第二章、逐步聚合

合集下载

第二章 逐步聚合反应

第二章 逐步聚合反应

化学学院2009级本科生基础课
第二章 逐步聚合
②非平衡缩聚反应(不可逆缩聚反应, nonequilibrium polycondensation or irreversible polycondensation)为 逆反应速率很小或等于零的缩聚反应。 其特征是平衡常数值非常大,一般为 103~105,有的在1020以上。如二元酰 氯和二元胺或二元醇的缩聚反应。
化学学院2009级本科生基础课
第二章 逐步聚合
(4)根据缩聚反应生成物的类型 (或形成的键)来分类
聚酯、聚酰胺、聚砜、聚醚等。
(5)按制备方法分类
熔融缩聚反应 界面缩聚反应 溶液缩聚反应 乳液缩聚反应 气相缩聚反应 固相缩聚反应
化学学院2009级本科生基础课
概述
从反应机理出发,聚合反应分为逐 步聚合反应 和连(链)锁聚合 (反应)或链式聚合反应两大类。
化学学院2009级本科生基础课
第二章 逐步聚合
2.1.1
逐步聚合的概念
逐步聚合反应是指随着反应时间的延 长,相对分子质量逐步增大的聚合反 应。聚合初期,单体通过官能团反应变 为低聚物,然后由低聚物转化为高聚 物。单体、低聚物和高聚物之间任何两 个分子都可以反应,相对分子质量逐步 增大,聚合物链逐渐增长。反应的中间 物可以分离出来,并能再进一步反应。
化学学院2009级本科生基础课
第二章 逐步聚合
因此,凡是能够生成5、6元环的双官能团单体的 环化反应占主导地位,聚合反应无法进行。例如:
4-羟基丁酸 HO(CH2) 3COOH HO(CH2) 4COOH H2N(CH2) 3COOH
5-羟基戊酸
4-氨基丁酸 5-氨基戊酸
H2N(CH2) 4COOH

第2章 逐步聚合

第2章 逐步聚合
而是端基的活动性。链段运动以及反应基团的相遇的速率比 质心的平移高得多。聚合度不大,粘度不大时,对链段运动
影响不大。
(2)适当的粘度反而对基团的持续碰撞有利。 (3)粘度过大后,链段运动明显受阻,基团被包埋,端 基活性才降下来。 因此,在粘度不很大时,官能团等活性概念是真确的。 “官能团等活性”假设有助于动力学的简化处理。
共缩聚 一般缩聚体系中加入第三或第四种单体进行的缩聚反应。 如乙二醇与对苯二甲酸缩聚成涤纶聚酯,加入第三单体丁 二醇共缩聚,降低涤纶的结晶度与熔点,增加柔性。 在均缩聚中加入第二种单体进行的缩聚反应。
18
18
2.3 线形缩聚反应的机理
2.3.1 线形缩聚反应的条件
必须是2-2或2官能度体系;
反应单体不易成环。
16
16
2-2或2体系:线型缩聚 单体含2个官能团,形成的大分子向两个方向增长, 得到线型缩聚物的反应,如涤纶、尼龙、PC等。
2-3、2-4等官能度体系:体型缩聚 至少一个单体含有2个以上的官能度,形成大分子 向三个方向增长,得到体型缩聚物的反应。如酚醛树脂、 环氧树脂。
17
17
均缩聚
只有一种单体进行的缩聚反应,即2 -体系(如羟基酸 或氨基酸缩聚),也称自缩聚。
第二章
逐步聚合
Stepwise Polymerization
1
2.1 引言
聚合反应按单体和聚合物结构组成变化分(Carothers) 加聚::烯类单体的加成聚合反应
缩聚:单体经多次缩合聚合的反应
2
按聚合机理分(Flory)
连锁聚合反应(Chain polymerization): 活性中心引发单体,迅速连锁增长
15
15
2.2.2 缩聚反应的分类

高分子化学-第二章 缩聚和逐步聚合

高分子化学-第二章 缩聚和逐步聚合

N0
N0
反应程度与转化率的区别
转化率:参加反应的单体量占起始单体量的分数,是指已 经参加反应的单体的数目
反应程度:则是指已经反应的官能团的数目
例如: 一种缩聚反应,单体间双双反应很快全部变成二聚体,就 单体转化率而言,转化率达100%;而官能团的反应程度 仅50%
反应程度与平均聚合度的关系
聚合度是指高分子中含有的结构单元的数目
聚加成:形式上是加成反应,但反应机理是逐步反应。 如聚氨酯的合成(p17)。
开环反应:部分开环反应为逐步反应,如水、酸引发的己内 酰胺的开环反应。
氧化-偶合:单体与氧气的缩合反应, 如 2,6-二甲基苯酚和氧 气形成聚苯撑氧,也称聚苯醚。
2 逐步聚合反应的特点
官能团间的反应,无特定的活性中心;无所谓的引发、 增长、终止等基元反应;反应逐步进行,每一步的反 应速率和活化能大致相同;
[ H + ][ A- ] KHA =
[ HA ]
[ HA ] [ H + ] [ A- ] = KHA
代入式
-d [ COOH ] = k1k3[ COOH ][OH ][ H+]
dt
k 2KHA
催化用酸HA:可以是二元酸本身,但反应较慢,也可以是 外加酸,如H2SO4,大大加速
自催化缩聚反应
无外加酸,二元酸单体催化剂,[HA] = [COOH]
Flory对此进行了解释:
官能团等活性理论是近似的,不是绝对的,这一理论大大简化了研 究处理,可用同一平衡常数表示,整个缩聚过程可以用两种官 能团之间的反应来表征
COOH + HO
k1
OCO
k1
2. 线型缩聚动力学
不可逆条件下的缩聚动力学

第二章逐步聚合(stepwisepolymerization)

第二章逐步聚合(stepwisepolymerization)

反应程度
Xn = 1 /(1体系
Xn
KC0 Pnw
Xn K 1
(2)官能团不等摩尔比反应
一种官能团过量越多,聚合度越小。
分析: • 如何提高线形缩聚反应聚合物的聚合度
提高反应程度 除去小分子 官能团等摩尔比反应
• 如何控制线形缩聚反应聚合物的聚合度
第二章 逐步聚合(stepwise polymerization)
§2.1 逐步聚合反应概述
1、逐步聚合反应分类 按反应机理
缩合聚合:多次缩合反应,有小分子析出(典型逐步聚合,重点研究) 逐步加聚: 多次官能团间加成, 无小分子析出
例如:涤纶(PET)、尼龙、聚碳酸酯、聚酰亚胺、聚氨酯
+ HO CH2 CH2 OH
Rp k0[COOH][OH][H ]
[H ] [COOH ]
Rp ko[COOH]2[OH]
聚合速率
Rp


d[COOH ] dt

ko[COOH ]3
聚合度

( X n )2 1 2[COOH ]o2 kot
动力学曲线
(1) P=0.8-0.93,符合三级动力学关系 (2) P<0.8,偏离 (3) P>0.93,偏离
曲线偏离的原因:
低转化率时
反应体系的极性变化 反应物浓度和活度 催化机理的变化 体系体积的变化
自催化体系高转化率时
反应物的少量损失 体系粘度增加
(3)官能团不等活性体系 (P32)
2、平衡缩合聚合动力学(不排除小分子)
O C OH
起始
C0
t 时刻,未除水 C
k1 OH
k-1
C0 C

第二章-逐步聚合

第二章-逐步聚合

第二章逐步聚合一、名称解释1. 线形缩聚:在聚合反应过程中,如用2-2或2官能度体系的单体作原料,随着聚合度逐步增加,最后形成高分子的聚合反应。

线型缩聚形成的聚合物为线形缩聚物,如涤纶、尼龙等。

2. 体形缩聚:参加反应的单体,至少有一种单体含有两个以上的官能团,反应中形成的大分子向三个方向增长,得到体型结构的聚合物的这类反应。

3. 官能度:一分子聚合反应原料中能参与反应的官能团数称为官能度。

4. 平均官能度:单体混合物中每一个分子平均带有的官能团数。

即单体所带有的全部官能团数除以单体总数5. 基团数比:线形缩聚中两种单体的基团数比。

常用r表示,一般定义r为基团数少的单体的基团数除以基团数多的单体的基团数。

r=Na/Nb ≤1,Na 为单体a的起始基团数,Nb为单体b的起始基团数。

6. 过量分率:线形缩聚中某一单体过量的摩尔分率。

7. 反应程度与转化率:参加反应的官能团数占起始官能团数的分率。

参加反应的反应物(单体)与起始反应物(单体)的物质的量的比值即为转化率。

8. 凝胶化现象凝胶点:体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。

此时的反应程度叫凝胶点。

9. 预聚物:体形缩聚过程一般分为两个阶段,第一阶段原料单体先部分缩聚成低分子量线形或支链形预聚物,预聚物中含有尚可反应的基团,可溶可熔可塑化。

该过程中形成的低分子量的聚合物即是预聚物。

10. 无规预聚物:预聚物中未反应的官能团呈无规排列,经加热可进一步交联反应。

这类预聚物称做无规预聚物。

11. 结构预聚物:具有特定的活性端基或侧基的预聚物称为结构预聚物。

结构预聚物往往是线形低聚物,它本身不能进一步聚合或交联。

12. 热塑性塑料:是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。

聚苯乙烯(PS)、聚氯乙烯(PVC)、聚乙烯(PE)等均属于此类。

高分子化学第二章逐步聚合反应

高分子化学第二章逐步聚合反应
高分子化学第二章逐步聚合反应
2.1 缩合反应与缩聚反应
O
酯 化
CH3C_ OH + H_OCH2CH3

O

CH3C_OCH2CH3 + H2O
酰 胺 化
O CH3C_OH + H_NHCH2CH3

O

CH3C_NHCH2CH3 + H2O
双官能团单体的多步缩合反应:
H O O C(CH 2)4CO_O H+H _N H (CH 2)6N H 2
3、单体通式 a–R–c
H2N(CH2) 5OH 仅参加前面二类型的均缩聚或混缩聚反应而不能单独进行 聚合,这叫共缩聚反应,产物叫做共缩聚物。
合成一种线型缩聚物一般可有多种聚合反应路线和相应的 单体,但是按照这些单体的合成难易、聚合反应的难易以 及聚合物相对分子质量的高低,通常只有一两种单体是最 符合条件的。
2 与官能团所处的空间环境有关 对苯二胺 + 对Biblioteka 二甲酰氯 反应活性较低H2N_
_NH 2+CO l C _ _COl C 全芳聚酰胺
间苯二胺 + 间苯二甲酰氯 反应活性较高
H2N_ _NH 2+CO l C _ _COl C 全 芳 聚 酰 胺
3 环化反应倾向大小 羟基酸的聚合-环化反应倾向与碳原子数
由带两个或两个以上官能团的单体之间连续、重复进行的缩 合反应称为缩合聚合反应,简称缩聚反应。
2.2 逐步聚合反应单体
2.2.1 线型缩聚反应单体的类型
1、单体通式 a–R–b
HO(CH2)5COOH
H2N(CH2) 5COOH
属于均缩聚反应,得到均缩聚物。

第二章 逐步聚合反应

第二章  逐步聚合反应

只有当单体的 f 2 时才能形成高聚物。
注意: i 官能度根据官能团来确定 ii 官能度(f )和官能团数不一定一致 iii 官能度 ( f )要随反应对象和反应条件来定 iv 在生成聚合物的反应中,不参加反应的官能团 不计在官能度内
CH3OH NH2(CH2)5COOH NH2(CH2)6NH2 CH2OH
HOOCRCOOR'OCORCOOH + H2O HOOCRCOOH
HOR'OH + HOOCRCOOH
HOR'OCORCOOH + H2O
HOR'OH HOR'OCORCOOR'OH + H2O
HOOCRCOOH HOR'OCORCOOR'OCORCOOH + H2O
2、逐步聚合反应与链式反应的区别:

Xn
2N0 2N
N0 N
2、当量比与数均聚合度 ⑴ 修正的Carothers方程
设 a—R—a NA ——表示第一种单体的官能团数 b—R/—b NB——表示第二种单体的官能团数
二者进行聚合,若NB>NA,且
r
NA NB
1
—分子数比
起始时,分子总数为:
1 2 (NA NB)
当反应程度为P时,官能团总数为:ຫໍສະໝຸດ 其中 r N A 1 NB
——修正的Carothers方程 P31式(2-32)
(注:不适用于 f 2 的情况)
另:设q为过量分数,则有
q NB NA NB 1
NA
NA
NA r 1
NB
1 q

r
1 1 q
代入修正的Carothers方程中可得:

第二章逐步聚合(stepwisepolymerization)分解

第二章逐步聚合(stepwisepolymerization)分解

反应进度描述
a. 转化率无意义 b. 反应程度P:参加反应的官能团数/起始官能团数
Xn = 1/(1-P)
(2)大分子生长终止 热力学特征:平衡常数,粘度
动力学限制
a. 用单官能团封端 b. 副反应 ① 环化反应(聚合初期) 羟基酸HO(CH2)nCOOH 措施: 提高单体浓度, 降低反应温度, 利于线型聚合 ② 官能团消去反应(聚合中后期) ③ 化学降解反应(聚合中后期)(缩合反应的逆反应) ④ 链交换反应(聚合中后期)(不影响Mn,且利于Mn均 匀化)
b.
官能团位置
H2C OH
H
OH
HC OH H2C OH
H
H
§2.2
逐步聚合反应机理
单体+单体 单体+二聚体 单体+二聚体 反应速率 R1 平衡常数K1 R2 R3 R4 Rn K2 K3 K4 Kn
aAa+bBbaABb+ab aABb+ aAaaABAa+ab aABb+ bBb bBABb+ab ……
不平衡线形逐步聚合
非线形逐步聚合
2、逐步聚合反应的单体 (1) 单体的官能团与官能度 官能团:参与反应并表征反应类型的原子(团) 官能度:单体分子中反应点的数目叫做单体官能度(f ), 一般就等于单体所含功能基的数目。
官能团的数目和位置:
OH
酸性
+
HCHO
碱性
(2) 单体的反应能力 a. 官能团种类 酰氯 > 酸酐 > 酸 > 醚或酯
+
HOOC
O O R' C
COOH
H2N
R
NH2
+

第二章 逐步聚合

第二章 逐步聚合

加入第三或第四种单体进行的缩聚反应
如:乙二醇 + 对苯二甲酸 聚酯(涤纶)
加入第三单体丁二醇,降低涤纶的结晶度与熔点,增加柔性。
2.2.4 缩聚反应的逐步和可逆性
1. 逐步特性:绝大多数缩聚反应都是典型的逐步聚合反应
HO RO H + HO O CR`CO O H + H2 O
HO RO CO R`CO O H

c [COOH]=[OH]=[H ]
+
表明自催化的聚酯 反应呈三级反应
聚合速率 聚合度 动力学曲线

2
dc dt
kc
3
X n 2 kc 0 t +1
2
P<0.8,聚合度的平方与反应时间无线性关系 P>0.8, 聚合度的平方与反应时间呈线性关系
2.3.4 缩聚平衡对聚合度的影响
聚酯化缩聚反应是由一系列平衡反应构成的,根据等活性 理论,各步反应均可用同一个平衡常数K来表示。令羟基和羧 基等当量,起始浓度为C0,t时浓度为C。若水部分排出时,体 系中残留的小分子的浓度为nw。
P

(C 0 C ) C
K
2
2

P
2 2
(1 P )
K 1
Xn
1 1- P
= K 1
(2) 非封闭体系
K [-COC-][H 2 O] [-COOH][-OH] (C 0 C ) n w C
2

C 0 Pn w C 0 (1 P )
2 2
当P趋于1时
Xn
1 1P
R p =-
K k1 k2
+
d[COOH ] dt

第二章 逐步聚合反应

第二章  逐步聚合反应

第二章逐步聚合反应1.解释下列名词:(1)官能团等活性理论;(2)凝胶点;(3)反应程度和转化率;(4)平均官能度2.现以等摩尔比的二元醇和二元酸为原料于某温度下进行封管均相聚合,试问该产品最终的Xn是多少?已知该温度下反应平衡常数为4。

3.将等摩尔比的己二胺和己二酸于220℃下进行缩聚反应,已知该温度下K为365。

如想所得尼龙-66的数均聚合度为100,试问此时体系中残存小分子为多少?4.由己二胺和己二酸合成聚酰胺,分子量约15000,转化率99.5%,若己二胺过量,试计算原料比。

产物端基是什么?5.单体HORCOOH进行均缩聚反应,若在反应中加入R’COOH为分子量控制剂,如在反应中不断地排除生成的水,试求欲达到Xn =600时的配料比应是多少?6.等摩尔二元醇和二元酸经外加酸催化聚合,试证明p从0.98到0.99所需时间与从开始至p=0.98所需时间相等。

7.用羟基戊酸经缩聚得重均分子量为18400的聚羟基戊酯,请求出:(1)羟基的反应程度;(2)该聚酯的数均和重均分子量。

8.试应用Flory分布函数,从理论上计算在缩聚反应中未反应单体理论数量。

(1)当p=0;(2)当p=0.5;(3)当p=1。

9.对苯二甲酸、乙二醇、丙三醇三种物料进行缩聚反应,若按以下情况配料:(1)对苯二甲酸:乙二醇:丙三醇=2:1:0.6;(2)对苯二甲酸:、丙三醇=1.5:1,试判断当反应程度为0.90时,它们是否会出现凝胶化?若还未出现,试计算缩聚反应的数均聚合度。

10.苯酚和甲醛采用酸和碱催化聚合,固化方法有何不同?11.关于环氧树脂请回答下列问题:(1)环氧树脂是什么?(2)室温固化用何固化剂?写出固化过程。

(3)欲使1000克环氧树脂(环氧值0.2)固化,试计算乙二胺的用量。

高分子化学(第四版)第二章 逐步聚合反应

高分子化学(第四版)第二章 逐步聚合反应
aABb aAa(bBb) aABAa bBABb ab ( ) a( AB)b a( AB)b a( ABAB)b ab n 聚体 m 聚体 (n m) 聚体 水
反应是官能团间的反应,无明显的引发、增长、终止, 反应是一步步增长的,具有逐步性。且每一步是可逆反
Na,Nb :体系中官能团a、b的起始官能团 数,NA:分子数= Na/2,NB= Nb/2 Nc:加入的单官能团物质Cb的官能团数,也 是分子数。加入Cb相当于b官能团过量。 r<1。 B物质过量
特点:
1. 缩聚物有特征结构官能团;
2. 有低分子副产物;
3. 缩聚物和单体分子量不成整数倍。
逐步形成大分子
低分子副产物
4
2. 缩聚反应的体系 官能度:反应物分子中能参加反应的官能团数。
1-1官能度体系:醋酸与乙醇反应体系,醋酸和乙醇均 为单官能团物质。 1-2官能度体系:丁醇(官能度为1)与邻苯二甲酸酐 (官能度为2)反应的体系。 体系中若有一种原料属单官能度,缩合后只能得
自由基聚合:延长反应 时间主要是提高转化率, 对分子量影响较小。
3
2.2. 缩聚反应
1.定义: 官能团间经多次缩合形成聚合物的反应。
nH2N(CH2)6NH2+nHOOC(CH2)4COOH H [NH(CH2)6NH CO(CH2)4CO] n OH + (2n-1)H2O
官能团间的反应 (2官能度) 产物有特征基团
2—10
将常数合并,可得到下式:
23

d[COOH] k[COOH][OH ][H ] dt
2—11
反应体系中的氢离子可以来自于单体羧酸本身,也 可外加。这两种情况的动力学过程不同。

2缩聚和逐步聚合

2缩聚和逐步聚合
HOCH2COOH,会双分子缩合易生成六 元环乙交酯:
2.3.1 线形缩聚与成环倾向
当n=2时,β-羟基失水,可能形成丙烯 酸:
HOCH2 CH2COOH→CH2 =CH2 COOH
2.3.1 线形缩聚与成环倾向
当n=3、4时,分子内缩合成稳定的五、 六元内酯:
2.3.1 线形缩聚与成环倾向
当n≥5时,主要形成线形缩聚。 单体浓度对成环或线性缩聚倾向也有影 响。成环是单分子反应,缩聚则是双分子 反应,因此低浓度有利于成环,高浓度有 利于线性缩聚。
缩聚型逐步聚合——有小分子生成的逐 步聚合反应。例:
HOOC-R-COOH+HO-R,-OH → HO-[R,-OOC-R-CO]n-OH+(2n+1)H2O
2.2缩聚反应
缩聚反应是缩合聚合反应的简称,是缩 合反应多次重复,结果形成聚合物的过程。 缩合和缩聚都是基团间(羟基和羧基,或 者胺基和羧基)的反应。两种基团可以分 属于两个单体分子,如乙二醇和对苯酸; 也可以两种基团在同一种单体分子,如羟 基酸或氨基酸。缩聚反应的特点是由小分 子生成。
2缩聚和逐步聚合
第二章 逐步聚合
2.1引言 按单体—聚合物组成结构的变化将聚合
反应范围缩聚、加聚、开环聚合三大类类。 按聚合机理又将聚合反应分为逐步聚合
和连锁聚合两大类。 在缩聚反应中,聚酯、聚酰胺、聚碳酸
酯、酚醛树脂、脲醛树脂、醇酸树脂等杂 链聚合物(见表1-2)都由缩聚反应合成的, 例如:
缩聚反应 实例
2.1 引言
绝大部分缩聚反应属于逐步机理, 也有非缩聚型或加聚型的逐步聚合, 见表2-1。(P17)
如聚氨酯、聚砜、聚苯醚、聚酰胺 -6、聚苯等。
2.1 引言
逐步聚合有两种: 加聚型逐步聚合—无小分子生成的逐步 聚合反应。例:

第二章 逐步聚合反应

第二章  逐步聚合反应
CH3 OH + O2 CH3 CH3 O n CH3
PPO
5)Diels-Alder 反应
共轭双烯烃与另一烯类发生1,4加成,制得梯形聚合 物,即多烯烃的环化聚合。
O H 2C CH2 + H2C CH2 O
O
n O
2.2 缩聚反应
2.2.1 缩聚反应 在众多有机化合物中,有许多种类的化合物都 可以发生两种或相同官能团之间的缩合反应。例如:
ClOC6H4COCl>HOOCC6H4COOH>HO(CH2)2OOCC6H4COO(CH2)2OH
2.单体参加聚合反应的活性还与其功能团的空间环境有关。 对苯二胺+对苯二甲酰氯全芳聚酰胺 间苯二胺+间苯二甲酰氯全芳聚酰胺 单体反应活性不同, 聚合物的性能也不同。
又如:甘油参加一般缩聚反应时两个 伯羟基的反应活性较高而仲羟基的活性 较低。
HO OC6H4COO(CH2)2O
H
m1
+ HO O(CH2)2OOCC6H4CO H
m2
R' OH
O H [ O C R
O C O R' ] n OH + HO R' [ O
O C R
O C O R' ] m OH
原因:单功能团杂质,单体对聚合物的裂解。 结果:大分子变小,平均相对分子质量降低。 措施:提高原料纯度,特别减小单功能团化合物的含量。

2.1 引言
按聚合机理或动力学分类:
※ 连锁聚合(Chain Polymerization)
活性中心(Active Center)引发单体,迅速连锁增长
自由基聚合 活性中心不同 阳离子聚合 阴离子聚合 ※ 逐步聚合(Stepwise Polymerization)

02 逐步聚合

02 逐步聚合

第二章逐步聚合第一节概述一、逐步聚合反应的分类1、缩合聚合反应通过缩合作用生成聚合物的反应,简称“缩聚反应”。

PET、PA66、PC等。

2、加成缩合聚合反应通过加成反应和缩合反应交替进行生成聚合物的反应。

酚醛树脂、氨基树脂、环氧树脂。

3、氧化偶联聚合反应通过氧化偶联反应生成聚合物的反应。

苯的氧化偶联聚合生成聚苯;酚的氧化偶联聚合生成聚苯醚。

4、逐步加成聚合反应通过加成反应逐步生成聚合物的反应。

聚氨酯的合成、D-A聚合等,反应式见p181表7-1。

二、缩聚反应的基本概念1、官能度指1个分子中能够参与反应的官能团个数。

2、缩合反应指有机官能团之间的相互作用,除主产物外,还有副产物生成。

如果是1-n体系,缩合反应的结果只能得到低分子物。

3、线形缩聚2-2体系或2体系进行缩合反应(缩聚),形成线形缩聚物。

naAa + nbBb → a-(AB)n-b + (2n-1)abnaRb → a-R n-b + (n-1)ab除聚合速率外,分子量控制是线形缩聚的关键。

4、体形缩聚2-3、3-3体系进行缩聚,形成体形缩聚物,例如:醇酸树脂。

除聚合速率外,凝胶点控制是体形缩聚的关键。

5、缩聚反应的官能团改变官能团的种类、个数、残基,就可合成出众多的缩聚物。

第二节线形缩聚机理除聚合速率外,分子量的影响和控制是线形缩聚中的核心问题。

一、线形缩聚与成环倾向1、反应倾向一般来说,5、6元环比较稳定,因此如果形成的是5、6元环,则易发生成环反应;否则,主要发生线形缩聚反应。

2、影响因素单体浓度,影响着成环反应与线形缩聚的竞争。

成环反应是单分子反应,缩聚则是双分子反应,因此,低浓度有利于成环反应,高浓度有利于缩聚反应。

二、线形缩聚的机理n-聚体 + m-聚体→(n + m)-聚体 + 低分子物1、逐步性(1)特点a、没有特定的活性种。

缩聚初期,主要是单体之间、单体和低聚物之间的反应,以后则是低聚物之间的反应。

b、没有活化能不同的链引发、链增长、链终止等基元反应,各步反应的速率常数和活化能都相等。

高分子化学2 缩聚和逐步聚合

高分子化学2 缩聚和逐步聚合
12
第二章 缩聚和逐步聚合
2.2 缩聚反应
若参与反应的物质均为二官能度的,则缩合反应转化 为缩聚反应。
以二元羧酸与二元醇的聚合反应为例。当一分子二元 酸与一分子二元醇反应时,形成一端为羟基,一端为羧基 的二聚物;二聚物可再与二元酸或二元醇反应,得到两端 均为羟基或均为羧基的三聚体,也可与二聚体反应,得到 四聚体;三聚体既可与单体反应,也可与二聚体或另一种 三聚体反应,如此不断进行,得到高分子量的聚酯。
CH2 O CO
CH2 CH2
HO(CH2)4COOH
CH2
CH2 CH2
O CO
CH2
22
第二章 缩聚和逐步聚合
3.2 线形缩聚机理
线形缩聚反应有两个显著的特征:逐步与可逆平衡。 1)聚合过程的逐步性
以二元酸和二元醇的缩聚为例。在缩聚反应中,含羟 基的任何聚体与含羧基的任何聚体之间都可以相互缩合。 随着反应的进行,分子量逐步增大,达到高分子量聚酯。 通式如下:
13
第二章 缩聚和逐步聚合
HOOC-R-COOH + HO-R'-OH
HOOC-R-COO-R'-OH + H2O 二聚体
HOOC-R-COO-R'-OH +
HOOC-R-COOH HO-R'-OH
HOOC-R-COO-R'-OOC-R-COOH + H2O 三聚体
HO-R'-OOC-R-COO-R'-OH + H2O
如光气法制备聚碳酸酯,合成聚砜等。
逐步特性是所有缩聚反应共有的,可逆平衡的 程度则各类缩聚反应有明显差别。
28
第二章 缩聚和逐步聚合
3.3 缩聚过程中的副反应

第二章 逐步聚合反应.

第二章  逐步聚合反应.

第二章 逐步聚合反应§2.1 概述前面提到,大部分缩聚反应属于逐步聚合机理,因此,以缩聚反应为例来阐述逐步聚合反应的规律和特点,并介绍重要逐步聚合物。

缩聚是基团间的反应,乙二醇和对苯二甲酸缩聚成涤纶聚酯,以及己二酸和己二胺缩聚成聚酰胺-66,都是典型的例子。

nHO(CH2)2OH+n +(2n-1)H 2O 2)22)4CONH(CH 2)6H nHOOC(CH 2)4COOH+nH 2N(CH 2)6NH +(2n-1)H 2O缩聚在高分子合成中占有重要的地位,聚酯、聚酰胺、酚醛树脂、环氧树脂、醇酚树脂等杂链聚合物多由缩聚反应合成。

此外,聚碳酸酯、聚酰亚胺、聚苯硫醚等工程塑料,聚硅氧烷、硅酸盐等半无机或无机高分子,纤维素、核酸、蛋白质等天然高分子都是缩聚物,可见缩聚反应涉及面很广。

特别是近年来通过缩聚反应制得了许多性能优异的工程塑料和耐热聚合物。

缩聚逐步聚合不论在理论上还是在实践上都发展得很快,新方法、新品种、新工艺不断出现,这一领域十分活跃。

还有不少非缩聚的逐步聚合,如合成聚氨酯的聚加成、制聚砜的芳核取代、制聚苯醚的氧化耦合、己内酰胺经水催化合成尼龙-6的开环聚合等。

这些聚合反应产物多数是杂链聚合物,与缩聚物相似。

§2.2 缩合反应与缩聚反应一、缩合反应——两个官能团间缩掉一小分子进行的化合反应缩合反应的反应物中每个反应物只能有一个官能团。

例如:O H H COOC CH OH CH CH COOH CH 2523233+→+O H CH CONHCH CH NH CH H C COOH CH 23232233+→+O H CH OCH CH CH OH CH CH 22322323+→O H OCOCH CO CH COOH CH 22333+→分别生成酯、酰胺、醚和酸酐。

二、缩聚反应1、缩聚反应的定义由两个或两个以上官能团的单体之间连续、重复进行的缩合反应,即缩合聚合反应,简称缩聚反应。

《高分子化学》第2章 逐步聚合反应

《高分子化学》第2章 逐步聚合反应
第二章 逐步聚合反应
1 概述
1. 1 逐步聚合的基本概念
逐步聚合是高分子合成最基本的类型之一。逐步聚合
的基本特征是官能团之间的反应。聚合度随时间逐步增 长,而转化率在聚合初期即可达到很高。
缩聚反应是最常见的逐步聚合反应。聚酰胺、聚
酯、聚碳酸酯、酚醛树脂、脲醛树脂、醇酸树脂等均为重 要的缩聚产物。
许多特殊结构的聚合物也都是通过缩聚反应制得的。 缩聚反应的基本特征是平衡和反应中脱出小分子。
26
第二章 逐步聚合反应
27
第二章 逐步聚合反应
2)聚合反应的可逆平衡 缩聚一般为可逆平衡反应,与低分子的缩合反应相似。
由于体系中所有的活性官能团具有同样的活性,因此可用 一个平衡常数来表示。
OH + COOH
OCO + H2O
K k1 [OCO ][H 2O] k 1 [OH][ COOH]
子降解,单体分子与聚合物分子之间存在可逆平衡的逐步 聚合反应。
如聚酯化反应:
n HOOC R COOH + n HO R' OH
聚合 水解
HO ( OC-R-CO O-R'-O )nH + (2n-1) H2O
9
第二章 逐步聚合反应
(ii)不平衡线形逐步聚合反应 聚合反应过程中生成的聚合物分子之间不会发生交换
18
第二章 逐步聚合反应
缩聚反应的单体转化率、产物聚合度与反应时间关系 示意图:
单 体 转 化 率
产 物 聚 合 度
反应时间
19
第二章 逐步聚合反应
3 线形缩聚反应机理
3.1 线形缩聚与成环反应
缩聚反应过程中常常存在两种环化反应:分子内环化与 单体单元内环化。 3.1.1 分子内环化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28
第二章 逐步聚合反应
3.3 缩聚过程中的副反应
1)基团消去反应 二元酸受热会发生脱羧反应,引起原料官能团数量的变
化,最终影响分子量。
HOOC(CH2)nCOOH
HOOC(CH2)nH + CO2
羧酸酯比较稳定,用其代替羧酸,可避免脱羧反应的 发生。
CH3
CH3 H2
二甲苯
[ CH2
CH2 ] n
聚对二次甲基苯
CH2N2 N2
重氮甲烷
[ CH2 ] n
聚乙烯
2
第二章 逐步聚合反应
1.2 逐步聚合的类型
逐步聚合反应主要有两大类:缩合聚合和逐步加成聚合 (1)缩聚反应
例:聚酯反应:二元醇与二元羧酸、二元酯、二元酰氯 等之间的反应。
n HO-R-OH + n HOOC-R’-COOH
根据平衡常数的大小,可将缩聚反应分为三类: ① 平衡常数很小,如聚酯化反应,K≈4,低分子副产物对 分子量有很大影响; ② 平衡常数中等,如聚酰胺化反应,K≈300~400,低分 子副产物对分子量有一定影响; ③ 平衡常数很大,K>1000,实际上可看作不可逆反应,
如光气法制备聚碳酸酯。
逐步特性是所有缩聚反应共有的,可逆平衡的 程度则各类缩聚反应有明显差别。
O O
O
O O n-1
O
H3C CH3
具体操作时,将双酚A的氯甲酸酯逐滴滴入大量过量溶 剂中,从而达到局部极稀,产生分子内环化。
22
第二章 逐步聚合反应
3.1.2 单体单元内环化
环化反应发生在同一单体单元内,如: HO(CH2)nCOOH (ω-羟基酸)的聚合。当n=1时,双分子反应形成乙交酯,
2 HOCH2COOH
第二章 逐步聚合反应
1 概述
1. 1 逐步聚合的基本概念
逐步聚合是高分子合成最基本的类型之一。逐步聚合 的基本特征官能团之间的反应。聚合度随时间逐步增长, 而转化率在聚合初期即可达到很高,因此表现出与连锁聚 合完全不同的规律。
缩聚反应是最常见的逐步聚合反应。聚酰胺、聚酯、 聚碳酸酯、酚醛树脂、脲醛树脂、醇酸树脂等均为重要的 缩聚产物。
-N=C=O,-N=C=S,-C≡C-,-C≡N等
5
第二章 逐步聚合反应
Diels-Alder加成聚合:单体含一对共轭双键,如:
+
与缩聚反应不同,逐步加成聚合反应没有小分 子副产物生成。
6
第二章 逐步聚合反应
逐步聚合还可以按以下方式分类:
逐步聚合
线形逐步聚合
平衡线形逐步聚合 不平衡线形逐步聚合
非线形逐步聚合
26
第二章 逐步聚合反应
2)聚合反应的可逆平衡 缩聚一般为可逆平衡反应,与低分子的缩合反应相似。
由于体系中所有的活性官能团具有同样的活性,因此可用 一个平衡常数来表示。
OH + COOH
OCO + H2O
K k1 [OCO ][H 2O] k 1 [OH][ COOH]
7—4
27
第二章 逐步聚合反应
18
第二章 逐步聚合反应
缩聚反应的单体转化率、产物聚合度与反应时间关系 示意图:
单 体 转 化 率
产 物 聚 合 度
反应时间
19
第二章 逐步聚合反应
3 线形缩聚反应机理
3.1 线形缩聚与成环反应
缩聚反应过程中常常存在两种环化反应:分子内环化与 单体单元内环化。 3.1.1 分子内环化
分子内环化是 AB 或 AA/BB 型单体线形缩聚反应中重 要的副反应,环的形成由A和B功能基间的平均距离控制。
(2)非线形逐步聚合反应 聚合产物的分子链形态不是线形的,而是支化或交联型
的。聚合体系中必须含有带两个以上功能基的单体。
11
第二章 逐步聚合反应
2 缩聚反应
2.1 缩合反应
在有机化学中,典型的缩合反应如醋酸和乙醇的酯化 反应。除了得到主产物醋酸乙酯外,还有副产物水。
CH3COOH + C2H5OH
H-(HNRNH-OCR’CO)n-Cl + (2n-1) HCl
聚硅氧烷化反应:硅醇之间聚合,
n HO-SiR1R2-OH + n HO-SiR1’R2’-OH H-(OSiR1’R2’-OSiR1R2)n-OH + (2n-1) H2O
共同特点:在生成聚合物分子的同时,伴随 有小分子副产物的生成,如H2O, HCl, ROH等。
子降解,单体分子与聚合物分子之间存在可逆平衡的逐步 聚合反应。
如聚酯化反应:
n HOOC R COOH + n HO R' OH
聚合 水解
HO ( OC-R-CO O-R'-O )nH + (2n-1) H2O
9
第二章 逐步聚合反应
(ii)不平衡线形逐步聚合反应 聚合反应过程中生成的聚合物分子之间不会发生交换
分子量很低,因此转化率无实际意义。用反应程度P来表示
聚合深度。
反应程度P定义为参与反应的基团数(N0-N)占起始
基团数的分率,
P N0 N 1 N
N0
N0
7—1
对二元酸与二元醇的缩聚反应来说,初始的羧基数和羟 基数N0等于二元酸和二元醇的分子总数,t 时刻的羧基数或 羟基数N等于 t 时刻的聚酯分子数。
许多特殊结构的聚合物也都是通过缩聚反应制得的。 缩聚反应的基本特征是平衡和反应中脱出小分子。
1
第二章 逐步聚合反应
除此之外,尚有许多非缩聚型的逐步聚合反应。如聚 氨酯的聚合,酸催化己内酰胺开环聚合制备聚酰胺、氧化 偶合反应制备聚苯醚、芳核取代制备聚砜等,都是著名的 非缩聚型逐步聚合例子。
逐步聚合产物一般为杂链聚合物。但部分碳链聚合物 也可能是通过逐步聚合得到的,例如:
2 HOOC-R-COO-R'-OH
。 。 。
HOOC-R-COO-R'-OOC-R-COO-R'-OH + H2O 四聚体
。 。 。
n HOOC-R-COOH + n HO-R'-OH
OO HO ( C R C OR'O )n H + (2n-1) H2O
15
第二章 逐步聚合反应
例: 对苯二甲酸与乙二醇反应得到涤纶树脂; 己二胺与己二酸反应得到聚酰胺—6,6; 双酚A与光气反应得到聚碳酸酯; 氨基酸自身聚合得到聚酰胺。
CH3COOC2H5 + H2O
反应物分子中能参与反应的官能团数称为官能度。醋 酸和乙醇中都只有一个能参与反应的官能团,因此都是单 官能团物质。上述体系称为1—1官能度体系。
12
第二章 逐步聚合反应
单官能度的丁醇和二官能度的邻苯二甲酸酐进行酯化反 应,产物为低分子邻苯二甲酸二丁酯,副产物为水。
单官能度的醋酸与三官能度的甘油进行酯化反应,产物 为低分子的三醋酸甘油酯,副产物为水。
★ 浓度很高且分子链很长时,A功能基旁其他分子链上的B 功能基,相互反应生成线形高分子;
20
第二章 逐步聚合反应
★ 浓度很低时,A功能基旁同一分子链上的B功能基浓度较 高,相互反应生成环状高分子,即分子内环化。
分子内环化反应经常被用来合成环状低聚物与环状高分 子。环化低聚物可用做开环聚合的单体,具有以下的优点: (1)没有小分子副产物生成; (2)聚合反应速率高; (3)所得聚合物的分子量分布窄。
环状高分子则由于不含未反应的末端功能基,其分子量 和性能不会因末端功能基间的反应而不稳定。
21
第二章 逐步聚合反应
分子内环化通常利用局部的极稀浓度来实现,如:环状
双酚A型聚碳酸酯的合成。
H3C CH3
n
O
O
O Cl
Cl O
+ 2n NaOH
-(2n NaOH + n CO2 + n H2O)
H3C CH3
4
第二章 逐步聚合反应
(2)逐步加成聚合 重键加成聚合:含活泼氢功能基的亲核化合物与含亲电
不饱和功能基的亲电化合物间的聚合。如聚氨酯的制备。
nO C N R N C O + n HO R' OH
[ C N R N C O R' O ] n
OH
HO
含活泼氢的功能基:-NH2, -NH, -OH, -SH, -SO2H, -COOH, -SiH等 亲电不饱和功能基:主要为连二双键和三键,如:-C=C=O,
只要反应体系中有一种原料是单官能度 物质,无论其他原料的官能度为多少,都只 能得到低分子产物。
13
第二章 逐步聚合反应
2.2 缩聚反应
若参与反应的物质均为二官能度的,则缩合反应转化 为缩聚反应。
以二元羧酸与二元醇的聚合反应为例。当一分子二元 酸与一分子二元醇反应时,形成一端为羟基,一端为羧基 的二聚物;二聚物可再与二元酸或二元醇反应,得到两端 均为羟基或均为羧基的三聚体,也可与二聚体反应,得到 四聚体;三聚体既可与单体反应,也可与二聚体或另一种 三聚体反应,如此不断进行,得到高分子量的聚酯。
HOCH2COOCH2COOH
CH2 O
OC
CO
O CH2
当n=2时,羟基失水形成丙烯酸;当n=3或4时,形成五、
六元环。
HO(CH2)3COOH
CH2 CH2
O CO
CH2
HO(CH2)4COOH
CH2
CH2 CH2
O CO
CH2
23
第二章 逐步聚合反应
3.2 线形缩聚机理
线形缩聚反应有两个显著的特征:逐步与平衡。
H-(ORO-OCR’CO)n-OH + (2n-1) H2O
聚醚化反应:二元醇与二元醇反应,
n HO-R-OH + n HO-R’-OH
相关文档
最新文档