神经网络基于BP网络的多层感知器实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络基于BP网络的多层感知器实验报告

二、基于BP网络的多层感知器一:实验目的:

1、理解多层感知器的工作原理

2、通过调节算法参数了解参数的变化对于感知器训练的影响

3、了解多层感知器局限性二:实验原理:BP的基本思想:信号的正向传播误差的反向传播–信号的正向传播:输入样本从输入层传入,经各隐层逐层处理后,传向输出层。

–误差的反向传播:将输入误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号来作为修正各单元权值的依据。

1、基本BP算法的多层感知器模型:

2、BP学习算法的推导:当网络输出与期望输出不等时,存在输出误差E将上面的误差定义式展开至隐层,有进一步展开至输入层,有调整权值的原则是使误差不断地减小,因此应使权值的调整量与误差的梯度下降成正比,即η∈(0,1)表示比例系数,在训练中反应学习速率 BP算法属于δ学习规则类,这类算法被称为误差的梯度下降(Gradient Descent)算法。<实验步骤>

1、用Matlab编程,实现解决该问题的单样本训练BP网络,设置一个停止迭代的误差Emin和最大迭代次数。在调试过程中,通过不断调整隐层节点数,学习率η,找到收敛速度快且误差小

的一组参数。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。(要求误差计算使用RME,Emin 设置为0、1)程序如下:function dyb %单样本程序 clc; close all; clear; x0=[1:;-4:0、08:4];%样本个 x0(1,:)=-1; x=x0'; yuzhi=0、1;%阈值

j=input('请输入隐层节点数 j = ');%隐层节点数 n=input('请输入学习效率 n = ');%学习效率 w=rand(1,j); w=[yuzhi,w]; %输出层阈值 v=rand(2,j); v(1,:)=yuzhi;%隐层阈值

err=zeros(1,); wucha=0; zhaosheng=0、01*randn(1,);%噪声erro=[]; ERRO=[];%误差,为画收敛曲线准备 Emin=0、1;

d=zeros(1,); for m=1: d(m)=hermit(x(m,2));%期望 end;

o=zeros(1,); j=zeros(1,j); =zeros(1,j); p=1; q=1; azc=0; acs=0; for z=1:5 while q<30000 Erme=0; for p=1:

y=zeros(1,j); for i=1:j j(1,i)=x(p,:)*v(:,i);

y(1,i)=1/(1+exp(-j(1,i))); end; y=[-1 y];

o(p)=w*y'+zhaosheng(p);%噪声 wucha = d(p)-o(p);

err(1,p)=1/2*wucha^2; erro=[erro,wucha]; for m=1:j+1

w(1,m)=w(1,m)+n*wucha*y(1,m); end; for m=1:j

v(:,m)=v(:,m)+n*wucha*w(1,m)*y(1,m)*(1-y(1,m))*x(p,:)'; end q=q+1; end; for t=1:; Erme=Erme+err(1,t); end;

err=zeros(1,); Erme=sqrt(Erme/); ERRO=[ERRO,Erme]; if

Erme

plot(x(:,2),d,'--r'); hold on; plot(x(:,2),o,'--b'); disp('次数:'); pjcx=1/5*acs figure(2); plot(ERRO); figure(3); plot(x(:,2),d,'--rp');endfunction F =

hermit(x)%hermit子函数 F =

1、1*(1-x+2*x^2)*exp(-x^2/2);end运行结果如下:表格

1、单样本BP算法平均最小误差学习率结点数0、0

50、0

70、

10、1

20、1

50、18

80、096

50、085

90、0195

30、094

50、087

40、0925

100、096

80、094

40、098

30、09200、082

10、09821

20、088

60、085

60、088

50、094

60、083

40、09281

50、091

50、092

70、087

80、092

40、073

80、084

42、实现解决该问题的批处理训练BP网络,调整参数如上。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。程序如下:function pcl %批处理 close all; clc; x=[-4:0、08:4];%样本个 j=input('请输入隐层节点数 j = ');%隐层节点数

n=input('请输入学习效率 n = ');%学习效率 a=0、1;%动量系数w=rand(1,j); v=rand(1,j); err=zeros(1,); wucha=0;

相关文档
最新文档