基于汽车发动机飞轮的设计与制造

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

一摘要 (3)

二正文 (3)

1 绪论 (3)

1.1选题的意义与目的 (3)

1.2飞轮的发展史 (4)

2飞轮工作的原理及 (5)

2.1飞轮的组成和材料的 (5)

2.3飞轮原理及在发动机中的作用 (5)

2.3飞轮的结构、功能及应力分析 (7)

3飞轮的动态优化设计 (11)

3.1 飞轮的动态优化设计的意义 (11)

3.2 模型简化与方案选择 (12)

3.3飞轮的动态有限元分析 (13)

3.4飞轮的动态优化 (15)

4飞轮浇铸工艺的设计 (18)

4.1 无冒口铸造方案的确定 (18)

4.2 无冒口方案的设计与实施 (18)

5、飞轮的加工工艺及流程 (19)

5.1飞轮主要加工技术要求分析 (19)

5.2工艺方案分析 (21)

5.3飞轮机械加工工艺路线的制定 (21)

6结论 (23)

7结束语 (23)

三参考文献 (25)

基于汽车发动机飞轮的设计与制造学号:09131050701265 姓名:王江专业:机械设计制造及其自动化

摘要目的通过对汽车发动机飞轮的设计模拟的计算了飞轮的飞轮的质量和设计的合理性,使飞轮性能和质量得到了很好的保障。对飞轮浇铸工艺的设计和加工技术要求、工艺方案的分析,有利于提高飞轮的产品质量、工作性能,节约了制造和加工的成本,为企业赢得了时间和效益。方法利用相关理论知识和参数化建模,利用ANSYS软件进行动态有限元分析得出相应优化结果。结合工作生产实际,明确了飞轮浇铸工艺和加工工艺。结果在参数化建模、动态有限元分析和制定浇铸及加工工艺中制定多种不同的方案,在优化设计中,通过数据对比,方案二优于方案一。结论基于有限元法的参数化建模可以快速动态的修改模型动态得到各种分析结果。

关键词:发动机飞轮,有限元分析,参数化建模,无冒口铸造,机械加工飞轮是汽车发动机中有重要作用但结构相对简单的零件之一,本文主要介绍了汽车发动机飞轮的发展史,工作原理,应力分析,动态优化设计,浇铸工艺的设计,机械加工流程等。为了保证飞轮又足够的转动惯量、刚度和强度,并使飞轮在满足设计要求的前提下质量尽可能小,这里利用有限元分析软件ANSYS对某飞轮进行参数化建模,动态的分析了飞轮的应力场与位移场。实践证明,利用数化建模可以大大地提高效率,并且可以在设计阶段的合理范围内任意取值进行分析,有利于缩短设计周期,降低制造成本。从工作生产实际出发,研究了飞轮的无冒口铸造工艺及机械加工工艺规程,分析了飞轮在加工过程中的注意事项,并完成加工工序设计。

1 绪论

1.1选题的意义与目的

发动机后端带齿圈的金属圆盘称为飞轮。飞轮用铸钢制成,具有一定的重量(汽车工程称为质量),用螺栓固定在曲轴后端面上,其齿圈镶嵌在飞轮外圆。

2飞轮工作的原理及应力分析

2.1飞轮的组成和材料的选取

飞轮总成(Flywheel assembly )一般由飞轮、齿圈、离合器定位销、轴承等组成,部分产品轴承用花键代替。

现在随着爱车一族的不断钻研扩展,发动机飞轮已演变出实用的好多类型,如双质量减震飞轮(主要用于柴油发动机),45#锻钢轻质量飞轮,铝合金T6

飞轮,轻质量飞轮主要用于赛车和特殊爱好者使用,安装这种飞轮以后,发动机加速快,缺点是收油门后减速也快。

材质:一般使用铸铁:HT200 HT250 ;球铁:QT450-10、QT600-3、QT500-7 等,国外也有用45号钢制作的飞轮。

灰铸铁的力学性能与基体的组织和石墨的形态有关。灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。

2.2飞轮原理及在发动机中的作用

飞轮(Flywheel)装置在曲柄的轴的一端,是铸铁制造较重的轮盘,在爆发冲程传递回转力,由飞轮一时吸收储蓄,供给下一次动力冲程,能使曲柄轴圆滑的回转作用,外环的齿圈可供起时摇转引擎之用,背面与离合器片接触,成为离合器总成的主件

飞轮是发动机在曲轴后端的较大的圆盘状的零件,它具有较大的转动惯量,具有以下功能:将发动机作功形成的部分能量储存起来,以克服其他形成的阻力,使曲轴均匀旋转。通过安装在飞轮上的离合器,把发动机和汽车传动系统连接起来。装有与起动机结合的齿圈,便于发动机启动。

飞轮,是发动机装在曲轴后端的较大的圆盘状零件,它具有较大的转动惯量,具有以下功能:将发动机作功行程的部分能量储存起来,以克服其他行程的阻

力,使曲轴均匀旋转; 通过安装在飞轮上的离合器,把发动机和汽车传动系统连接起来;装有与起动机接合的齿圈,便于发动机起动。

驱动盘,也是飞轮的一种,材质用45号钢冲压成型,再压制齿圈。

飞轮是一个延著固定轴旋转的轮子或圆盘,能量以旋转动能的方式储存在转子中:

212

k E I ω=

⋅⋅ 其中 ω 是角速度

I 是质量相对轴心的转动惯量,转动惯量是物体抵抗力矩的能力,给予一定力矩,转动惯量越大的物体转速越低。 固体圆柱的转动惯量为212

I mr =, 若是薄壁空心圆柱,转动惯量为2I mr =, 若是厚壁空心圆柱,转动惯量则为22121()2

I m r r =+. 其中 m 表示质量,r 表示半径,在转动惯量列表中可以找到更多的信息。在使用国际单位制计算时,质量、半径及角速度的单位分别是公斤、米,弧度/秒,所得到的结果会是焦耳。

由于飞轮可储存的能量是和转动惯量成正比,因此在设计飞轮时,会尽量在不变动质量的条件下,去增加其转动惯量,例如说中间搂空将,质量集中在飞轮的外围等作法。

在利用飞轮储存能量时,还需要考虑在转子不变形或断裂的前提下,飞轮可储存的能量上限,转子的环向应力(hoop stress )是主要的考量因素:

22t r σρω=

其中:

σt 是转子外圈所受到的张应力

ρ 是转子的密度

r 是转子的半径

ω 是转子的角速度

飞轮储存的能量

范例:

以下是一些“飞轮”的范例及其储存的能量,I = kmr2, k 的计算方式请参考转动惯量列表(表1)。

相关文档
最新文档