求极限的方法总结

合集下载

极限求法总结

极限求法总结

极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。

在求解极限的过程中,我们常常会使用一些常用的技巧和方法。

下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。

一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。

例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。

这种方法适用于函数在该点有定义且不产生未定义结果的情况。

二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。

主要有三种情况:有理化分母、有理化分子和有理化共轭。

1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。

例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。

接着我们可以直接代入计算。

2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。

例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。

接着我们可以直接代入计算。

3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。

例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

函数极限的求法及技巧总结

函数极限的求法及技巧总结

函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。

在计算函数极限时,需要掌握一些求法和技巧。

本篇文章将对此进行总结。

1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。

例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。

因此,f(x)在x = 1处的极限为6。

2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。

3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。

夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。

4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。

例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。

因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。

5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。

泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

求极限的21个方法总结

求极限的21个方法总结

求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。

2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。

3. 消去法:利用性质将某些项消去,使得表达式更容易计算。

4. 因式分解法:将极限表达式中的因式进行分解,简化计算。

5. 分数分解法:将极限表达式中的分数进行分解,简化计算。

6. 奇偶性性质:利用函数的奇偶性质,简化计算。

7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。

8. 幂函数性质:利用幂函数的性质,简化计算。

9. 对数函数性质:利用对数函数的性质,简化计算。

10. 指数函数性质:利用指数函数的性质,简化计算。

11. 三角函数性质:利用三角函数的性质,简化计算。

12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。

13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。

14. 夹逼定理:利用夹逼定理确定极限的值。

15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。

16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。

17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。

18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。

19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。

20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。

21. 几何法:利用几何图形的性质计算极限的值。

求极限方法的总结与归纳

求极限方法的总结与归纳

6.用罗必塔法则求极限
ln cos 2 x ln(1 sin 2 x) 例 9:求极限 lim x 0 x2
【说明】
0 或 型的极限,可通过罗必塔法则来求。 0
2 sin 2 x sin 2 x ln cos 2 x ln(1 sin 2 x) 1 sin 2 x lim cos 2 x 【解】 lim 2 x 0 x 0 2x x
求极限方法的总结与归纳
1.约去零因子求极限 例 1:求极限 lim
x 1
x4 1 x 1
【说明】 x 1 表明 x与1 无限接近,但 x 1 ,所以 x 1 这一零因子可以约去。 【解】 lim
( x 1)( x 1)( x 2 1) lim ( x 1)( x 2 1) 6 =4 x 1 x 1 x 1
x
0
例 4:求极限 lim
x 0
1 tan x 1 sin x x3
【解】 lim
x 0
1 tan x 1 sin x tan x sin x lim 3 3 x 0 x x 1 tan x 1 sin x
lim
x 0
1 tan x sin x 1 tan x sin x 1 lim lim 3 2 x0 4 x x3 1 tan x 1 sin x x0
n
)
x xn2 (Ⅱ)计算 lim n 1 . n xn
【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. 【详解】 (Ⅰ)因为 0 x1 ,则 0 x2 sin x1 1 . 可推得
1
0 xn 1 sin xn 1 , n 1, 2,

求极限的方法总结

求极限的方法总结

千里之行,始于足下。

求极限的方法总结求极限是微积分中重要的概念之一,常见于求导、定积分以及微分方程等内容中。

求解极限可以通过以下几种方法进行总结:1. 代入法:当函数在极限点处存在时,可以直接将极限点代入函数中计算。

这种方法简单直接,适合于函数在某一点处的极限。

2. 分解因式法:当函数存在不定形式时,可以尝试将函数进行分解因式,从而简化计算。

比如,对于分式函数,可以尝试分解分子和分母,消去公因式,然后再进行计算。

3. 幂指函数法:当函数的极限含有幂指函数时,可以尝试使用幂指函数的性质进行计算。

常用的方法包括使用指数函数的性质、对数函数的性质以及对数和指数函数的换底公式等。

4. 无穷小量法:当函数的极限存在无穷小量时,可以利用无穷小量与极限的定义进行计算。

常用的方法包括使用洛必达法则、夹逼定理、泰勒级数展开等。

其中洛必达法则适用于计算$\\frac{0}{0}$、$\\frac{\\infty}{\\infty}$、$0\\cdot \\infty$型的极限,夹逼定理适用于无穷小量和无穷大量的极限,泰勒级数展开适用于函数可展开成无穷级数的情况。

5. 变量替换法:当函数的极限存在特定变量时,可以进行变量替换,通过对新变量极限进行求解来简化计算。

常用的方法包括使用三角函数的三角恒等式、指数和对数函数的换底公式、幂函数的性质等。

第1页/共2页锲而不舍,金石可镂。

6. 递推法:当函数的极限存在递推关系时,可以通过递推关系逐步求解极限。

常用的方法包括使用数列极限的性质以及函数关系的性质。

总的来说,求解极限需要根据具体的函数形式和性质进行判断和选择合适的方法。

在实际计算中,也常常需要综合运用多种方法进行求解。

因此,对于学习者来说,熟练掌握不同的求极限方法,灵活运用,可以更加高效地解决复杂的极限计算问题。

求极限的方法总结

求极限的方法总结

千里之行,始于足下。

求极限的方法总结求极限是微积分的重要内容,也是解决数学问题中常用的方法之一。

下面是对求极限的方法进行总结:1. 代入法:当在不断插入一个趋于该极限的数值时,假如函数表达式有意义,且极限存在,则取其极限值作为函数的极限。

2. 四则运算法则:假如函数 f(x) 和 g(x) 在 x = a 处极限都存在,那么可以利用加减乘除等基本运算的极限法则求解。

3. 夹逼定理:当存在两个函数 f(x) ≤ g(x) ≤ h(x),且函数 f(x),h(x)的极限都为 L,那么 g(x)的极限也为 L。

4. 函数的连续性:假如函数 f(x) 在 x = a 处连续,那么函数 f(x) 在x = a 处也存在极限。

5. 分解因式法:可以通过将函数进行分解因式,使得函数变为两个函数之比,然后利用极限的分解限求解。

6. 无穷小与无穷大:假如 x → a 时,函数 f(x) 的极限为 0,那么称函数 f(x) 为无穷小。

假如 x → a 时,函数 f(x) 的极限为∞或 -∞,那么称函数 f(x) 为无穷大。

通过争辩函数的无穷小和无穷大性质,可以求解极限。

7. 等价无穷小法:假如函数 f(x) 和 g(x) 在 x = a 处极限都为 0,并且极限 lim(x→a) [f(x)/g(x)] 存在且为 L (L ≠ 0),那么可以使用“等价无穷小”来求解极限。

第1页/共2页锲而不舍,金石可镂。

8. 数列极限法则:假如数列 {an} 在 n →∞时有极限 L,则函数 f(x) = an 在 x →∞时的极限也为 L。

通过数列的极限法则,可以推导出函数的极限。

9. 泰勒开放:对于光滑函数,可以利用泰勒开放来近似求解极限。

10. 形式不确定型:对于一些形式不确定的极限,可以通过化简、将其转换成其他形式来求解。

11. 极限存在定理:对于一些特定的函数和性质,可以通过极限存在定理来判定函数的极限是否存在。

上述是常用的一些求解极限的方法总结,通过运用这些方法,可以更加精确地求解各种极限问题。

求极限的方法总结

求极限的方法总结

求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x 4−1x−1,本例中当x →1时,x −1→0,表明x 与1无限接近,但x ≠1,所以x −1这一因子可以约去。

二、 分子分母同除求极限求极限lim x→∞x 3−x 23x 3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

lim x→∞x 3−x 23x 3+1=lim x→∞1−1x 3+1x3=13三、 分子(母)有理化求极限例:求极限lim x→∞(√x 3+3−√x 2+1)分子或分母有理化求极限,是通过有理化化去无理式。

()()()()131313lim13lim22222222+++++++-+=+-++∞→+∞→x xx xx xxxx x132lim22=+++=+∞→x x x例:求极限limx→0√1+tanx−√1+sinxx 330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim30+++-→ =300sin tan lim sin 1tan 11limx x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。

四、 应用两个重要极限求极限两个重要的极限(1)limx→0sinx x=1(2)lim x→∞(1+1x)x=lim x→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。

例:求极限lim x→∞(x+1x−1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x ,最后凑指数部分。

lim x→∞(x +1x −1)x =lim x→∞(1+2x −1)x =lim x→∞[(1+1x −12)2x−1(1+2x −1)12]2=e 2五、 利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。

求极限的方法总结

求极限的方法总结

求极限的方法总结极限是数学中的一个重要概念,它可以描述函数或数列在某一点或某个无穷远的情况下的趋势或结果。

在求解极限时,有许多不同的方法可以使用,下面我将简要总结一下常见的求极限的方法。

一、替换法替换法是求函数极限的常用方法之一。

当我们在计算某一点的函数极限时,可以尝试将该点的数值代入函数中,然后计算函数的值。

如果当点趋近于某个有限值时函数的极限存在,那么我们可以得出该极限的值。

二、分子分母因式分解法当我们计算一个分式的极限时,可以尝试对分子和分母进行因式分解。

通过因式分解,我们可以减少计算的复杂性,进而更容易求得极限的结果。

三、洛必达法则洛必达法则是求解函数极限的重要工具。

这个法则的基本思想是将一个函数的极限转化为同一点处的两个函数的极限之比。

如果这两个函数的极限都存在并且是有限的,那么我们可以得出原函数极限的结果。

四、夹逼定理夹逼定理是求解数列极限的常用方法之一。

这个定理的主要思想是通过两个逼近数列来逼近待求数列,进而确定数列的极限值。

夹逼定理在实际计算中可以大大简化问题的求解。

五、泰勒展开式泰勒展开式是一种将函数展开为无穷项级数的方法。

通过将函数展开为级数,我们可以更加准确地计算函数的极限值。

泰勒展开式有时候可以帮助我们求解一些复杂的函数极限,特别是在计算高阶导数时。

六、变量代换法变量代换法是一种将复杂极限转化为简单极限的方法。

通过对函数中的自变量进行适当的替代,我们可以将复杂的极限转化为简单的极限。

这种方法可以大大减少计算的难度,提高求解极限问题的效率。

七、松弛变量法松弛变量法是一种求解含有未知数的极限问题的方法。

通过引入一个松弛变量,我们可以使得原来的极限问题变得简单,从而更容易求解。

这种方法在求解一些复杂的函数极限时特别有用。

总结:求解极限的方法有替换法、分子分母因式分解法、洛必达法则、夹逼定理、泰勒展开式、变量代换法和松弛变量法等。

每种方法都有其适用的范围和特点,我们可以根据具体问题的不同选择合适的方法。

求极限方法总结

求极限方法总结

求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。

3等差数列与等比数列和求极限:用求和公式。

4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。

6运用重要极限求极限(基本)。

7乘除法中用等价无穷小量求极限。

8函数在一点处连续时,函数的极限等于极限的函数。

9常数比0型求极限:先求倒数的极限。

10根号套根号型:约分,注意别约错了。

11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。

2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。

高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。

极限的求解方法总结

极限的求解方法总结

极限的求解方法总结极限是数学中的重要概念,用来描述函数在其中一点逼近一些特定值的过程。

求解极限的方法有很多种,常见的方法包括直接代入法、夹逼准则、洛必达法则、级数展开法等。

下面将对这些方法进行总结。

1. 直接代入法:对于一些简单的极限问题,可以直接通过将自变量的值代入函数中计算得到极限的值。

例如,对于极限lim(x->2) (3x-1),可以直接将x的值替换为2,计算出极限的值为52. 夹逼准则:夹逼准则是一种常用的证明极限存在的方法。

当一个函数f(x)在特定点x0的左右两侧有两个函数g(x)和h(x)夹住时,即g(x)<=f(x)<=h(x),并且lim(x->x0) g(x) = lim(x->x0) h(x) = L,那么就可以得出lim(x->x0) f(x) = L。

这个准则同时适用于极限为实数和无穷大的情况。

3. 洛必达法则:洛必达法则是一种求解极限的常用方法,特别适用于遇到0/0或∞/∞的不定型。

洛必达法则的核心思想是利用导数的性质来简化极限的计算。

如果一个极限可以用洛必达法则求解,首先计算函数f(x)和g(x)的导数,然后计算导数的极限lim(x->x0) f'(x) / g'(x),如果此极限存在,且不为无穷大,则lim(x->x0) f(x) / g(x) = lim(x->x0) f'(x) / g'(x)。

4.级数展开法:级数展开法是一种将复杂的函数用简单的级数来逼近的方法,常用于求解无穷小量的极限。

通过将函数展开成无穷级数的形式,并且当无穷级数收敛时,可以认为级数展开是原函数的近似解,在特定范围内与原函数相等。

通过计算级数的部分和求出极限的值。

以上方法并不是独立使用的,有些问题需要结合多种方法才能求解。

在实际应用中,根据具体的问题特点,选择合适的方法进行求解。

总之,求解极限是数学中的重要任务之一,需要掌握不同的求解方法,并根据具体情况选择合适的方法。

求极限方法总结

求极限方法总结

求极限方法总结求极限是微积分的重要内容之一,需要通过特定的方法来计算。

下面对常见的求极限方法进行总结。

1. 代入法:将极限中的变量直接代入函数中,求出函数在该点处的函数值,作为极限的近似值。

这种方法适用于简单的极限。

2. 分子有理化法:当极限的分子、分母含有根式时,可以通过有理化的方法,将根式分子分母有理化,然后进行化简,化简后求极限。

这种方法适用于分子分母含有根式的情况。

3. 夹逼法:当函数的极限不存在或难以直接求出时,可以通过构造一个上界函数和下界函数,使得它们的极限都存在且相等,且夹住函数的极限。

然后通过夹逼原理,求出该极限。

这种方法适用于极限存在且难以直接求出的情况。

4. L'Hopital法则:当极限为形式为“∞/∞”、“0/0”、“1^∞”、“0^0”等无穷型与无穷型的不定式时,可以通过求导的方法,将其转化为可直接计算的形式。

这种方法适用于无穷型与无穷型的不定式。

5. 推广L'Hopital法则:当极限为形式为“∞*0”、“∞-∞”等不定型不定式时,可以通过引入参数,将其转化为可直接计算的形式。

这种方法适用于不定型不定式。

6. 换元法:当极限为特殊函数形式时,可以通过换元的方法,将其转化为可直接计算的形式。

比如将极限中的自变量换成1/自变量或sin(1/自变量)等函数形式。

这种方法适用于特殊函数形式的极限。

7. Taylor展开法:当极限为函数值在某点的展开式时,可以通过泰勒展开的方法,将其转化为可直接计算的形式。

这种方法适用于函数值在某点的展开式。

8. 综合运用:对于复杂的极限问题,可以综合运用以上方法,逐步化简。

先运用代入法、分子有理化法,再运用夹逼法、L'Hopital法则等,逐步逼近极限的值。

在实际应用中,根据题目的要求和已知条件,选择适合的方法来求解极限。

对于复杂的问题,可以采用逐步化简的方法,一步步逼近极限的值。

同时,对于无法通过常见方法求解的特殊问题,还可以借助数值计算的方法,利用计算机进行近似计算。

求极限的方法总结

求极限的方法总结

极限是数学分析中的重要概念,也是微积分的基础。

求极限的方法有很多种,下面将对常用的几种方法进行总结和解析。

1. 直接代入法直接代入法是最基本的求极限方法,适用于函数单调、连续,且直接代入可知极限值的情况。

具体步骤如下:(1)将极限表达式中的变量替换为具体的数值。

(2)根据函数的定义和性质,计算替换后的表达式。

(3)得出极限值。

2. 因式分解法因式分解法适用于有理函数的极限求解,通过分解函数,消除分子、分母中的共同因子,简化极限表达式。

具体步骤如下:(1)对有理函数进行因式分解。

(2)对分解后的表达式进行约分,消除共同因子。

(3)根据约分后的表达式求极限。

3. 泰勒公式法泰勒公式法是利用泰勒公式将函数展开,近似表示函数在某一点附近的值,从而求解极限。

具体步骤如下:(1)确定函数在某一点附近的泰勒展开式。

(2)根据泰勒展开式求极限。

4. 洛必达法则洛必达法则(L’Hôpital’s Rule)适用于求解“0/0”或“∞/∞”形式的极限。

该法则通过对分子、分母同时求导,将极限问题转化为导数的极限问题。

具体步骤如下:(1)判断极限形式是否为“0/0”或“∞/∞”。

(2)对分子、分母分别求导。

(3)将求导后的表达式代入原极限表达式。

(4)求解新的极限表达式。

5. 夹逼定理夹逼定理(Squeeze Theorem)适用于求解形如“f(x) = (g(x))/(h(x))”,且当x趋向于某一点时,g(x)和h(x)分别趋向于a和b(a ≠ b)的极限。

具体步骤如下:(1)找到两个函数p(x)和q(x),使得p(x) ≤ f(x) ≤ q(x)。

(2)证明当x趋向于某一点时,p(x)和q(x)分别趋向于a和b。

(3)根据夹逼定理,得出f(x)趋向于a。

6. 有界函数法有界函数法适用于求解形如“f(x) = g(x)/h(x)”,且当x趋向于某一点时,g(x)趋向于0,h(x)趋向于无穷大的极限。

具体步骤如下:(1)证明g(x)在x趋向于某一点时趋向于0。

16种求极限的方法总结

16种求极限的方法总结

说起考研数学,你觉得最难的是哪个?据调查,数学中求极限的问题一直困扰着广大考生,2015年的考研马上就要到了,海文考研专门为大家梳理了16种求极限的方法,相信肯定对你有帮助。

解决极限的方法如下:1、等价无穷小的转化只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x 展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、无穷大比上无穷大面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

高数求极限的方法总结

高数求极限的方法总结

高数求极限的方法总结
求极限的方法总结如下:
1. 代入法:将极限中的变量代入函数中进行计算,看是否能得到确定的值。

2. 夹逼定理:当函数夹在两个其他已知函数之间时,如果这两个函数的极限相等,则函数的极限也相等。

3. 幂指函数的极限:根据函数的幂指形式,分别考虑底数和指数的极限。

4. 分子分母除以最高幂次项:将分子和分母都除以最高幂次项,可以简化计算,并得到函数的极限。

5. 极限的四则运算法则:对于四则运算中的极限,可以将它们分别计算求得极限,然后应用四则运算法则得到最终结果。

6. 奇偶函数的极限:奇函数的极限可表示为对称轴两侧的函数极限之和,偶函数的极限可表示为对称轴两侧的函数极限相等。

7. 自然对数的极限:自然对数的极限是1。

8. e的极限:e是一个常数,其极限是e。

9. 无穷小量的极限:无穷小量的极限为0。

10. 级数的极限:当级数的通项趋于0,且满足柯西准则时,级数收敛。

请注意,在应用这些方法时,需要注意条件的合理性和适用范围,并进行必要的证明。

归纳总结:求极限十法

归纳总结:求极限十法
要使xn有极限的充要条件使任给0存在自然数n使得当nn时对于
1、利用定义求极限。 2、利用柯西准则来求。 柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于 任意的自然数m有|xn-xm| 3、利用极限的运算性质及已知的极限来求。 如:lim(x+x^0.5)^0.5/(x+1)^0.5 =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5 =1. 4、利用不等式即:夹挤定理。 5、利用变量替换求极限。 例如lim (x^1/m-1)/(x^1/n-1) 可令x=y^mn 得:=n/m. 6、利用两个重要极限来求极限。 (1)lim sinx/x=1 x->0 (2)lim (1+1/n)^n=e n->∞ 7、利用单调有界必有极限来求。 8、利用函数连续得性质求极限。 9、用洛必达法则求,这是用得最多的。 10、用泰勒公式来求Fra bibliotek这用得也很经常。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求极限的几种常用方法
一、 约去零因子求极限
例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。

二、 分子分母同除求极限
求极限limx→∞x3-x23x3+1
∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13
三、 分子(母)有理化求极限
例:求极限limx→∞(x3+3-x2+1)
分子或分母有理化求极限,是通过有理化化去无理式。

()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x
x x x 0132lim 22=+++=+∞→x x x
例:求极限limx→01+tanx -1+sinxx3
30sin 1tan 1lim x x x x +-+→=()
x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=
41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。

四、 应用两个重要极限求极限
(2)limx→∞(1+1x)x=limx→0(1+x)1x=e
在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。

例:求极限limx→∞(x+1x-1)x
第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。

limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2
五、利用无穷小量的性质求极限
无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。

这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。

例:求limx→∞sinxx
因为sinx≤1, limx→∞1x=0,所以limx→∞sinxx=0
六、用等价无穷小量代换求极限
常见等价无穷小有:
当x→0时,x~sinx~tanx~arcsinx~arctanx~ln1+x~ex1,
1-cosx~12x2,(1+ax)b-1~abx
等价无穷小量代换,只能代换极限式中的因式。

此方法在各种求极限的方法中应作为首选。

例:limx→0xln(1+x)1-cosx=limx→0xx12x2=2
limx→0sinx-xtan3x=limx→0sinx-xx3=limx→0cosx-13x2=limx
→0-12x23x2=-16
七、利用函数的连续性求极限
这种方法适合求复合函数的极限。

如果u=g(x)在点x0处连续gx0=u0,而f(u)在点x0处连续,那么复合函数y=f(gx)在点x0处连续。

limx→x0f(gx)=fgx0=f(limx→x0g(x))
也就说,极限号limx→x0与f可以互换顺序。

例:求limx→∞ln⁡(1+1x)x
令y=lnu,u=(1+1x)x
因为lnu在点u0=limx→∞(1+1x)x=e处连续
所以limx→∞ln(1+1x)x=lnlimx→∞(1+1x)x=lne=1
八、用洛必达法则求极限
洛必达法则只能对00或∞∞型才可直接使用,其他待定型必须先化成这两种类型之一,然后再应用洛必达法则。

洛必达法则只说明当也存在limf'(x)g'(x)等于A时,那么limf(x)g(x)存在且等于A。

如果limf'(x)g'(x)不存在时,并不能断定limf(x)g(x)也不存在,这是不能用洛必达法则的,而须用其他方法讨论limf(x)g(x)。

例:求极限limx→0lncos2x-in(1+sin2x)x2
limx→0lncos2x-in(1+sin2x)x2=limx→0-2sin2xcos2x-sin2x1+sin 2x2x=limsin2x2x(x→0-2cos2x-11+sin2x)=3
九、用对数恒等式求limf(x)g(x)极限
limx→01+ln1+x2x=limx→0e2xln1+ln1+x=elimx→02ln1+xx=e2
对于1∞型未定义式,也可以用公式
limf(x)g(x)1∞=elimfx-1g(x)
因为
limf(x)g(x)=elimgxln⁡(1+fx-1)=elimfx-1g(x)
十、利用两个准则求极限
夹逼准则:若一正数N。

当n>N时,有
xn<yn<zn,limx→∞xn=,limx→∞zn=a,则有limx→∞yn=a.
利用夹逼准则求极限关键在于从yn的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{xn}和{zn},使得xn<yn<zn。

例xn=1n2+1+1n2+2+…+1n2+n
求xn的极限。

因为xn单调递减,所以存在最大项和最小项
xn≥1n2+n+1n2+n+…+1n2+n=nn2+n
xn≤1n2+1+1n2+1+…+1n2+1=nn2+1
nn2+n≤xn≤nn2+1
又因为limn→∞nn2+n=limn→∞nn2+1=1
所以limn→∞nn2+nxn=1
单调有界准则:单调有界数列必有极限,而且极限唯一。

利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。

例,证明下列极限存在,并求其极限。

y1=a ,
y2=a+a,
y3=a+a+a

yn=a+a+a+…a
证明:从这个数列看n y显然是增加的。

用归纳法可证。

又因为y2=a+y1,y3=a+y2……. yn=a+yn-1
所以得yn2=a+yn-1.因为前面证明yn是单调增加的。

两端除以yn得yn<ayn+1
因为yn≥y1=a则ayn≤a,从而ayn+1≤a+1
a≤yn≤a+1
即yn是有界的。

根据定理yn有极限且极限唯一。

令limn→∞yn=l
则limn→∞yn2=limn→∞yn-1+a
则l2=l+a,因为yn2>0n y>.解方程得l=1+4a+12
所以limn→∞yn=l=1+4a+12。

相关文档
最新文档