-≡≡+)(mod )(mod 1)(mod 0121n p n x p x p x 且大于a n 的最小正整数,由剩余定理知满足条件的a n+1存在.则上述递推关系定义的数列{a n }满足题意:因对任意k ∈N *,当n ≥k+1时,都有k+a n ≡0(mod p k+1),由{a n }递增可知{k +a n }从第k+2项起每一项都是p k+1的倍数,且都大于p k+1,所以,数列{k +a n }中至多有k+1项为素数.例12是否存在一个由正整数组成的数列,使得每个正整数都恰在该数列中出现一次,且对任意正整数k ,该数列的前k 项之和是k 的倍数?解:,S=a 1+a 2⎩⎨⎧++≡+t r S r S {a n }例的质因数.例例。
高中数学竞赛——数论
高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。
K 0,K 1,…,K m-1为模m 的全部剩余类.(2)性质(ⅰ)i m i K Z 10-≤≤= 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里.(ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ⇔a ≡b(modm).2.剩余系的定义与性质(1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,21,,1,0,1,,121,21--+----m m m ;当m 为偶数时,12,,1,0,1,,12,2--+--m m m 或2,,1,0,1,,12m m -+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系⇔两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系.证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m1,m2是两个互质的正整数,而x,y分别遍历模m1,m2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.既约剩余系的定义与性质(1)定义3如果剩余类K r里的每一个数都与m互质,则K r叫与m互质的剩余类.在与模m互质的全部剩余类中,从每一类中任取一个数所做成的数组,叫做模m的一个既约(简化)剩余系.如:模5的简系1,2,3,4;模12的简系1,5,7,11.(2)性质(ⅰ)K r与模m互质⇔K r中有一个数与m互质;证明:设a∈K r,(m,a)=1,则对任意b∈K r,因a≡b≡r(modm),所以,(m,a)=(m,r)= (m,b)=1,即K r与模m互质.(ⅱ)与模m互质的剩余类的个数等于)m(ϕ,即模m的一个既约剩余系由)m(ϕ个整数组成()m(ϕ为欧拉函数);(ⅲ)若(a,m)=1,则x与ax同时遍历模m的既约剩余系.证明:因(a,m)=1,(x,m)=1,所以,(ax,m)=1.若ax1≡ax2(modm),则有x1≡x2(modm),矛盾!(ⅳ)若a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m 的一个既约剩余系.(ⅴ)设m 1,m 2是两个互质的正整数,而x,y 分别历遍模m 1,m 2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1, (m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,所以,(m 2x,m 1)=(m 1y,m 2)=1,因(m 1,m 2)=1,所以,(m 1,x )=(m 2,y )=1.证毕.推论1若m 1,m 2是两个互质的正整数,则)()()(2121m m m m ϕϕϕ=.证明:因当x,y 分别历遍模m 1,m 2的既约剩余系时,m 2x+m 1y 也历遍模m 1m 2的既约剩余系,即m 2x+m 1y 取遍)(21m m ϕ个整数,又x 取遍)(1m ϕ个整数,y 取遍 )(2m ϕ个整数,所以, m 2x+m 1y 取遍)()(21m m ϕϕ个整数,故)()()(2121m m m m ϕϕϕ=.推论2 设整数n 的标准分解式为k k p p p n ααα 2121=(k p p ,,1 为互异素数, *1,,N k ∈αα ),则有)11()11)(11()(21kp p p n n ---= ϕ. 证明:由推论1得)()()()(2121k k p p p n αααϕϕϕϕ =,而1)(--=αααϕp p p ,(即从1到αp 这αp 个数中,减去能被p 整除的数的个数),所以,)())(()(11221112211------=kk k k p p p p p p n ααααααϕ )11()11)(11(21kp p p n ---= . 4.欧拉(Euler)与费尔马(Fermat)定理欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ )(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例2证明从任意m 个整数a 1,a 2,…,a m 中,必可选出若干个数,它们的和(包括只一个加数)能被m 整除.证明:考虑m 个数a 1,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a m ,如果其中有一个数能被m 整除,则结论成立,否则,必有两个数属于modm 的同一剩余类,这两个数的差即满足要求.例3设f(x)=5x+2=f 1(x), f n+1(x)=f[f n (x)].求证:对任意正整数n,存在正整数m,使得2011|f n (m).证明:因f 2(x)=f[f(x)]=5(5x+2)+2=52x+5×2+2,f 3(x)=f[f 2(x)]=53x+52×2+5×2+2,..., f n (x)=5n x+5n-1×2+5n-2×2+ (2)因(5n ,2011)=1,所以,x 与f n (x)同时历遍mod2011的完系,1≤x ≤2011,所以,存在正整数m(1≤m ≤2011)使得f n (m)≡0(mod2011),即2011|f n (m).例4设123,,,a a a 是整数序列,其中有无穷多项为正整数,也有无穷多项为 负整数.假设对每个正整数n ,数123,,,,n a a a a 被n 除的余数都各不相同.证明:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但 ∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.最后由正负项均无穷多个(即数列含有任意大的正整数及任意小的负整数)就得到:每个整数在数列中出现且只出现一次.例5偶数个人围着一张圆桌讨论,休息后,他们依不同次序重新围着圆桌坐下,证明至少有两个人,他们中间的人数在休息前与休息后是相等的。
近五年全国高中数学联赛选编数论
近五年全国高中数学联赛选编——数论 2015.8.161.(2010年 加试 2) 设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r = (1)(()),2l f f r l -≥.证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥.证明:记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法. 当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭为整数. 假设命题对1(1)v v -≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+L ,这里,0i α=或者1,1,2,i v v =++L . 于是 ()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭2122kk k =+++ 11211212(1)2()222v v v vv v v ααα-++++=+++⋅++⋅+++L L12k '=+, ①这里1121122(1)2()22v v v v v v v k ααα-++++'=++⋅++⋅+++L L .显然k '中所含的2的幂次为1v -.故由归纳假设知,12r k ''=+经过f 的v 次迭代得到整数,由①知,(1)()v f r +是一个整数,这就完成了归纳证明.2. (2011年 加试 2) 证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--Λ具有如下性质:(1)110,,,-n a a a Λ均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21Λ,均有)()()()(21k r f r f r f m f Λ≠. 证明:令2)()2)(1()(++++=n x x x x f Λ, ①将①的右边展开即知)(x f 是一个首项系数为1的正整数系数的n 次多项式.下面证明)(x f 满足性质(2).对任意整数t ,由于4≥n ,故连续的n 个整数n t t t +++,,2,1Λ中必有一个为4的倍数,从而由①知)4(mod 2)(≡t f .因此,对任意)2(≥k k 个正整数k r r r ,,,21Λ,有)4(mod 02)()()(21≡≡k k r f r f r f Λ.但对任意正整数m ,有)4(mod 2)(≡m f ,故)4)(mod ()()()(21k r f r f r f m f Λ≡/,从而)()()()(21k r f r f r f m f Λ≠.所以)(x f 符合题设要求.3. (2012年 加试 2)4. (2013年加试2)5. (2014年加试4)。
数学竞赛数论基础知识
数学竞赛数论基础知识数学竞赛里的数论,就像一座神秘的宝藏山,藏着无数令人着迷又烧脑的宝贝。
咱先来说说整数,这可是数论的基石啊!整数就像一群整整齐齐排好队的士兵,忠诚又可靠。
你想想,整数没有小数部分,多干脆利落!那整数里的奇数和偶数,不就像班级里的男生和女生吗?奇数就像调皮的男生,两两凑一起总会多出一个;偶数就像温柔的女生,总能两两成对。
再说说整除,这可是数论里的重要角色。
比如 6 能被 3 整除,就好像 6 这个“大蛋糕”能被 3 均匀地切成两块。
那余数呢?余数就像是分蛋糕剩下的那一点点,总让人惦记着。
素数,这可是数论里的“明星”!它们特立独行,除了 1 和它本身,不再跟别的数亲近。
就像那些高冷的学霸,只专注于自己的世界。
合数呢,就比较“随和”啦,能跟好多数友好相处。
同余定理呢,就像是给数字们穿上了同样的“衣服”,让它们有了相似的特征。
比如 7 除以 3 余 1,10 除以 3 也余 1,它们在同余的世界里就像穿着同款校服的同学。
最大公约数和最小公倍数,这俩可是一对好搭档。
最大公约数就像两个数字共同拥有的最大的“公约数财产”,而最小公倍数呢,则是它们共同积累的最小的“财富目标”。
还有因数分解,这不就是把一个数字大“家庭”拆分成一个个小“家族”嘛!比如 12 可以分解成 2×2×3,就像把一个大家庭分成几个小家庭,每个小家庭都有自己独特的成员。
在数学竞赛中,掌握这些数论的基础知识,就如同战士有了锋利的宝剑,厨师有了精湛的厨艺。
你说,要是不了解这些,怎么能在数论的战场上冲锋陷阵,怎么能解开那些复杂又有趣的数论谜题呢?所以呀,一定要把这些基础知识牢牢掌握,让它们成为你的得力助手,带你在数学竞赛的世界里畅游!。
高中数学联赛数论专题
高中数学联赛数论专题数论是数学中的一个重要分支,涉及整数的性质和关系。
在高中数学联赛中,数论作为一个专题常常被提及,并且在竞赛题目中占据一定比例。
本文将从数论的基本概念、典型问题和解题思路等方面进行探讨。
一、数论的基本概念数论是研究整数的性质和关系的数学领域,其中核心概念包括因数、倍数、质数、互质等。
因数指的是能够整除某个整数的所有正整数,而倍数则是某个整数所能够整除的所有整数。
质数是只能被1和自身整除的整数,而互质则是两个数的最大公因数为1。
二、典型问题在高中数学联赛的数论专题中,常常会出现以下典型问题:1. 质因数分解:给定一个整数,要求将其分解为质因数的乘积。
质因数分解不仅是数论中的重要知识点,还是其他数学学科的基础。
2. 同余定理:同余定理是数论中的重要理论,涉及到整数之间的模运算。
常见的同余定理包括欧拉定理、费马小定理等。
3. 素数判定:判断一个数是否为素数是数论中的常见问题。
除了常规的试除法,还可以运用费马检验、米勒-拉宾素性测试等方法进行判定。
4. 数列问题:数论与数列密切相关,常常会涉及到数列的性质和规律。
例如斐波那契数列、约瑟夫环等经典问题。
5. 不定方程:不定方程指的是关于整数解的方程,解决不定方程需要灵活运用数论知识和技巧。
典型的不定方程问题包括费马方程、佩尔方程等。
三、解题思路在高中数学联赛中,解决数论问题的关键在于运用合适的方法和技巧。
下面给出几点解题思路供参考:1. 寻找规律:数论问题常常有一定的规律性,通过观察和归纳找出规律是解题的关键。
可以通过列数表、找数列规律等方法进行推断。
2. 利用等式性质:利用等式的性质可以化简或者变形给定的数论问题,将其转化为更容易解决的形式。
例如利用同余关系化简方程、利用性质求解方程等。
3. 利用定理和公式:数论中有很多重要的定理和公式,熟练掌握并恰当运用可以大大提高解题效率。
例如欧拉定理、费马小定理等。
4. 分类讨论:针对不同情况进行分类讨论,找出不同情况下的共同性质和规律。
高二数学竞赛辅导-初等数论
1 1 1 )(1 − )L (1 − ) 。 p1 p2 pn
= bq + r ,
0 ≤ r < b ,并且整数 q 和 r 由上述条件惟一确定, r 称为 b 除 a 的余数.若 r = 0 ,则称 b 整除 a ,
或 a 被 b 整除,或称 a是b 的倍数,或称 b是a 的约数(又叫因子) ,记为 b | a .否则, b | a . 由整除的定义,不难得出整除的如下性质: (1)若 a | b, b | c, 则a | c. (2)若 a | bi , 则a |
+ 2009 = n 2
例 4 一个正整数不是 42 的正整数倍和合数(不为零)之和,这个数的最大值是多少? 解析:这个整数必定可以写成 42n +
p ,其中 p 为 1 或素数,其中
p = 1, 2,3,5, 7,11,13,17,19, 23, 29,31,37, 41,因为可以从 42(n − 1) + p + 42 ,所以先排除 p = 2,3,7,13, 23, 再者,有 42(n − 2) + p + 84 ,所以可以排除
= c.
(k ∈ N ∗ ) ;
② m为a, b 的任一公倍数,则 [ a, b] | m ; ③ (a, b)[a, b] = ab ,特别地,若 (a, b) = 1, 则 [a, b] = ab . ①可由③直接得到,②可由最小公倍数定义得,③根据①、②式知,
n i =1 n i =1
(a, b)[a, b] = ∏ pi min(α i , β i ) = ∏ piα i + β i = ab .
注:主要看 (10k + b)2 ,因此看 1,3,5,7,9 即可 (4)十位数字是奇数的平方数的个位数一定是 6. 注:主要看 k 2
高一年级竞赛数学数论专题讲义:1整除
高一年级竞赛数学数论专题讲义:1整除高一竞赛数论专题1.整除设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b ?. 整除关系的基本性质(1)|,||.a b b c a c ?(2)|,|a b a c ?对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a1.设12,a a 是两个不全为零的整数,证明对任意整数q ,都有12121(,)(,).a a a a qa =+2.设(,)1,a b =证明(1)若|,|a c b c 则|.ab c(2)若|a bc 则|.a c3.(Bezout 定理)设,a b 是不全为零的整数,证明(,)1a b =的充要条件是存在整数,x y 使得 1.ax by +=4.证明对任意整数n ,65222n n n n +--能被120整除.5.设m 是一个大于2正整数,若存在正整数n 使得21|21m n -+.求m 的所有可能取值.6.证明:正整数M 是完全平方数的充要条件是对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.7.已知整数,x y 满足1,1,x y ≠-≠-且使得441111x y y x --+++是整数,求证4441x y -能被1x +整除.8.证明:对于任何自然数n 和k ,数3(,)2410k k f n k n n =++都不能分解成若干个连续的自然数之积.9.对于所有素数p 和所有正整数()n n p ≥,证明:p n n C p ??-能被p 整除.10.(1)求所有的素数数列12n p p p <<<,使得11(1)n k kp =+∏是一个整数. (2)是否存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)n k ka =+∏为整数?.11.设,m n 是正整数, 证明(,)(21,21)21.m n m n --=-12.任给2n ≥,证明:存在n 个互不相同的正整数,其中任意两个的和整除这n 个数的积.高一竞赛数论专题1.整除解答设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b ?. 整除关系的基本性质(1)|,||.a b b c a c ?(2)|,|a b a c ?对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。
1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。
(1894年首届匈牙利 数学竞赛第一题)(2) ①设n Z ∈,证明2131n-是168的倍数。
②具有什么性质的自然数n ,能使123n ++++能整除123n ⋅⋅⋅?(1956年上海首届数学竞赛第一题) (3) 证明:3231122n n n ++-对于任何正整数n 都是整数,且用3除时余2。
(1956年北京、天津市首届数学竞赛第一题)(4) 证明:对任何自然数n ,分数214143n n ++不可约简。
(1956年首届国际数学奥林匹克竞赛第一题)(5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证:[][][][]()()()()22,,,,,,,,,,a b c a b c a b b c c a a b b c c a =⋅⋅(1972年美国首届奥林匹克数学竞赛第一题)这些例子说明历来数论题在命题者心目中首当其冲。
2.再看以下统计数字:(1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。
(2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。
这说明:数论题在命题者心目中总是占有一定的分量。
如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。
3.请看近年来国内外重大竞赛中出现的数论题:(1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( )A 、 0B 、1C 、3D 、无穷多(2007全国初中联赛5)(2)已知,a b 都是正整数,试问关于x 的方程()2102x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。
(2007全国初中联赛12)(3)①是否存在正整数,m n ,使得(2)(1)m m n n +=+?②设(3)k k ≥是给定的正整数,是否存在正整数,m n ,使得()(1)m m k n n +=+? (2007全国初中联赛14) (4)关于,x y 的方程22229x xy y ++=的整数解(,)x y 得组数为( ) A 、2 B 、3 C 、4 D 、无穷多(2009全国初中联赛5) (5)已知12345,,,,a a a a a 是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()12345()2009x a x a x a x a x a -----=的整数根,则b 的值为 (2009全国初中联赛8)(6)已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和。
(2009全国初中联赛12) (7)n 个正整数12,,,n a a a 满足如下条件:1212009n a a a =<<<=;且12,,,n a a a 中任意1n -个不同的数的算术平均数都是正数,求n 的最大值。
(2009全国初中联赛14) (8)在一列数123,,,x x x …中,已知11x =,且当2k ≥时,11214()44k k k k x x ---⎡⎤⎡⎤=+--⎢⎥⎢⎥⎣⎦⎣⎦(取整符号[]a 表示不超过实数a 的最大整数,例如[][]2.62,0.20==)则2010x 等于( ) A 、 1 B 、 2 C 、 3 D 、 4 (2010全国初中联赛4) (9)求满足22282p p m m ++=-的所有素数P 和正整数m 。
(2010全国初中联赛13)(10)从1,2,,2010…这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除? (2010全国初中联赛14)(11)设四位数abcd 满足3333110a b c d c d ++++=+,则这样的四位数的个数为 (2011全国初中联赛10)(12)已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a+b+c 的值(2011全国初中联赛11)(13)若从1,2,3,,n …中任取5个两两互素的不同的整数12345,,,,a a a a a 其中总有一个整数是素数,求n 的最大值。
(2011全国初中联赛13) (14)把能表示成两个正整数平方差的这种正整数,从小到大排成一列:12,,n a a a …,例如221213a =-=,222325a =-=,……那么2007a =(2007福建省高一数学竞赛12)(15)求最小的正整数n ,使得集合{1,2,3,,2007}…的每一个n 元子集中都有2个元素(可以相同),它们的和是2的幂。
(2007福建省高一数学竞赛14) (16)两条直角边长分别是整数a 和b(其中b<1000),斜边长是b+1的直角三角形有( ) A 、20个 B 、21个 C 、22个 D 、43个(2008福建省高一数学竞赛5)(17)设x 、y 为非负整数,使得2x y +是5的倍数,x y +是3的倍数,且299x y +≥,则75x y +的最小值为(2008福建省高一数学竞赛11) (18)正整数1212a a a ≤≤≤…中,若任意三个都不能成为三角形的三边长,则121a a 的最小值是 (2008福建省高一数学竞赛12)(19)设{1,2,3,,}S n =…(n 为正整数),若S 得任意含有100个元素的子集中必定有两个数的差能被25整除,求n 的最大值。
(2008福建省高一数学竞赛17)(20)设[]x 是不超过x 的最大整数,则1235003333log log log log ⎡⎤⎡⎤⎡⎤⎡⎤++++⎣⎦⎣⎦⎣⎦⎣⎦…=(2009福建省高一数学竞赛11)(21)已知集合M 是集合{1,2,3,,2009}S =…的含有m 个元素的子集,且对集合M 的任意三个元素x,y,z 均有x+y 不能整除z ,求m 的最大值。
(2009福建省高一数学竞赛17)(22)已知a,b,c 为正整数,且1c b a >>>,111()()()a b c c a b---为整数,则a+b+c=(2011福建省高一数学竞赛12) (23)正整数500n ≤,具有如下性质:从集合{1,2,,500}…中任取一个元素m ,则m 整除n 的概率是1100,则n 的最大值是(2008福建省预赛12) (24)设()f x 施周期函数,T 和1是()f x 的周期且01T <<,证明:(1)若T 为有理数,则存在素数P ,使1p是()f x 的周期; (2)若T 为无理数,则存在各项均为无理数的数列{}n a 满足10n m a a >>>,(n=1,2, …)且每个n a 都是()f x 的周期 (2008全国高中联赛加试二)(25)方程[]92x x=的实数解事 (其中[]x 表示不超过x 的最大整数) (2009福建初赛9)(26)设}1,1,2,,2010i x i ∈=…,令123420092010S x x x x x x =++…(1)S 能否等于2010?证明你的结论; (2)S 能取到多少个不同的整数值?(2009福建初赛14)(27)设,k l 是给定的两个正整数,证明:有无穷多个正整数m k ≥,使得km C 与l 互素。
(2009全国高中联赛加试三)(28)已知集合{}230123777A x x a a a a ==+⨯+⨯+⨯,其中{}0,1,2,3,4,5,6ia ∈,0,1,2,3i =,且30a ≠,若正整数,m n A ∈,且2010,m n m n +=>,则符合条件的正整数m 有 个。
(2010福建预赛6)(29)将方程[]334x x -⨯=的实数解从小到大排列得12,,k x x x …,则3333123k x x x x +++…的值为(2010福建预赛8)(30)设k 是给定的正整数,12r k =+,记(1)()(1)()()[],()(())l l f r f r r r f r f fr -===,2l ≥。
证明:存在正整数m ,使得()()m f r 为一个整数。
这里,[]x 表示不小于实数x 的最小整数。
(2010全国高中联赛加试二)(31)已知正整数x,y,z 满足条件(14)(14)(14)xyz x y z =---,且28x y z ++<,则222x y z ++的最大值为(2011福建预赛7)(32)证明:对任意整数4,n ≥存在一个n 次多项式1110()n n n f x x a x a x a --=+++…具有如下性质:(1)011,,,n a a a -…均为正整数;(2)对任意正整数m ,及任意(2)k k ≥个互不相同的正整数12,,,k r r r …均有12()()()()k f m f r f r f r ≠… (2011全国高中联赛加试二)(33)证明:存在无穷多个正整数n ,使得21n +有一个大于2n +(2008第49届IMO.3)(34)设n 是一个正整数,12,,(2)k a a a k ≥…是集合{}1,,n …中互不相同的整数,使得对于1,,1i k =-…都有n 整除1(1)i i a a +-。
证明:n 不整除1(1)k a a - (2009第50届IMO.1)本资料主要介绍中学代数课程里未能深入谈到的整数的性质及其应用,初等数论的解题过程通常不涉及很多的基础知识,重要的是机智和灵活。
本资料除打上“*”的是少数内容外,初二年以上的学生均可学习掌握。
为叙述方便,本资料中的字母均表示整数。
交有Z ,N*,Z*分别表示整数集,正整数集和非零整数集。
整数的概念、分类、自然数两种理论(基数理论,序数理论)基数用于表示“多少”:将所有有限集分类,使所含元素个数一样多的集合成为同一类,对每一类用一个记号来表示它们(这一类的集合)所含元素个数一样多这个共同特征。
这个记号就是一个自然数。
公理化的方法:对已有的知识进行深入的分析,选择其中一些基本关系作为不定义的概念,一些基本性质作为不加证明的公理,建立起公理系统。
然后由所建立的公理系统出发,应用形式逻辑的方法,来给出其它有关概念的定义,并证明各种命题。
序数表示“第几”*(peano 定理)如果非空集合N*中的某些元素之间有一个基本关系“直接后继”(元素a 的直接后继记为a ’),且N*满足以下条件: 1.**1,N a N ∃∈∀∈,必有1a '≠ 2.()**,a b a b a N b N ''=⇒=∈∈ 3.()**,a b a b a N b N ''=⇒=∈∈ 4.N*的子集M 若具有下面的性质))*1,i M ii a M a M M N '∈∈⇒∈=则定理1 带余除法设a Z ∈,*b Z ∈则有且只有一对整数q 与r ,使得a bq r =+其中0<r b ≤定义1、定理1中的q 与r 分别称a 除以b 的不完全商与最小非负余数,简称商和余数。