2018年浙江丽水数学中考试题和答案及解析
2018年浙江省丽水、衢州市中考数学试卷含答案
浙江省丽水市、衢州市2018年中考数学试卷参考答案与试卷解读一、选择题<本题有10小题,每小题3分,共30分)1.<3分)<2018•丽水)在数,1,﹣3,0中,最大的数是< )A.B.1 C.﹣3 D.0考点:有理数大小比较.分析:根据正数>0>负数,几个正数比较大小时,绝对值越大的正数越大解答即可.解答:解:根据正数>0>负数,几个正数比较大小时,绝对值越大的正数越大解答即可.可得1>>0>﹣3,所以在,1,﹣3,0中,最大的数是1.故选:B.点评:此题主要考查了正、负数、0及正数之间的大小比较.正数>0>负数,几个正数比较大小时,绝对值越大的正数越大.b5E2RGbCAP2.<3分)<2018•丽水)下列四个几何体中,主视图为圆的是< )A.B.C.D.考点:简单几何体的三视图.分析:先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.解答:解:A、圆柱的主视图是长方形,故本选项错误;B、圆锥的主视图是三角形,故本选项错误;C、球的主视图是圆,故本选项正确;D、正方体的主视图是正方形,故本选项错误;故选C.点评:本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.3.<3分)<2018•丽水)下列式子运算正确的是< )A.a8÷a2=a6 B.a2+a3=a5C.<a+1)2=a2+1 D.3a2﹣2a2=1考点:同底数幂的除法;合并同类项;完全平方公式.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;完全平方公式<a+1)2=a2+2a+1,对各选项计算后利用排除法求解.p1EanqFDPw解答:解:A、a8÷a2=a6同底数幂的除法,底数不变指数相减;故本选项正确,B、a2+a3=a5不是同类项不能合并,故本选项错误;C、<a+1)2=a2+1完全平方公式漏了2a,故本选项错误;D、3a2﹣2a2=1合并同类项,系数相加字母和字母的指数不变;故本选项错误;故选:A.点评:本题考查同底数幂的除法,合并同类项,完全平方公式,一定要记准法则才能做题.4.<3分)<2018•丽水)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是< )DXDiTa9E3dA.50°B.45°C.35°D.30°考点:平行线的性质;直角三角形的性质.分析:根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.RTCrpUDGiT解答:解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°,故选:D.点评:本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.5.<3分)<2018•丽水)如图,河坝横断面迎水坡AB的坡比是<坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是< )5PCzVD7HxAA.9m B.6m C.m D.m考点:解直角三角形的应用-坡度坡角问题.分析:在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC 的值,通过解直角三角形即可求出斜面AB的长.jLBHrnAILg解答:解:在Rt△ABC中,BC=5M,tanA=1:;∴AC=BC÷tanA=3M,∴AB==6M.故选B.点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.6.<3分)<2018•丽水)某地区5月3日至5月9日这7天的日气温最高值统计图如图所示.从统计图看,该地区这7天日气温最高值的众数与中位数分别是< )xHAQX74J0XA.23,25 B.24,23 C.23,23 D.23,24考点:众数;条形统计图;中位数.分析:利用众数、中位数的定义结合图形求解即可.解答:解:观察条形图可得,23出现的次数最多,故众数是23°C;气温从低到高的第4个数据为23°C,故中位数是23℃;故选C.点评:此题考查了条形统计图,考查读条形统计图的能力和利用统计图获取信息的能力.也考查了中位数和众数的概念.LDAYtRyKfE7.<3分)<2018•丽水)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是< )Zzz6ZB2LtkA.矩形B.菱形C.正方形D.等腰梯形考点:菱形的判定;作图—基本作图.分析:根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.解答:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选:B.点评:此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.8.<3分)<2018•丽水)在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是< )dvzfvkwMI1A.<﹣3,﹣6)B.<1,﹣4)C.<1,﹣6)D.<﹣3,﹣4)考点:二次函数图象与几何变换.分析:根据函数图象向右平移减,向下平移减,可得目标函数图象,再根据顶点坐标公式,可得答案.解答:解:函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象y=2<x﹣2)2+4<x﹣2)﹣3﹣1,rqyn14ZNXI即y=2<x﹣1)2﹣6,顶点坐标是<1,﹣6),故选:C.点评:本题考查了二次函数图象与几何变换,利用了图象的平移规律:上加下减,左加右减.9.<3分)<2018•丽水)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于< )EmxvxOtOcoA.B.C.4 D.3考点:圆周角定理;勾股定理;旋转的性质.专题:计算题.分析:作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,再证明△ADE≌△ABF,得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,SixE2yXPq5易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=3.解答:解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,在△ADE和△ABF中,∴△ADE≌△ABF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=BF=3.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.6ewMyirQFL10.<3分)<2018•丽水)如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y 关于x的函数解读式是< )kavU42VRUsA.y=﹣B.y=﹣C.y=﹣D.y=﹣考点:全等三角形的判定与性质;函数关系式;相似三角形的判定与性质.分析:作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可求得.y6v3ALoS89解答:解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠DBE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故应选A.点评:本题考查了三角形全等的判定和性质,以及平行线的性质,辅助线的做法是解题的关键.二、填空题<本题有6小题,每小题4分,共24分)11.<4分)<2018•丽水)若分式有意义,则实数x的取值范围是x≠5 .考点:分式有意义的条件.专题:计算题.分析:由于分式的分母不能为0,x﹣5在分母上,因此x﹣5≠0,解得x.解答:解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为x≠5.点评:本题主要考查分式有意义的条件:分式有意义,分母不能为0.12.<4分)<2018•丽水)写出图象经过点<﹣1,1)的一个函数的解读式是y=﹣x<答案不唯一).M2ub6vSTnP考点:反比例函数的性质;一次函数的性质;反比例函数图象上点的坐标特征.专题:开放型.分析:此题只需根据一次函数的形式或反比例函数的形式或二次函数的形式等写出适合<﹣1,1)的解读式即可.0YujCfmUCw解答:解:将点<1,1)代入一次函数或反比例函数的形式或二次函数得:y=﹣x,y=﹣,y=﹣x2等.故答案为:y=﹣x<答案不唯一).点评:此题考查了反比例函数、一次函数的性质,为开放性试卷.写的时候,只需根据一次函数的形式,或反比例函数的形式或二次函数的形式等写出适合的解读式.eUts8ZQVRd13.<4分)<2018•丽水)如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20 .sQsAEJkW5T考点:等腰三角形的性质.分析:运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.解答:解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.点评:本题主要考查等腰三角形的性质,一定要熟练掌握等腰三角形中的三线合一.14.<4分)<2018•丽水)有一组数据如下:3,a,4,6,7.它们的平均数是5,那么这组数据的方差为 2 .GMsIasNXkA考点:方差;算术平均数.专题:压轴题.分析:先由平均数的公式计算出a的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…xn的平均数为,=<x1+x2+…+xn),则方差S2=[<x1﹣)2+<x2﹣)2+…+<xn﹣)2].TIrRGchYzg解答:解:a=5×5﹣3﹣4﹣6﹣7=5,s2=[<3﹣5)2+<5﹣5)2+<4﹣5)2+<6﹣5)2+<7﹣5)2]=2.故填2.点评:本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,=<x1+x2+…+xn),则方差S2=[<x1﹣)2+<x2﹣)2+…+<xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7EqZcWLZNX15.<4分)<2018•丽水)如图,某小区规划在一个长30m、宽20m 的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程<30﹣2x)<20﹣x)=6×78 .lzq7IGf02E考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:设道路的宽为xm,将6块草地平移为一个长方形,长为<30﹣2x)m,宽为<20﹣x)m.根据长方形面积公式即可列方程<30﹣2x)<20﹣x)=6×78.zvpgeqJ1hk解答:解:设道路的宽为xm,由题意得:<30﹣2x)<20﹣x)=6×78,故答案为:<30﹣2x)<20﹣x)=6×78.点评:此题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.NrpoJac3v116.<4分)<2018•丽水)如图,点E,F在函数y=<x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是 2 ,△OEF 的面积是<用含m的式子表示)1nowfTG4KI考点:反比例函数综合题.专题:综合题.分析:作EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,根据反比例函数的比例系数的几何意义由△OEP的面积为1易得k=2,则反比例函数解读式为y=,再证明△BPE∽△BHF,利用相似比可得HF=mPE,根据反比例函数图象上点的坐标特征,设E点坐标为<t,),则F点的坐标为<tm,),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算.fjnFLDa5Zo解答:解:作EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图,∵△OEP的面积为1,∴|k|=1,而k>0,∴k=2,∴反比例函数解读式为y=,∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴==,即HF=mPE,设E点坐标为<t,),则F点的坐标为<tm,),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=1,∴S△OEF=S梯形ECDF=<+)<tm﹣t)=<+1)<m﹣1)=.故答案为2,.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义;会利用相似比确定线段之间的关系.tfnNhnE6e5三、解答题<本题有6小题,共66分)17.<6分)<2018•丽水)计算:<﹣)2+|﹣4|×2﹣1﹣<﹣1)0.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负整指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.HbmVN777sL解答:解:原式=3+4×﹣1=4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.V7l4jRB8Hs18.<6分)<2018•丽水)解一元一次不等式组:,并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:由①得,x>﹣1,由②得,x≤4,故此不等式组的解集为:﹣1<x≤4.在数轴上表示为:点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.83lcPA59W919.<6分)<2018•丽水)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A顺时针方向旋转90°得到△AB′C′mZkklkzaaP<1)在正方形网格中,画出△AB′C′;<2)计算线段AB在变换到AB′的过程中扫过区域的面积.考点:作图-旋转变换;扇形面积的计算.分析:<1)根据旋转的性质得出对应点旋转后位置进而得出答案;<2)利用勾股定理得出AB=5,再利用扇形面积公式求出即可.解答:解:<1)如图所示:△AB′C′即为所求;<2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.点评:此题主要考查了扇形面积公式以及图形的旋转变换等知识,熟练掌握扇形面积公式是解题关键.20.<8分)<2018•丽水)学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图<1)和图<2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:AVktR43bpw<1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;<2)如果全年级共600名同学,请估算全年级步行上学的学生人数;<3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长<不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.ORjBnOwcEd考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.分析:<1)从两图中可以看出乘车的有25人,占了50%,所以共有学生50人;总人数减乘车的和骑车的就是步行的,根据数据画直方图就可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;2MiJTy0dTT<2)用这50人作为样本去估计该年级的步行人数.<3)5人每2人担任班长,有10种情况,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.gIiSpiue7A解答:解:<1)25×2=50人;50﹣25﹣15=10人;如图所示条形图,圆心角度数=×360°=108°;<2)估计该年级步行人数=600×20%=120人;<3)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢步行”的学生表示为D,1名“喜欢骑车”的学生表示为E,uEh0U1Yfmh则有AB、AC、BC、AD、BD、CD、AE、BE、CE、DE10种等可能的情况,2人都是“喜欢乘车”的学生的概率P=.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小.IAg9qLsgBX21.<8分)<2018•丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:WwghWvVhPE污水处理设备A型B型价格<万元/台)m m﹣3月处理污水量<吨/台)220 180<1)求m的值;<2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.asfpsfpi4k考点:分式方程的应用;一元一次不等式的应用.分析:<1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出m的分式方程,求出m的值即可;ooeyYZTjj1<2)设买A型污水处理设备x台,B型则<10﹣x)台,根据题意列出x的一元一次不等式,求出x的取值范围,进而得出方案的个数,并求出最大值.BkeGuInkxI解答:解:<1)由90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,PgdO0sRlMo即可得:,解得m=18,经检验m=18是原方程的解,即m=18;<2)设买A型污水处理设备x台,B型则<10﹣x)台,根据题意得:18x+15<10﹣x)≤165,解得x≤5,由于x是整数,则有6种方案,当x=0时,y=10,月处理污水量为1800吨,当x=1时,y=9,月处理污水量为220+180×9=1840吨,当x=2时,y=8,月处理污水量为220×2+180×8=1880吨,当x=3时,y=7,月处理污水量为220×3+180×7=1920吨,当x=4时,y=6,月处理污水量为220×4+180×6=1960吨,当x=5时,y=5,月处理污水量为220×5+180×5=2000吨,答:有6种购买方案,每月最多处理污水量的吨数为2000吨.点评:本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的等量关系是解决问题的关键,此题难度不大,特别是几种方案要分析周全.3cdXwckm1522.<10分)<2018•丽水)如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F 作FG⊥AB,垂足为G,连结GD.h8c52WOngM<1)求证:DF是⊙O的切线;<2)求FG的长;<3)求tan∠FGD的值.考点:切线的判定;等边三角形的性质;解直角三角形.分析:<1)连结OD,根据等边三角形的性质得∠C=∠A=∠B=60°,而OD=OC,所以∠ODB=60°=∠C,于是可判断OD∥AC,又DF⊥AC,则OD⊥DF,根据切线的判定定理可得DF是⊙O 的切线;v4bdyGious<2)先证明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=CD=3,所以AF=AC﹣CF=9,然后在Rt△AFG中,根据正弦的定义计算FG的长;J0bm4qMpJ9<3)过D作DH⊥AB于H,由垂直于同一直线的两条直线互相平行得出FG∥DH,根据平行线的性质可得∠FGD=∠GDH.解Rt△BDH,得BH=BD=3,DH=BH=3.解Rt△AFG,得AG=AF=,则GH=AB﹣AG ﹣BH=,于是根据正切函数的定义得到tan∠GDH==,则tan∠FGD可求.XVauA9grYP解答:<1)证明:连结OD,如图,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;<2)解:∵OD∥AC,点O为AB的中点,∴OD为△ABC的中位线,∴BD=CD=6.在Rt△CDF中,∠C=60°,∴∠CDF=30°,∴CF=CD=3,∴AF=AC﹣CF=12﹣3=9,在Rt△AFG中,∵∠A=60°,∴FG=AF×sinA=9×=;<3)解:过D作DH⊥AB于H.∵FG⊥AB,DH⊥AB,∴FG∥DH,∴∠FGD=∠GDH.在Rt△BDH中,∠B=60°,∴∠BDH=30°,∴BH=BD=3,DH=BH=3.在Rt△AFG中,∵∠AFG=30°,∴AG=AF=,∵GH=AB﹣AG﹣BH=12﹣﹣3=,∴tan∠GDH===,∴tan∠FGD=tan∠GDH=.点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点<即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.bR9C6TJscw 23.<10分)<2018•丽水)提出问题:<1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:<2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;pN9LBDdtrd综合运用:<3)在<2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.DJ8T7nHuGT考点:四边形综合题.分析:<1)由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH可得AE=DH;QF81D7bvUA<2)EF=GH.将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据<1)的结论得AM=DN,所以EF=GH;4B7a9QFw9h<3)易得△AHF∽△CGE,所以,由EC=2得AF=1,过F 作FP⊥BC于P,根据勾股定理得EF=,因为FH∥EG,所以根据<2)①知EF=GH,所以FO=HO,再求得三角形FOH与三角形EOG 的面积相加即可.ix6iFA8xoX解答:解:<1)∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.∴△ABE≌△DAH<ASA),∴AE=DH.<2)EF=GH.将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据<1)的结论得AM=DN,所以EF=GH;<3)∵四边形ABCD是正方形,∴AB∥CD∴∠AHO=∠CGO∵FH∥EG∴∠FHO=∠EGO∴∠AHF=∠CGE∴△AHF∽△CGE∴∵EC=2∴AF=1过F作FP⊥BC于P,根据勾股定理得EF=,∵FH∥EG,∴根据<2)①知EF=GH,∴FO=HO.∴,,∴阴影部分面积为.点评:本题考查了三角形的综合知识.用到全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等综合性较强,难度较大.wt6qbkCyDE24.<12分)<2018•丽水)如图,二次函数y=ax2+bx<a≠0)的图象经过点A<1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C<0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.Kp5zH46zRk<1)求该二次函数的解读式;<2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;<3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?Yl4HdOAA61考点:二次函数综合题.分析:<1)运用待定系数法和对称轴的关系式求出a、b的即可;<2)由待定系数法求出直线AC的解读式,由抛物线的解读式构成方程组就可以求出B点的坐标,由相似三角形的性质及旋转的性质就可以得出E的坐标;ch4PJx4BlI<3)分情况讨论当点B落在FD的左下方,点B,D重合,点B落在OD的右上方,由三角形的面积公式和菱形的性质的运用就可以求出结论.qd3YfhxCzo解答:解:<1)∵y=ax2+bx<a≠0)的图象经过点A<1,4),且对称轴是直线x=﹣,∴,解得:,∴二次函数的解读式为y=x2+3x;<2)如图1,∵点A<1,4),线段AD平行于x轴,∴D的纵坐标为4,∴4=x2+3x,∴x1=﹣4,x2=1,∴D<﹣4,4).设直线AC的解读式为y=kx+b,由题意,得,解得:,∴y=2x+2;当2x+2=x2+3x时,解得:x1=﹣2,x2=1<舍去).∴y=﹣2.∴B<﹣2,﹣2).∴DO=4,BO=2,BD=2,OA=.∴DO2=32,BO2=8,BD2=40,∴BO2+BO2=BD2,∴△BDO为直角三角形.∵△EOD∽△AOB,∴∠EOD=∠AOB,,∴∠EOD﹣∠AOB=∠AOB﹣∠AOB,∴∠BOD=∠AOE=90°.即把△AOB绕着O点顺时针旋转90°,OB落在OD上B′,OA落在OE上A1∴A1<4,﹣1),∴E<8,﹣2).作△AOB关于x轴的对称图形,所得点E的坐标为<2,﹣8).∴当点E的坐标是<8,﹣2)或<2,﹣8)时,△EOD∽△AOB;<3)由<2)知DO=4,BO=2,BD=2,∠BOD=90°.若翻折后,点B落在FD的左下方,如图2.S△HFP=S△BDP=S△DPF=S△B′PF=S△DHP=S△B′HF,∴DH=HF,B′H=PH,∴在平行四边形B′FPD中,PD=B′F=BF=BD=;若翻折后,点B,D重合,S△HFP=S△BDP,不合题意,舍去.若翻折后,点B落在OD的右上方,如图3,S△HFP=S△BDP=S△BPF=S△DPF=S△B′PF=S△DHF=S△B′HP ∴B′P=BP,B′F=BF.DH=HP,B′H=HF,∴四边形DFPB′是平行四边形,∴B′P=DF=BF,∴B′P=BP=B′F=BF,∴四边形B′FPD是菱形,∴FD=B′P=BP=BD=,根据勾股定理,得OP2+OB2=BP2,∴<4﹣PD)2+<2)2=<)2,PD=3,PD=5>4<舍去),综上所述,PD=或PD=3时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的.E836L11DO5点评:本题考查了待定系数法求函数的解读式的运用,相似三角形的性质的运用,菱形的判定及性质的运用,旋转的性质的运用,分类讨论思想的运用.等底、等高的三角形的面积的运用,解答时运用三角形的面积关系求解是关键.S42ehLvE3M申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018浙江丽水数学中考试题和答案解析
2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −12.计算结果正确的是()A. B. C.D.3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠44.若分式的值为0,则x的值是()A. 3B. C . 3或 D. 05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B. 长方体C. 圆锥D. 立方体B.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()C.A. B.C. D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10)C. (9,10) D. (10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C.D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱二、填空题(共6题;共7分)11.化简的结果是________.12.如图,△ABC的两条高AD , BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是________.14.对于两个非零实数x,y,定义一种新的运算:.若,则的值是________.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E , F分别在边AB , BC上,三角形①的边GD在边AD上,则的值是________.16.如图1是小明制作的一副弓箭,点A , D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD 方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为________cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为________cm.三、解答题(共8题;共75分)17.计算:+-4sin45°+.18.解不等式组:19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20-60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC , AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B= ,求⊙O的半径.22.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C , D在抛物线上.设A(t, 0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G , H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA , CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F , G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
2018年浙江省丽水市中考数学试卷含答案
浙江省丽水市2018年中考数学试卷一、选择题<本题有10小题,每小题3分,共30分)1.<3分)<2018•丽水)在数0,2,﹣3,﹣1.2中,属于负整数的是< )2.<3分)<2018•丽水)化简﹣2a+3a的结果是< )3.<3分)<2018•丽水)用3个相同的立方块搭成的几何体如图所示,则它的主视图是< )4.<3分)<2018•丽水)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是< )b5E2RGbCAP5.<3分)<2018•丽水)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是< )p1EanqFDPw6.<3分)<2018•丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是< )DXDiTa9E3d7.<3分)<2018•丽水)一元二次方程<x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是< )RTCrpUDGiT8.<3分)<2018•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是< )5PCzVD7HxABC=AC=AB=×16=OC==9.<3分)<2018•丽水)若二次函数y=ax2的图象经过点P<﹣2,4),则该图象必经过点< )jLBHrnAILg10.<3分)<2018•丽水)如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y<cm)与点P的运动时间x<秒)的函数图象如图2所示,当点P运动5秒时,PD的长是< )xHAQX74J0X,==二、填空题(本题有6小题,每小题4分,共24分>11.<4分)<2018•丽水)分解因式:x2﹣2x= x<x﹣2).12.<4分)<2018•丽水)分式方程﹣2=0的解是x=.x=经检验x=是方程的解.13.<4分)<2018•丽水)合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则学生B坐在2号座位的概率是.LDAYtRyKfEP==故答案为:14.<4分)<2018•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC 的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15 .Zzz6ZB2Ltk的面积是×DE×BC=×10×3=115.<4分)<2018•丽水)如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=.dvzfvkwMI1出AM=则==故答案为:16.<4分)<2018•丽水)如图,点P是反比例函数y=<k<0)图象上的点,PA垂直x轴于点A<﹣1,0),点C的坐标为<1,0),PC 交y轴于点B,连结AB,已知AB=.rqyn14ZNXI<1)k的值是﹣4 ;<2)若M<a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是0<a<2或<a<.EmxvxOtOco,==2﹣.则解得,或<∴C′<﹣,),则易求直线BC′的解读式为:y=x+2,∴x=则根据图示知,当<或<或<三、解答题(本题有8小题,第17-19题每题6分,第20、21题每题8分,第22、23题每题10,第24题12分,共66分,各小题必须写出解答过程>SixE2yXPq517.<6分)<2018•丽水)计算:﹣|﹣|+<﹣)0.解:﹣﹣=2﹣+1+118.<6分)<2018•丽水)先化简,再求值:<a+2)2+<1﹣a)<1+a),其中a=﹣.﹣﹣19.<6分)<2018•丽水)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.6ewMyirQFLBE=AE==2EAB==,×20.<8分)<2018•丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.kavU42VRUs<1)求y与x之间的函数关系式;<2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD 和DC的长都是整M数,求出满足条件的所有围建方案.y6v3ALoS89y=.,且21.<8分)<2018•丽水)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.M2ub6vSTnP<1)求证:BE=CE;<2)求∠CBF的度数;<3)若AB=6,求的长.∴弧AD的长是=.22.<10分)<2018•丽水)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳工程的测试,根据测试成绩制作了下面两个统计图.0YujCfmUCw根据统计图解答下列问题:<1)本次测试的学生中,得4分的学生有多少人?<2)本次测试的平均分是多少分?<3)通过一段时间的训练,体育组对该班学生的跳绳工程进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?eUts8ZQVRd=3.7<解得:23.<10分)<2018•丽水)如图,已知抛物线y=x2+bx与直线y=2x 交于点O<0,0),A<a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.sQsAEJkW5T<1)求抛物线的函数解读式;<2)若点C为OA的中点,求BC的长;<3)以BC,BE为边构造矩形BCDE,设点D的坐标为<m,n),求出m,n之间的关系式.又∵点A是抛物线y=x2+bx上的一点,y=y=y=,﹣BC=1+﹣n∴点B的坐标为<n,2m),B<y=x2n2﹣n2﹣24.<12分)<2018•丽水)如图1,点A是x轴正半轴上的动点,点B坐标为<0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.GMsIasNXkA<1)当t=2时,求CF的长;<2)①当t为何值时,点C落在线段BD上;②设△BCE的面积为S,求S与t之间的函数关系式;<3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.TIrRGchYzg点:<1)由Rt△ACF∽Rt△BAO,得CF=OA=t,由此求出CF的值;∴OA=t∴OB=2∴,即t=﹣t=S=<t+2﹣t t2+t+4 S=<t+2t t2﹣个人收集整理资料,仅供交流学习,勿作商业用途申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年浙江丽水数学中考试题与答案
2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −12.计算结果正确的是()A. B. C.D.3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠44.若分式的值为0,则x的值是()A. 3B.C. 3或D. 05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B. 长方体 C. 圆锥 D. 立方体B. 6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()C.A. B. C.D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10)C. (9,10)D. (10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C.D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC .若点A ,D ,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱二、填空题(共6题;共7分)11.化简的结果是________.12.如图,△ABC的两条高AD ,BE相交于点F ,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是________.14.对于两个非零实数x , y , 定义一种新的运算:.若,则 的值是________.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E , F 分别在边AB , BC 上,三角形①的边GD 在边AD 上,则 的值是________.16. 如图1是小明制作的一副弓箭,点A , D 分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm ,∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1 , C 1的距离为________cm .(2)如图3,将弓箭继续拉到点D 2 , 使弓臂B 2AC 2为半圆,则D 1D 2的长为________cm .三、解答题(共8题;共75分)17.计算: + -4sin45°+.18.解不等式组:19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20-60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC ,AB相交于点D ,E ,连结AD .已知∠CAD=∠B .(1)求证:AD是⊙O的切线.(2)若BC=8,tanB= ,求⊙O的半径.22.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C ,D在抛物线上.设A(t ,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P .已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m ,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA ,CD为边作矩形ACDE ,直线AB与直线CE ,DE的交点分别为F ,G .(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G 为DE中点,求FG的长.②若DG=GF ,求BC的长.(2)已知BC=9,是否存在点D ,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
2018年浙江省丽水市中考数学试卷(解析版)
2018年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1B.∠2C.∠3D.∠44.(3分)若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE的中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.3.【解答】解:∠B的同位角可以是:∠4.故选:D.4.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.5.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.6.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.7.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.8.【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.9.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.10.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:原式=x2﹣1,故答案为:x2﹣112.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.13.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.14.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣115.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.16.【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.18.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.19.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.20.【解答】解:符合条件的图形如图所示:21.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BC tan B=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tan B=,∴CD=AC tan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.22.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),∵直线GH平分矩形的面积,∴点P是GH和BD的中点,∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.23.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴P A=4﹣=,PC=﹣4=,∴P A=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3224.【解答】解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D在线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD=4x=4.如图3中,当点D在线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃)∴腰长GD=4x+12=,如图5中,当点D在线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰△DFG的腰长为4或20或或.第21页(共21页)。
2018年浙江省丽水市中考数学试卷含答案
2018年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3.00分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3.00分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3.00分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3.00分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3.00分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3.00分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3.00分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3.00分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3.00分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3.00分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4.00分)(2018•金华)化简(x﹣1)(x+1)的结果是.12.(4.00分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4.00分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4.00分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4.00分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4.00分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6.00分)(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6.00分)(2018•金华)解不等式组:19.(6.00分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8.00分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8.00分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB 为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10.00分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD 的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10.00分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12.00分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3.00分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3.00分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3.00分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3.00分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3.00分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3.00分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3.00分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3.00分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3.00分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3.00分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4.00分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4.00分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4.00分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4.00分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4.00分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4.00分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10 cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6.00分)(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6.00分)(2018•金华)解不等式组:【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6.00分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8.00分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8.00分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB 为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10.00分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD 的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10.00分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12.00分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年度浙江丽水数学中专业考试题及其内容规范标准答案
2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −12.计算结果正确的是()A. B. C. D.3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠44.若分式的值为0,则x的值是()A. 3B.C. 3或D. 05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B. 长方体C. 圆锥D. 立方体B.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()C.A. B. C. D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10)C. (9,10)D. (10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱11.化简的结果是________.12.如图,△ABC的两条高AD ,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是________.14.对于两个非零实数x,y,定义一种新的运算:.若,则的值是________.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E ,F分别在边AB ,BC上,三角形①的边GD在边AD上,则的值是________.16.如图1是小明制作的一副弓箭,点A ,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为________cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为________cm.17.计算:+-4sin45°+.18.解不等式组:19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20-60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC ,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B= ,求⊙O的半径.22.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B 的左边),点C ,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA ,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F ,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
2018年浙江省丽水市中考数学试卷
2018年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3.00分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3.00分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3.00分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3.00分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3.00分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3.00分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3.00分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3.00分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3.00分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3.00分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4.00分)(2018•金华)化简(x﹣1)(x+1)的结果是.12.(4.00分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4.00分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4.00分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y= +.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4.00分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4.00分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6.00分)(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6.00分)(2018•金华)解不等式组:19.(6.00分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8.00分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8.00分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10.00分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10.00分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12.00分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3.00分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3.00分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3.00分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3.00分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3.00分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3.00分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3.00分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3.00分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3.00分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3.00分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4.00分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4.00分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4.00分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4.00分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y= +.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4.00分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4.00分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6.00分)(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6.00分)(2018•金华)解不等式组:【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6.00分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8.00分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8.00分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10.00分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10.00分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12.00分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018浙江金华(丽水)中考数学试卷(含解析)
2018年浙江省金华/丽水市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018浙江金华丽水,1,3分)在0,1,12-,-1四个数中,最小的数是( ).A . 0B .1C . 12- D . -1【答案】D .【解析】∵-1<12-<0<1,∴最小的数是-1,故选D .【知识点】有理数的大小比较2.(2018浙江金华丽水,2,3分)计算()3a a -÷结果正确的是( ). A . 2a B . 2a - C . 3a - D . 4a - 【答案】B .【解析】根据同底数幂的除法法则,有()3a a -÷=3a a -÷=2a -.故选B .【知识点】同底数幂的除法 3.(2018浙江金华丽水,3,3分)如图,∠B 的同位角可以是( ). A .∠1 B .∠2 C .∠3 D .∠4【答案】D .【解析】根据同位角的定义,得∠B 的同位角是∠4,故选D . 【知识点】同位角的识别4.(2018浙江金华丽水,4,3分)若分式33x x -+的值为0,则x 的值是( ). A .3 B .3- C .3或3- D .0 【答案】A . 【解析】分式33x x -+的值为0,则3=030x x -⎧⎨+≠⎩,,,解得x =3.故选A . 【知识点】分式的值为0的条件5.(2018浙江金华丽水,5,3分)一个几何体的三视图如图所示,该几何体是( ). A . 直三棱柱 B . 长方体 C . 圆锥 D .立方体ABD CE 1234第3题图【答案】A .【解析】由三视图可得该几何体是直三棱柱.故选A . 【知识点】,三视图 6.(2018浙江金华丽水,6,3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°. 让转盘自由转动,指针停止后落在黄色区域的概率是( ). A .61 B .41 C .31 D .127【答案】B .【解析】∵黄色扇形的圆心角度数为90°,占周角的41,∴黄色扇形面积占圆面积的41,∴指针停止后落在黄色区域的概率是41,故选B . 【知识点】概率 7.(2018浙江金华丽水,7,3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( ). A .(5,30) B .(8,10) C .(9,10) D .(10,10)【答案】C .【解析】由图示得,点P 的横坐标是9,纵坐标是10,故选C . 【知识点】平面直角坐标系中点的坐标; 8.(2018浙江金华丽水,8,3分)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则yPx单位:mm4030 10 1650O第7题图红黄蓝第6题图主视图 左视图俯视图第5题图竹竿AB 与AD 的长度之比为( ).A . tan tan αβB . sin sin βαC . sin sin αβD . cos cos βα第8题图βαFE D CB A【答案】B .【解析】由锐角三角函数的定义,得AB =sin AC α,AB =sin AC α,∴AB 与AD 的长度之比为sin sin βα,故选B . 【知识点】锐角三角函数9.(2018浙江金华丽水,9,3分)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是( ). A .55° B .60° C .65° D .70°【答案】C .【解析】将△ABC 绕点C 顺时针旋转90°得到△EDC ,则∠ECD =∠ACB =20°,∠ACE =90°,EC =AC ,∴∠E =45°,∴∠ADC =65°.故选D . 【知识点】图形的旋转 10.(2018浙江金华丽水,10,3分)某通讯公司就上宽带网推出A ,B ,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h )的函数关系如图所示,则下列判断错误..的是( ). A .每月上网时间不足25 h 时,选择A 方式最省钱B .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为35h 时,选择B 方式最省钱D .每月上网时间超过70h 时,选择C 方式最省钱【答案】D .A BDCE第9题图 O 120 y (元) 65 50 30x (h)25 50 55 A 方式B 方式C 方式第10题图【解析】图中x 轴表示上网时间x (h ),y 轴表示所需的费用y (元) .由图象得, A .每月上网时间不足25 h 时,选择A 方式最省钱,该选项正确;B .每月上网费用为60元时,B 方式可上网的时间比A 方式多,该选项正确;C .每月上网时间为35h 时,选择B 方式最省钱,该选项正确;D .每月上网时间超过55h 时,选择C 方式最省钱, 该选项有误; 故选D .【知识点】函数图象二、填空题:本大题共6小题,每小题4分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2018浙江金华丽水,11,4分)计算()()11x x -+的结果是 .【答案】x 2-1.【解析】根据平方差公式,有(x -1)(x +1)= x 2-1.故答案为x 2-1. 【知识点】.平方差公式; 12.(2018浙江金华丽水,12,4分)如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 .【答案】答案不唯一,如CA =CB ,CE =CD 等.【解析】已知两角对应相等,可考虑全等三角形的判定ASA 或AAS .故答案不唯一,如CA =CB ,CE =CD 等. 【知识点】全等三角形的判定 13.(2018浙江金华丽水,13,4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 .【答案】6.9%【解析】由众数定义知,众数是一组数据中出现次数最多的数,由统计图得这5年增长速度的众数是6.9%.故答案为6.9%.【知识点】众数;折线统计图14.(2018浙江金华丽水,14,4分)对于两个非零实数x ,y ,定义一种新的运算:a bx y x y *=+.若()112*-=,则()22-*的值是 . 【答案】-1.2013~2017年国内生产总值增长速度统计图2013年 2014年 2015年 2016年 6.5% 7% 8% 6%选自国家统计局2018年2月统计公报7.5% 7.3%6.9%6.7%6.9%2017年7.8% 8.5% 第13题图ABDC E F第12题图【解析】∵a b x y xy*=+,()11*-=1-1a b +=a -b =2,∴()22-*=-22a b +=2b a -=-1.故答案为-1.【知识点】分式的加法;阅读理解 15.(2018浙江金华丽水,15,4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则ABBC的值是 .【答案】214+. 【解析】设如图1中正方形的边长为2x ,则AB BC =AE EBAG GD++=24x x x +=214+.故答案为214+.【知识点】正方形的性质;矩形的性质;平行四边形的性质;勾股定理 16.(2018浙江金华丽水,16,4分)如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm .沿AD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm , ∠B 1D 1C 1=120°. (1)图2中,弓臂两端B 1,C 1的距离为 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 cm .【答案】(1)303;(2)105-10.【解析】(1)连结B 1C 1交AD 1于E ,则AD 1垂直平分B 1C 1.在Rt △B 1D 1E 中,∵∠B 1D 1C 1=120°,∴∠B 1D 1E =60°.∵B 1D 1=30,∴B 1E =153.∴B 1C 1 =303.故答案为303; (2)图2中,∵AD 1=30cm , ∠B 1D 1C 1=120°,∴弓臂B 1AC 1的长=12030180π⋅⋅=20π.图3中,∵弓臂B 2AC 2为半圆,∴20π=12d π,∴半圆的半径12d =20. 连结B 2C 2交AD 2于E 1,则AD 2垂直平分B 2C 2.图1 图2A DBCEFG① 第15题图第16题图D 1图1 图2 图3B 1A CD B C 1 A CBDB CA D 1 D 2 DB 1 B 2C 1 C 2在Rt △B 2D 2E 1中, D 2E 1 =222221()()D E B E - =223020- =105.∴AD 2=105+20.∵AD 1=30cm ,∴D 1D 2 = AD 2-AD 1=105-10.故答案为105-10. 【知识点】勾股定理;特殊角的锐角三角函数值;弧长公式;三、解答题(本大题共8小题,满分66分,各小题都必须写出解答过程)17.(2018浙江金华丽水,17,6分)计算:8+0(2018)--4sin45°+2-【思路分析】本题考查了实数的运算.先分别求出8、0(2018)-、4sin45°、2-的值,然后进行实数的运算.【解题过程】解:原式=22+1-2+2=32.【知识点】算术平方根;零指数幂的运算;特殊角的三角函数值;绝对值18.(2018浙江金华丽水,18,6分)解不等式组:232+23(1).xx x x +<-⎧⎪⎨⎪⎩,①≥②【思路分析】分别解不等式①、②,取不等式①、②解集的公共部分为不等式组的解. 【解题过程】解:由可得x +6<3x ,解得x >3, 由①可得x +6<3x ,解得x >3,由②可得2x +2≥3x -3,解得x ≤5. ∴原不等式组的解为3<x ≤5. 【知识点】解不等式组 19.(2018浙江金华丽水,19,6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图. 请根据图中信息解答下列问题:(1)求参与问卷调查的总人数. (2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数. 【思路分析】(1)参与问卷调查的总人数=支付宝支付的人数÷所对应的百分比; (2)总人数-已知人数=未知人数,图略;(3)8000×最喜欢微信支付的人数所占的百分比. 【解题过程】解:(1)∵(120+80)÷40%=500(人), ∴参与问卷调查的总人数为500人.第19题图各种支付方式的扇形统计图A 支付宝支付B 微信支付C 现金支付D 其他C 15% A40%BD10%2060 90 120各种支付方式中不同年龄段人数条形统计图 20~40岁41~60岁1208030751530 A支付方式人数 100 BCD(2)如图.支付方式人数120801007515203060各种支付方式中不同年龄段人数条形统计图41~60岁20~40岁D CBA306090120(3)∵8000×(1―40%―10%―15%)=8000×35%=2800(人), ∴这些人中最喜欢微信支付方式的人数约为2800人. 【知识点】条形统计图;扇形统计图 20.(2018浙江金华丽水,20,8分)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【思路分析】根据题意画出符合相应条件的图形. 【解题过程】解:如图,图3图2图1AAA【知识点】平行四边形的面积;三角形的面积 21.(2018浙江金华丽水,21,8分)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B . (1)求证:AD 是⊙O 的切线. (2)若BC =8,tan B =12,求⊙O 的半径.图1:以点A 为顶点的三角形图3:以点A 为对角线交 点的平行四边形图2:以点A 为顶点的 平行四边形AA A【思路分析】本题考查了切线的判定;勾股定理;锐角三角函数的综合运用.(1)连结OD ,利用等角代换证得OD ⊥AD 即可. (2)设⊙O 的半径为r .在Rt △ACD 中,利用勾股定理构建方程(45-r )2=r 2+20,解方程可得r 的值.【解题过程】解:(1)连结OD ,∵OB =OD ,∴∠3=∠B ,1234EO D CB A∵∠B =∠1,∴∠3=∠1.在Rt △ACD 中,∠1+∠2=90°, ∴∠3+∠2=90°,∴∠4=180°-(∠2+∠3)=180°-90°=90°. ∴OD ⊥AD .∴AD 是⊙O 的切线. (2)设⊙O 的半径为r .在Rt △ABC 中,AC =BC ·tan B =8×12=4, ∴AB =22AC BC +=2248+=45.∴OA =45-r .在Rt △ACD 中,tan ∠1=tan ∠B =12. ∴CD =AC ·tan ∠1=4×12=2, ∴AD 2=AC 2+CD 2=42+22=20. 在Rt △ADO 中,OA 2=OD 2+AD 2, ∴(45-r )2=r 2+20. 解得r =352. 【知识点】切线的判定;勾股定理;锐角三角函数22.(2018浙江金华丽水,22,10分)如图,抛物线2y ax bx =+(a ≠0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t =2时,AD=4. (1)求抛物线的函数表达式.EOAB DC(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直.线.GH 平分矩形的面积时,求抛物线平移的距离.【思路分析】本题主要考查了抛物线的平移.(1)设抛物线的函数表达式为y =ax (x -10) .把点D 的坐标代入计算可得a 值.(2)根据矩形ABCD 的周长=2(AB +AD )得到关于t 的二次函数解析式,利用顶点式可求得矩形ABCD 的周长的最大值.(3)抛物线平移的距离就是△OBD 的中位线PQ 的值. 【解题过程】解:(1)设抛物线的函数表达式为y =ax (x -10) . ∵当t =2时,AD =4,∴点D 的坐标是(2,4).∴4=a ×2×(2-10),解得a =-14. ∴抛物线的函数表达式y =-14x 2+52x .(2)由抛物线的对称性得BE =OA =t ,∴AB =10-2t . 当x =t 时,y =-14t 2+52t . ∴矩形ABCD 的周长=2(AB +AD )=2[(10-2 t )+(-14t 2+52t )] =-12t 2+t +20 =-12(t -1)2+412.∵-12<0,∴当t =1时,矩形ABCD 的周长有最大值,最大值是412. (3)当t =2时,点A ,B ,C ,D 的坐标分别为(2,0),(8,0),(8,4),(2,4). ∴矩形ABCD 对角线的交于点P 的坐标为(5,2).xy(10,0)H G Q PCBD E OA当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分.DCE BA O yx第22题图当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分. ∴当G ,H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形面积平分.∴当点G ,H 分别落在线段AB ,DC 上时,直线GH 过点P ,必平分矩形ABCD 的面积. ∵AB ∥CD ,∴线段OD 平移后得到线段GH .∴线段OD 的中点Q 平移后的对应点是P . 在△OBD 中,PQ 是中位线, ∴PQ =12OB =4. 所以抛物线向右平移的距离是4个单位.【知识点】待定系数法求抛物线的函数表达式;抛物线的平移;最值;三角形中位线定理;平分矩形面积;23.(2018浙江金华丽水,23,10分)如图,四边形ABCD 的四个顶点分别在反比例函数y xm=与y xn=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.【思路分析】本题综合考查了一次函数、反比例函数与四边形的综合运用.(1)①根据题意,先求得点A 、点B 的坐标,然后用待定系数法可得直线AB 的函数表达式.②点P 是BD 的中点,且BD ⊥AC 于点P ,根据菱形的判定只需证P A =PC 即可.(2)假设四边形ABCD 能成为正方形.由正方形的性质设P A =PB =PC =PD =t ,则点A 的坐标是(4-t ,4m +t ),点D 的坐标是(4,8-4m).由y x n =得4×(8-4m )=n .整理可得m +n 的值.【解题过程】解:(1)①当x =4时,y =4x=1,∴点B 的坐标是(4,1).当y =2时,由y =4x得x =2,∴点A 的坐标是(2,2).设直线AB 的函数表达式为y =kx +b .∴22,4 1.k b k b +=⎧⎨+=⎩解得1,23.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的函数表达式为y =-12x +3. ②四边形ABCD 为菱形.理由如下: 由①得点B (4,1),点D (4,5),第23题备用图ByxOm y x=n y x=Pyx OABCD m y x=n y x=第23题图∵点P 为线段BD 的中点,∴点P 的坐标为(4,3).当y =3时,由y =4x得x =43,由y =20x 得x =203, ∴P A =4-43=83,PC =203-4=83, ∴P A =PC .而PB =PD ,∴四边形ABCD 为平行四边形.又∵BD ⊥AC ,∴四边形ABCD 为菱形.(2)四边形ABCD 能成为正方形.当四边形ABCD 是正方形时,P A =PB =PC =PD (设为t ,t ≠0),当x =4时,y =m x =4m ,∴点B 的坐标是(4,4m ). 则点A 的坐标是(4-t ,4m +t ). ∴(4-t )(4m +t )=m .化简得t =4-4m , ∴点D 的坐标是(4,8-4m ). 所以4×(8-4m )=n .整理得m +n =32. 【知识点】待定系数法求一次函数表达式;反比例函数;菱形的判定;正方形的性质;24.(2018浙江金华丽水,24,12分)在Rt △ABC 中,∠ACB =90°,AC =12.点D 在直线CB 上,以CA ,CD 为边作矩形ACDE ,直线AB 与直线CE ,DE 的交点分别为F 、G .(1)如图,点D 在线段CB 上,四边形ACDE 是正方形.①若点G 为DE 中点,求FG 的长.②若DG=GF ,求BC 的长.(2)已知BC =9,是否存在点D ,使得△DFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【思路分析】本题综合考查了三角形、四边形的判定与性质.(1)①由勾股定理可得AG ,由相似三角形的性质得FG AF =EG AC =12,进而得FG 的方程方程值;②根据题意先证得∠1=∠2(设为x ),∠1=∠2=∠B =∠3=x .根据三角形内角和定理列方程,解得x =30°. 在Rt △ABC 中,由BC =tan 30AC o 可得解. (2)存在.分情况讨论:①点D 在线段BC 上;②点D 在线段BC 的延长线上,且直线AB ,CE 的交点在AEF 上方;③点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方;④点D 在线段CB 的延长线上.AB DC FG E第24题图【解题过程】解:(1)①在正方形ACDE 中有DG =GE =6.在Rt △AEG 中,AG =22AE EG +=22126+=65.∵EG ∥AC ,∴△ACF ∽△GEF . ∴FG AF =EG AC ,∴FG AF =612=12. ∴FG =13AG =25. ②如图1,在正方形ACDE 中, AE =ED ,∠AEF =∠DEF =45°, 231(图1)FBG E A C D又EF =EF ,∴△AEF ≌△DEF .∴∠1=∠2(设为x ).∵AE ∥BC ,∴∠B =∠1=x .∵GF =GD∴∠3=∠2=x .在△DBF 中,∠3+∠FDB +∠B =180°,∴x +(x +90°)+x =180°,解得x =30°,∴∠B =30°.∴在Rt △ABC 中,BC =tan 30AC o =123. (2)在Rt △ABC 中,AB =22AC BC +=22129+=15.如图2,当点D 在线段BC 上时,此时只有GF =GD .(图2)FB GEC DA∵DG ∥AC ,∴△BDG ∽△BCA .设BD =3x ,则DG =4x ,BG =5x ,∴GF =GD =4x ,则AF =15-9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴AE BC =AF BF ,∴939x -=15-99x x,即x 2-6x +5=0. 解得x 1=1,x 2=5(舍去),∴腰长GD =4x =4.如图3,当点D 在线段BC 的延长线上,且直线AB ,CE 的交点在AEF 上方时,(图3)GFBAD C E此时只有GF =DG .设AE =3x ,则EG =4x ,AG =5x ,∴FG =DG =12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF , ∴AE BC =AF BF ,∴39x =9+129+27x x ,即x 2=4. 解得x 1=2,x 2=-2(舍去),∴腰长GD =4x +12=20.如图4,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,(图4)H FGB A D CE此时只有DF =DG ,过点D 作DH ⊥FG .设AE =3x ,则EG =4x ,AG =5x ,DG =4 x +12.∴FH =GH =DG ·cos ∠DGB =(4x +12)×45=16485x +, ∴GF =2GH =32965x +. ∴AF =GF -AG =32965x +-5x =7965x +. ∵AC ∥DG ,∴△ACF ∽△GEF ,∴AC EG =AF FG, ∴124x =17+965132+965x x ()(),即7x 2=288. 解得x 1=12147,x 2=-12147(舍去),∴腰长GD =4x +12=84+48147. 如图5,当点D 在线段CB 的延长线上时,(图5)HFG EAC BD此时只有DF =DG ,过点D 作DH ⊥AG .设AE =3x ,则EG =4x ,AG =5x ,DG =4 x -12.∴FH =GH =DG ·cos ∠DGB =(4x -12)×45=16485x -, ∴FG =2FH =32965x -. ∴AF =AG -FG =5x - 32965x -=9675x -. ∵AC ∥EG ,∴△ACF ∽△GEF ,∴AC EG =AF FG, ∴124x =19675132965x x --()(),即7x 2=288. 解得x 1=12147,x 2=-12147(舍去), ∴腰长GD =4x -12=84+48147-. 综上所述,等腰△DFG 的腰长为4,20,84+48147, 84+48147-. 【知识点】勾股定理;相似三角形的判定与性质;锐角三角函数;一元二次方程;分类讨论的思想;从特殊到一般的思想。
2018年浙江省丽水市中考数学试卷
2018年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【解答】D2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【解答】B3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【解答】D4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【解答】A5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【解答】A6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【解答】B7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【解答】C8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【解答】B9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【解答】C10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【解答】D二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.18.(6分)解不等式组:【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【解答】解:符合条件的图形如图所示;21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.。
2018年浙江丽水数学中考试题及答案
2018年浙江丽水数学中考试题及答案8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C.D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱 B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱 D. 每月上网时间超过70h时,选择C方式最省钱二、填空题(共6题;共7分)11.化简的结果是________.12.如图,△ABC的两条高AD ,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是________.14.对于两个非零实数x,y,定义一种新的运算:.若,则的值是________.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E ,F分别在边AB ,BC上,三角形①的边GD在边AD上,则的值是________.16.如图1是小明制作的一副弓箭,点A ,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD 方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为________cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为________cm.三、解答题(共8题;共75分)17.计算:+-4sin45°+.18.解不等式组:19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20-60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC ,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B= ,求⊙O的半径.22.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C ,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA ,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F ,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
2018浙江丽水数学中考试题([卷])及答案解析
2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B.1 C.D. −12.计算结果正确的是()A. B.C.D.3.如图,∠B的同位角可以是()A. ∠1B.∠2 C. ∠3 D. ∠44.若分式的值为0,则x的值是()A. 3B.C. 3或D. 05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B. 长方体 C. 圆锥 D. 立方体B.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()C.A. B.C.D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10) C. (9,10) D. (10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B.C.D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱二、填空题(共6题;共7分)11.化简的结果是________.12.如图,△ABC的两条高AD , BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是________.14.对于两个非零实数x,y,定义一种新的运算:.若,则的值是________.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E , F分别在边AB , BC上,三角形①的边GD在边AD上,则的值是________.16.如图1是小明制作的一副弓箭,点A , D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD 方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为________cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为________cm.三、解答题(共8题;共75分)17.计算:+-4sin45°+.18.解不等式组:19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20-60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC , AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B= ,求⊙O的半径.22.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C , D在抛物线上.设A(t, 0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G , H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA , CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F , G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B.1 C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
浙江丽水数学中考试题及答案精编版
2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −12.计算结果正确的是()A. B. C. D.3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠44.若分式的值为0,则x的值是()A. 3B.C. 3或D. 05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B. 长方体C. 圆锥D. 立方体B.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()C.A. B. C. D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10)C. (9,10)D. (10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱11.化简的结果是________.12.如图,△ABC的两条高AD ,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是________.14.对于两个非零实数x,y,定义一种新的运算:.若,则的值是________.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E ,F分别在边AB ,BC上,三角形①的边GD在边AD上,则的值是________.16.如图1是小明制作的一副弓箭,点A ,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为________cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为________cm.17.计算:+-4sin45°+.18.解不等式组:19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20-60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC ,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B= ,求⊙O的半径.22.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B 的左边),点C ,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA ,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F ,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −12.计算结果正确的是()A. B. C. D.3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠44.若分式的值为0,则x的值是()A. 3B.C. 3或D. 05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B. 长方体C. 圆锥D. 立方体B.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()C.A. B. C. D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10)C. (9,10)D. (10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱11.化简的结果是________.12.如图,△ABC的两条高AD ,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是________.14.对于两个非零实数x,y,定义一种新的运算:.若,则的值是________.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E ,F分别在边AB ,BC上,三角形①的边GD在边AD上,则的值是________.16.如图1是小明制作的一副弓箭,点A ,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为________cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为________cm.17.计算:+-4sin45°+.18.解不等式组:19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20-60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC ,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B= ,求⊙O的半径.22.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B 的左边),点C ,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA ,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F ,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
【分析】这些都是有理数,有正数和负数,0时,比较有理数的大小,一般有两种方法:一是根据比较有理数大小的规则;二是根据有理数在数轴上的位置,数轴上右边的数总比左边的数大2.计算结果正确的是()A. B. C. D.【解析】【解答】解:,故答案为:B。
【分析】考查同底数幂的除法法则;= ,则可用同底数幂的除法法则计算即可。
3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠4【解析】【解答】解:直线DE和直线BC被直线AB所截成的∠B与∠4构成同位角,故答案为:D 【分析】考查同位角的定义;需要找一个角与∠B构造的形状类似于“F”4.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0,则,解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.5.一个几何体的三视图如图所示,该几何体是()A. 直三棱柱B. 长方体C. 圆锥D. 立方体【解析】【解答】主视图是三角形的几何图形可能是直三棱柱和圆锥,左视图是长方形的,也只有直三棱柱,故答案为:A。
【分析】考查由简单几何图形的三视图描述几何图形;根据三视图分别对应选项中,判断是否符号,并逐个排除.其中,主视图是三角形的可能是直三棱柱(直三棱柱有一个面是三角形),也可能是圆锥;也可以根据三视图直接得到几何图形的形状。
6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A. B. C. D.【解析】【解答】解:P(指针停止后落在黄色区域)= ,故答案为:B。
【分析】角度占360°的比例,即为指针转到该区域的概率。
7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10)C. (9,10)D. (10,10)【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为,即横坐标为9,∴点P(9,10),故答案为:C。
【分析】在直角坐标系中确定点的坐标,即要确定该点的横、纵坐标,或者求出该点到x轴,y轴的距离,再根据该点所在的象限,得到该点的坐标;根据图中所给的数据,可分别求出点P到x轴,y轴的距离,又点P在第一象限,即可得出。
8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.【解析】【解答】解:设AC=x,在Rt△ABC中,AB= .在Rt△ACD中,AD= ,则,故答案为:B。
【分析】求AB与AD的比,就不必就求AB和AD的具体的长度,不妨设AB=x,用含x的代数式分别表示出AB,AD的长,再求比。
9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°【解析】【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠ACE=90°,AC=CE,∴∠E=45°,∵∠ADC是△CDE的外角,∴∠ADC=∠E+∠DCE=45°+20°=65°,故答案为:C。
【分析】根据旋转的性质可知,旋转前后的两个图形是全等的,并且对应边的旋转角的度数是一样的。
则∠ACE=90°,AC=CE,∠DCE=∠ACB=20°,可求出∠E的度数,根据外角的性质可求得∠ADC的度数10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱【解析】【解答】解:A方式:当0<x<25时,y A=30;当x≥25时,图象经过点(25,30),(55,120),设,则解得,则y A=3x-45,则。
B方式:当0<x<50时,y B=50;当x≥50时,图象经过点(50,50),(55,65),设,则解得,则y B=3x-100,则。
C方式:y C=120.A. 每月上网时间不足25 h时,即x<25时,y A=30,y B=50,y C=120,因为30<50<120,所以选择A方式最省钱,判断正确,故本选项不符合题意;B. 每月上网费用为60元时,对于,则60=3x-45,解得x=35;对于,则60=3x-100,解得x= ,因为35< ,所以B方式可上网的时间比A方式多,判断正确,故本选项不符合题意;C.每月上网时间为35h时,与A同理,求得y A=3×35-45=60(元),y B=50(元),y C=120,选择B方式最省钱,判断正确,故本选项不符合题意;D.每月上网时间超过70h时,即当x≥70时,y A≥3×70-45=165(元),y B≥3×70-100=110(元),y C=120,选择B方式最省钱,故判断错误,故本选项符合题意;故答案为:D。