综合与实践《生活中的“一次模型”》

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合与实践

生活中的“一次模型”

一、学生起点分析

到目前为止,学生已经学习了一元一次不等式、一元一次方程与一次函数,积累了一定的知识基础和活动经验,也发现了它们彼此之间的联系,初步感受到这三个基本数学模型的广泛应用。

但是,由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。

二、教学任务分析

本课题是以探索一元一次不等式与一元一次方程、一次函数的综合应用为主题的实践活动,一方面可以使学生体会一元一次不等式与一元一次方程、一次函数之间的在联系,初步形成对数学知识系统性的认识,发展学生的概括能力、数学研究能力;另一方面通过调查活动使学生充分认识数学知识在现实生活中的广泛应用,激发学生的学习兴趣,引发学生的数学思考,发展学生的数学抽象能力,综合应用数学的能力,做到在学数学的同时自觉的用数学。

相比前面的课题学习而言,本课是自主活动类型的课题学习,以一种新的形式呈现,任务的给出比较宽泛,没有给定的背景,没有具体的安排,只是给出了一个原始的问题,规定了一个大的方向:要求将一元一次方程、一元一次不等式和一次函数集中融入一个问题情境,至于说具体研究哪些问题、如何研究等完全由学生自主选择,因而,保证了学生学习的自主性、选择性和学习结论的开放性,给学生提供了发现问题,提出问题的机会,进一步发展学生的应用意识和创新意识。因此,本节课的教学目标定为:

⒈经历用数学的眼光发现现实生活中的数学问题,尝试提出问题,并加以解决的全过程,体会模型思想,发展应用意识,提高实践能力,了解数学的价值。

⒉综合运用一元一次不等式与一元一次方程、一次函数的相关知识解决问题,体会三者之间的在联系。

⒊会反思参与活动的全过程,将研究的过程和结果形成报告,并能进行交流,进一步积累数学活动经验。

三、教学过程分析

在教学过程中安排两课时。

第一课时引领学生回顾总结,发现应用一元一次不等式、一元一次方程与一次函数解决的一些实际问题,在此基础上,学生依据不同的学习背景选择问题情境,小组讨论确定研究主题,拟定解决问题的方案,研究分析需要获取的有效数据。具体教学过程如下:分为以下四个环节:第一环节:知识回顾,建立联系;第二环节:讨论交流,提出问题;第三环节:组建小组,确定方案;第四环节:交流评价,完善方案。

第二课时交流评价。分为两个阶段:第一阶段以小组为单位进行交流展示。重点展示研究调查过程和结果概述;第二阶段小组互评,选出优秀课题和优秀调查报告。从交代问题情境、数据的来源、建立何等模型、求解过程、相关解释及应用几个方面对调查报告进行评价。

设计意图:

考虑到这样形式的课题学生还是第一次做,所以,在正文中明确的提出两点要求,作为“扶手”:一是对学生拟定方案环节做了方向的指导;二是对汇报交流的报告做了必要的容要求。这样可以让学生在做课题时,目的性更明确,不至于“走偏”。通过第二课时的小组汇报,教师、同伴的交流与评价,学生反思自己的调查过程与研究结果并进一步修正与完善,提交课题活动感想。

第一课时教学过程展示:

第一环节:知识回顾,建立联系

1.举例说明一元一次方程(组)、一次函数、一元一次不等式(组)之间有什么样的关系?

2.举例说明生活中常见的用一元一次方程(组)或一次函数或一元一次不等式(组)相关知识解决的实际问题。

设计意图:

在问题的求解过程中,教师引导学生切身体会并探究三者之间的在联系,为后续建立数学模型并求解实际问题奠定基础。

第二环节:讨论交流,提出问题

在学生提出的实际问题基础之上,汇总出几个有价值的研究材料供学生选择。

材料1

探索出租车如何计价

1.日间出租车价与里程数之间的函数关系;

2.夜间出租车价与里程数之间的函数关系;

3.当遇到红灯或堵车时的计价情况等。

材料2

探索商场促销现象

节假日商场经常打出打折的牌子,在各种以打折名义进行的促销活动中,如何选择最实惠的商品是大多数人常常面临的问题。

调查学校或居住小区附近某一商场的促销方式,列出相应的方程、函数或不等关系并作出分析,用你得到的结论,指导周围的人理性消费。

材料3

关于集资活动的调查

1.学校的社团常常需要筹措资金,如果你是某个组织中的成员,请列出一清单,写出你所需要的资金项目。

2.在1的基础上,计划一下资金增长的方式,当你完成你的计划时,同时考虑一下为了增长资金是否还需要一些必要的开销,用方程、不等式和函数表示你的计划及盈利情况。

3.将你筹措资金的情况展示给大家,做一个报告叙述你的观点,并与同伴交流,报告中要用到2中的方程、不等式和函数。

材料4:

关于教育开销的调查

1.计算一下自己从现在起到参加工作,总共需要多少教育资金。

2.考虑你如何支付这些费用,帮家长写一个储蓄计划。

3.用不等式来表示你从各种渠道所能储蓄的钱的最低数量。

4.将你的调查与同学交流一下,让大家看看你的调查是否可行?如果可能请他们提供改进的建议。

材料5:

伴着人类电子行业的迅速发展,手机的用途越来越广,越来越被我们青睐,因此话费问题也经常会被纳入家庭经济核算.如今的话费收取种类众多,如何选取最适合自己的一套方案也被人们所重视.我们就对话费的选取这方面进行研究与调查.

首先提供一王先生10月份话费清单:

移动公司出来两种话费计费方式:

主叫超时费/(元/min) 被叫

月租本地主叫限定

时长/min

方式一20 120 0.20 免费

方式二50 200 0.10 免费请根据所学一元一次方程、一元一次不等式或一次函数等知识,构造相应数学模型,结合实际情况帮助王先生选择一种较合适的话费方案.

设计意图:

由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。这时,需要教师依据学生的学习水平,给予恰到好处的帮助,在数学模型的建立,方程、不等式、函数关系的构造等方面,可以让不同认知水平及能力层次的学生都经历“问题情境—建立模型—求解—解释与应用”的研究过程。在深度上,不同认识层次的学生可以选择不同的问题情境,又可以不同程度地融合数学知识,让不同的学生在数学上得到不同的发展

第三环节:组建小组,确定方案

1.在教师的指导下,学生根据自己的情况选择合适的研究容组成研究小组。组人员进行明确分工。

2.组讨论,形成完整的调查研究方案。

第四环节:交流评价,完善方案

相关文档
最新文档