19 IR_IRMCK F171-灵活易用的电机控制芯片

合集下载

常用开关电源芯片大全

常用开关电源芯片大全

常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A高效率单片开关稳压器L4978高效率升压/降压式DC-DC电源转换器L597014.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM2577降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195632.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346437.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175440.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC3426两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344254.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX1643降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX1800同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX629升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445 100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB1600线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8 非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610负输出低压差线性稳压器MAX1735低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A 144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC6401基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293 151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗基准电压源MAX6120155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA5311开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN7601型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS01电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx型开关电源功率转换器KA5H0165R型开关电源功率转换器KA5Qxx型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L6590SWITCH TN系列电源功率转换器LNK304/LNK305/LNK306SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP1230系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB3759SwitchⅠ系列功率转换器TNY253、TNY254、TNY255SwitchⅡ系列功率转换器TNY264P~TNY268GSwitch(Ⅱ)系列离线式功率转换器TOP209~TOP227Switch-FX系列功率转换器TOP232/TOP233/TOP234Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV826场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP1653场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401x接口单节锂电池充电控制器BQ2402x同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN7564线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC4002锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400823.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。

IRMCK171

IRMCK171

PD-60361IRMCK171 High Performance Sensorless Motor Control ICFeaturesMCE TM (Flexible Motion Control Engine) - Dedicated computation engine for high efficiency sinusoidal sensorless motor controlBuilt-in hardware peripheral for single or two shunt current feedback reconstruction and analog circuitsSupports induction machine and both interior and surface permanent magnet motor sensorlesscontrolLoss minimization Space Vector PWMTwo-channel analog output (PWM)Embedded 8-bit high speed microcontroller (8051) for flexible I/O and man-machine controlJTAG programming port for emulation/debugger Serial communication interface (UART)I2C/SPI serial interfaceThree general purpose timers/countersTwo special timers: analog watchdog timer, periodic timer, capture timerInternal 32Kbyte OTP ROM5V tolerant I/O3.3V single supply Product SummaryMaximum clock input (f crystal) 60MHzMaximum Internal clock (SYSCLK) 128MHzMaximum 8051 clock (8051CLK) 32MHzSensorless control computation time (max.) 48 μsecMCE TM computation data range 16 bit signed8051 OTP Program ROM (min.) 20KB805/MCE Data RAM 2KBMCE Program RAM12KBPWM carrier frequency 20 bits/ SYSCLKA/D input channels 7A/D converter resolution 12 bitsA/D converter conversion speed 2 μsecAnalog output (PWM) resolution 8 bitsUART baud rate (typ) 57.6K bpsNumber of I/O (max) 10Package QFP48 Maximum 3.3V operating current60mADescriptionIRMCK171 is a high performance One Time Programmable ROM based motion control IC designed primarily for appliance applications. IRMCK171 is designed to achieve low cost yet high performance control solutions for advanced inverterized appliance motor control. IRMCK171 contains two computation engines. One is the Flexible Motion Control Engine (MCE TM) for sensorless control of permanent magnet motors or induction motors; the other is an 8-bit high-speed microcontroller (8051). Both computation engines are integrated into one monolithic chip. The MCE TM contains a collection of control elements implemented in a dedicated computation engine such as Vector rotator, Arc-Tangent, Multiply/Divide, Low loss SVPWM and Motor current sensing. The user can program a motion control algorithm by connecting Control elements using a graphic compiler. Key components of the complex sensorless control algorithms, such as the Angle Estimator, are provided as complete pre-defined control blocks. A unique analog/digital circuit and algorithm to fully support single shunt current reconstruction is also provided. The 8051 microcontroller performs 2-cycle instruction execution (16.5MIPS at 33MHz 8051CLK). The MCE and 8051 microcontroller communicate via dual port RAM for signal monitoring and command input. An advanced graphic compiler for the MCE TM is seamlessly integrated into the MATLAB/Simulink environment, while third party JTAG-based emulator tools are supported for 8051 software development including an OTP programmer. IRMCK171 comes in a 48 pin QFP package.1 Overview (5)2 Pinout (6)3 IRMCK171 Block Diagram and Main Functions (7)connection and Pin function (9)4 ApplicationInterface Group (10)Peripheral4.1 8051Peripheral Interface Group (11)4.2 MotionInterface Group (11)4.3 AnalogInterface Group (11)4.4 Power4.5 TestInterface Group (11)5 DCCharacteristics (12)Maximum Ratings (12)5.1 Absolute5.2 System Clock Frequency and Power Consumption (12)5.3 Digital I/O DC Characteristics (13)5.4 PLL and Oscillator DC characteristics (14)5.5 Analog I/O (IFB+,IFB-,IFBO, AIN5+,AIN5-,AIN5O) DC Characteristics (14)5.6 Under Voltage Lockout DC characteristics (15)DC characteristics (15)comparator5.7 Itrip5.8 CMEXT and AREF Characteristics (15)Characteristics (16)6 AC6.1 Digital PLL AC Characteristics (16)6.2 Analog to Digital Converter AC Characteristics (17)6.3 Op amp AC Characteristics (18)6.4 SYNC to SVPWM and A/D Conversion AC Timing (19)6.5 GATEKILLSVPWM AC Timing (20)to6.6 ItripAC Timing (20)6.7 InterruptAC Timing (21)6.8 I2C AC Timing (21)6.9 SPIAC Timing (22)AC Timing (24)6.10 UARTInput AC Timing (25)6.11 CAPTUREProgramming Timing (26)6.12 OTPAC Timing (27)6.13 JTAGStructure (28)7 I/OList (31)8 PinDimensions (33)9 PackageInformation (34)Marking10 PartTable 1 Absolute Maximum Ratings (12)Table 2 System Clock Frequency (12)Table 3 Digital I/O DC Characteristics (13)Table 4 PLL DC Characteristics (14)Table 5 Analog I/O DC Characteristics (14)Table 6 UVcc DC Characteristics (15)Table 7 Itrip DC Characteristics (15)Table 8 CMEXT and AREF DC Characteristics (15)Table 9 PLL AC Characteristics (16)Table 10 A/D Converter AC Characteristics (17)Table 11 Current Sensing OP Amp AC Characteristics (18)Table 12 SYNC AC Characteristics (19)Table 13 GATEKILL to SVPWM AC Timing (20)Table 14 Itrip AC Timing (20)Table 15 Interrupt AC Timing (21)Table 16 I2C AC Timing (21)Table 17 SPI Write AC Timing (22)Table 18 SPI Read AC Timing (23)Table 19 UART AC Timing (24)Table 20 CAPTURE AC Timing (25)Table 21 OTP Programming Timing (26)Table 22 JTAG AC Timing (27)Table 23 Pin List (32)Figure 1 Typical Application Block Diagram Using IRMCK171 (5)Figure 2 Pinout of IRMCK171 (6)Figure 3 Crystal circuit example (16)Figure 4 Voltage droop and S/H hold time (17)Figure 5 A capacitor of 47pF is recommended at the output pin of all op amps (18)Figure 6 SYNC timing (19)Figure 7 Gatekill timing (20)Figure 8 ITRIP timing (20)Figure 9 Interrupt timing (21)Figure 10 I2C Timing (21)Figure 11 SPI write timing (22)Figure 12 SPI read timing (23)Figure 13 UART timing (24)Figure 14 CAPTURE timing (25)Figure 15 OTP programming timing (26)Figure 16 JTAG timing (27)Figure 17 PWMUL/PWMUH/PWMVL/PWMVH/PWMWL/PWMWH output (28)Figure 18 All digital I/O except motor PWM output (28)Figure 19 RESET, GATEKILL I/O (29)Figure 20 Analog input (29)Figure 21 Analog operational amplifier output and AREF I/O structure (29)Figure 22 VPP programming pin I/O structure (30)Figure 23 VSS and AVSS pin structure (30)Figure 24 VDD1 and VDDCAP pin structure (30)Figure 25 XTAL0/XTAL1 pins structure (30)1 OverviewIRMCK171 is a new generation International Rectifier integrated circuit device primarily designed as a one-chip solution for complete inverter controlled appliance motor control applications. Unlike a traditional microcontroller or DSP, the IRMCK171 provides a built-in closed loop sensorless control algorithm using the unique flexible Motion Control Engine (MCE TM) for permanent magnet motors as well as induction motors. The MCE TM consists of a collection of control elements, motion peripherals, a dedicated motion control sequencer and dual port RAM to map internal signal nodes. IRMCK171 also employs a unique single shunt current reconstruction circuit in addition to two leg shunt current sensing circuit to eliminate additional analog/digital circuitry and enables a direct shunt resistor interface to the IC. Motion control programming is achieved using a dedicated graphical compiler integrated into the MATLAB/Simulink TM development environment. Sequencing, user interface, host communication, and upper layer control tasks can be implemented in the 8051 high-speed 8-bit microcontroller. The 8051 microcontroller is equipped with a JTAG port to facilitate emulation and debugging tools. Figure 1 shows a typical application schematic using the IRMCK171.IRMCK171 contains 32K bytes of OTP program ROM, The IRMCF171 contains 64K bytes of Flash RAM and intended for development purposes only while the IRMCK171 is intended for volume production. Both the development and ROM versions come in a 48-pin QFP package with identical pin configuration tofacilitate PC board layout and transition to mass production.Figure 1 Typical Application Block Diagram Using IRMCK1712 PinoutPin out shown is based on QFP48 pin package.XTAL0XTAL1P 1.1/R X DP 1.2/T X DVDD1VSS VDDCAP P1.3/SYNC/SCKP1.4/CAPP3.2/INT0VSS VDDCAP AVSS A R E FP 2.7/A O P W M 1P W M U H PWMVH PWMWH PWMUL PWMVL PWMWL G A T E K I L LI F B OI F B +I F B -R E S E TV P P /P 1.5T C KT D I /P 5.1T D O /P 5.3T M S /P 5.2SDA/CS0SCL/SO-SI A I N 2C M E X TP2.0/NMI P1.0/T2P 3.0/C S 1A I N 3A I N 4VDD1A I N 1A I N 0AIN5+A I N 5-AIN5O P 3.3/I N T 1P3.1/AOPWM2Figure 2 Pinout of IRMCK1713 IRMCK171 Block Diagram and Main FunctionsIRMCK171 block diagram is shown in Figure 3.analoginputFigure 3 IRMCK171 Block DiagramIRMCK171 contains the following functions for sensorless AC motor control applications:•Motion Control Engine (MCE TM)o Sensorless FOC (complete sensorless field oriented control)o Proportional plus Integral blocko Low pass filtero Differentiator and lag (high pass filter)o Rampo Limito Angle estimate (sensorless control)o Inverse Clark transformationo Vector rotatoro Bit latcho Peak detecto Transitiono Multiply-divide (signed and unsigned)IRMCK171 Array o Divide (signed and unsigned)o Addero Subtractoro Comparatoro Countero Accumulatoro Switcho Shifto ATAN (arc tangent)o Function block (any curve fitting, nonlinear function)o16 bit wide Logic operations (AND, OR, XOR, NOT, NEGATE)o MCE TM program memory and dual port RAM (max 12K+2k byte)o MCE TM control sequencer• 8051 microcontrollero Two 16 bit timer/counterso One 16 bit periodic timero One 16 bit watchdog timero One 16 bit capture timero Up to 24 discrete I/Oso Six-channel 12 bit A/DBuffered (current sensing) one channel (0 – 1.2V input)Unbuffered seven channels (0 – 1.2V input)o JTAG port (4 pins)o Up to three channels of analog output (8 bit PWM)o UARTo I2C/SPI porto32K byte OTP program ROMo2K byte data RAMIRMCK171 4 Application connection and Pin functionSystemClockFigure 4 IRMCK171 Connection DiagramIRMCK171 Array4.1 8051 Peripheral Interface GroupUART InterfaceP1.2/TXD Output,Transmit data from IRMCK171P1.1/RXD Input, Receive data to IRMCK171Discrete I/O InterfaceP1.0/T2 Input/output port 1.0, can be configured as Timer/Counter 2 inputP1.1/RXD Input/output port 1.1, can be configured as RXD inputP1.2/TXD Input/output port 1.2, can be configured as TXD outputP1.3/SYNC/SCK Input/output port 1.3, can be configured as SYNC output or SPI clock output,needs to be pulled up to VDD1 in order to boot from I2C EEPROM P1.4/CAP Input/output port 1.4, can be configured as Capture Timer inputP1.5/VPP Input/output port 1.5, or OTP programming voltageP2.0/NMI Input/output port 2.0, can be configured as non-maskable interrupt inputP3.2/INT0 Input/output port 3.2, can be configured as INT0 inputP2.7/AOPWM1 Input/output port 2.7, can be configured as AOPWM1 outputP3.0/INT2/CS1 Input/output port 3.0, can be configured as INT2 input or SPI chip select 1P3.1/AOPWM2 Input/output port 3.1, can be configured as AOPWM2 outputP3.3/INT1 Input/output port 3.3, can be configured as INT1 inputP5.1/TDI Input port 5.1, configured as JTAG port by defaultP5.2/TMS Input port 5.2, configured as JTAG port by defaultAnalog Output InterfaceP2.7/AOPWM1 Input/output, can be configured as 8-bit PWM output 1 with programmablecarrier frequencyP3.1/AOPWM2 Input/output, can be configured as 8-bit PWM output 2 with programmablecarrier frequencyCrystal InterfaceXTAL0 Input, connected to crystalXTAL1 Output, connected to crystalReset InterfaceRESET Input and Output, system reset, doesn’t require external RC time constantI2C InterfaceI2C clock output, or SPI dataSCL/SO-SI Output,I2C Data line or SPI chip select 0SDA/CS0 Input/output,I2C/SPI InterfaceSCL/SO-SI Output,I2C clock output, or SPI dataSDA/CS0 Input/output,I2C data line or SPI chip select 0P1.3/SYNC/SCK Input/output port 1.3, can be configured as SYNC output or SPI clock output,needs to be pulled up to VDD1 in order to boot from I2C EEPROMP3.0/INT2/CS1 Input/output port 3.0, can be configured as INT2 input or SPI chip select 14.2 Motion Peripheral Interface GroupPWMPWMUH Output, PWM phase U high side gate signal, internally pulled down by 58kΩPWMUL Output, PWM phase U low side gate signal, internally pulled down by 58kΩPWMVH Output, PWM phase V high side gate signal, internally pulled down by 58kΩPWMVL Output, PWM phase V low side gate signal, internally pulled down by 58kΩPWMWH Output, PWM phase W high side gate signal, internally pulled down by 58kΩPWMWL Output, PWM phase W low side gate signal, internally pulled down by 58kΩFaultGATEKILL Input, upon assertion, this negates all six PWM signals, active low, internallypulled up by 70kΩ4.3 Analog Interface GroupAVSS Analog power return, (analog internal 1.8V power is shared with VDDCAP) AREF 0.6V buffered outputCMEXT Unbuffered 0.6V, input to the AREF buffer, capacitor needs to be connected.IFB+ Input, Operational amplifier positive input for shunt resistor current sensing IFB- Input, Operational amplifier negative input for shunt resistor current sensing IFBO Output, Operational amplifier output for shunt resistor current sensingAIN0 Input, Analog input channel 0 (0 – 1.2V), typically configured for DC bus voltage inputAIN1 Input, Analog input channel 1 (0 – 1.2V), needs to be pulled down to AVSS ifunusedAIN2 Input, Analog input channel 2 (0 – 1.2V), needs to be pulled down to AVSS ifunusedAIN3 Input, Analog input channel 3 (0 – 1.2V), needs to be pulled down to AVSS ifunusedAIN4 Input, Analog input channel 4 (0 – 1.2V), needs to be pulled down to AVSS ifunusedAIN5+ Input, Operational amplifier positive input for shunt resistor current sensing AIN5- Input, Operational amplifier negative input for shunt resistor current sensing AIN5O Output, Operational amplifier output for AIN5 output, there is a singlesample/hold circuit on the output4.4 Power Interface GroupVDD1 Digital power (3.3V)VDDCAP Internal 1.8V output, requires capacitors to the pin. Shared with analog powerpad internallycommonVSS Digital4.5 Test Interface GroupP5.2/TMS JTAG test mode input or input/output digital portTDO JTAG data outputP5.1/TDI JTAG data input, or input/output digital portTCK JTAG test clock5 DC Characteristics5.1 Absolute Maximum RatingsSymbol Parameter Min TypMax Condition V DD1Supply Voltage -0.3 V - 3.6 V Respect to VSSV IA Analog Input Voltage -0.3 V - 1.98 V Respect to AVSSV ID Digital Input Voltage -0.3 V - 6.0 V Respect to VSS-0.3V - 7.0V Respect to VSSProgrammingV PP OTPvoltage˚C˚C - 85Temperature -40T A Ambient˚C˚C - 150Temperature -65T S StorageTable 1 Absolute Maximum RatingsCaution: Stresses beyond those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and function of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied.5.2 System Clock Frequency and Power ConsumptionC AREF= 1nF, C MEXT= 100nF. VDD1=3.3V, Unless specified, Ta = 25˚C.Max UnitTypSymbol Parameter MinClock 32 - 128 MHzSYSCLK Systemconsumption 1601) 200 mW P D PowerTable 2 System Clock FrequencyNote 1) The value is based on the condition of MCE clock=126MHz, 8051 clock 31.5MHz with a actualmotor running by a typical MCE application program and 8051 code.5.3 Digital I/O DC CharacteristicsSymbol Parameter Min Typ Max Condition V DD1 Supply Voltage 3.0 V 3.3 V 3.6 V Recommended V PP OTP Programming voltage6.70V 6.75V 6.80V RecommendedV IL Input Low Voltage -0.3 V - 0.8 V Recommended V IH Input High Voltage 2.0 V 3.6 V RecommendedC IN Input capacitance - 3.6 pF - (1)I L Input leakage current ±10 nA ±1 μA V O = 3.3 V or 0 V I OL1(2) Low level output current 8.9 mA 13.2 mA 15.2 mA V OL = 0.4 V(1)I OH1(2) High level output current 12.4 mA 24.8 mA 38 mA V OH = 2.4 V(1)I OL2(3) Low level output current 17.9 mA 26.3 mA 33.4 mA V OL = 0.4 V(1)I OH2(3) High level output current 24.6 mA 49.5 mA 81 mA V OH = 2.4 V(1)Table 3 Digital I/O DC CharacteristicsNote:(1) Data guaranteed by design.(2) Applied to SCL/SO-SI, SDA/CS0 pins.(3) Applied to all digital I/O pins except SCL/SO-SI and SDA/CS0 pins.5.4 PLL and Oscillator DC characteristicsC AREF = 1nF, C MEXT = 100nF. VDD1=3.3V, Unless specified, Ta = 25˚C. Symbol Parameter Min Typ Max Condition V IL OSC Oscillator (XTAL0,1) Input Low Voltage 0 - 0.2* V DDCAP V DDCAP = voltage atVDDCAP pinV IH OSC Oscillator (XTAL0,1) Input High Voltage 0.8* V DDCAP - V DDCAP V DDCAP = voltage atVDDCAP pinTable 4 PLL DC Characteristics5.5 Analog I/O (IFB+,IFB-,IFBO, AIN5+,AIN5-,AIN5O) DC CharacteristicsC AREF = 1nF, C MEXT = 100nF. VDD1=3.3V, Unless specified, Ta = 25˚C.Symbol Parameter Min Typ Max Condition V OFFSET Input Offset Voltage - - 26 mV V I Input Voltage Range 0 V 1.2 V Recommended V OUTSW OP amp output operating range 50 mV (1)- 1.2 VC IN Input capacitance - 3.6 pF - (1)R FDBK OP amp feedback resistor 5 k Ω - 20 k ΩRequested between IFBO andIFB- OP GAINCL Operating Close loop Gain80 db - - (1)CMRR Common Mode Rejection Ratio- 80 db - (1)I SRC Op amp output source current - 1 mA - V OUT = 0.6 V(1)I SNK Op amp output sink current - 100 μA - V OUT = 0.6 V(1)Table 5 Analog I/O DC CharacteristicsNote:(1) Data guaranteed by design.5.6 Under Voltage Lockout DC characteristicsUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max ConditionUV CC+ UVcc positive going Threshold2.78 V3.04 V 3.23 V (1)UV CC- UVcc negative going Threshold2.78 V 2.97 V3.23 VUV CC H UVcc Hysteresys - 73 mV - (1)Table 6 UVcc DC CharacteristicsNote:(1) Data guaranteed by design.5.7 Itrip comparator DC characteristicsUnless specified, VDD1=3.3V, Ta = 25˚C.Symbol Parameter Min Typ Max Condition Itrip + Itrip positive going Threshold- 1.22V -Itrip - Itrip negative going Threshold- 1.10V -ItripH Itrip Hysteresys - 120mV -Table 7 Itrip DC Characteristics5.8 CMEXT and AREF CharacteristicsC AREF = 1nF, C MEXT = 100nF. Unless specified, Ta = 25˚C. Symbol Parameter Min Typ Max Condition V CM CMEXT voltage 495 mV 600 mV 700 mV VDD1 = 3.3 V (1) V AREF Buffer Output Voltage 495 mV 600 mV 700 mV VDD1 = 3.3 VΔV oLoad regulation (V DC -0.6) - 1 mV - (1)PSRR Power Supply Rejection Ratio- 75 db - (1)Table 8 CMEXT and AREF DC CharacteristicsNote:(1) Data guaranteed by design.6 AC Characteristics6.1 Digital PLL AC CharacteristicsSymbol Parameter Min Typ MaxConditionF CLKIN Crystalinputfrequency 3.2 MHz 4 MHz 60 MHz (1)(see figure below)F PLL Internalclockfrequency32 MHz 50 MHz 128 MHz (1)F LWPW Sleep mode outputfrequencyF CLKIN ÷ 256 - - (1) J S Short time jitter - 200 psec - (1) D Dutycycle - 50% - (1) T LOCK PLL lock time - - 500 μsec (1)Table 9 PLL AC CharacteristicsNote:(1) Data guaranteed by design.R2C1Figure 3 Crystal circuit example6.2 Analog to Digital Converter AC CharacteristicsUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max ConditionT CONV Conversion time - - 2.05 μsec (1)T HOLD Sample/Hold maximum hold time - - 10 μsec Voltage droop ≤ 15LSB(see figure below)Table 10 A/D Converter AC CharacteristicsNote:(1) Data guaranteed by design.T HOLDFigure 4 Voltage droop and S/H hold time6.3 Op amp AC CharacteristicsUnless specified, Ta = 25˚C.Symbol Parameter Min Typ MaxCondition OP SR OP amp slew rate - 10 V/μsec - VDD1 = 3.3 V, CL =33 pF (1) OP IMP OP input impedance - 108 Ω - (1) (2)T SET Settling time - 400 ns - VDD1 = 3.3 V, CL =33 pF (1)Table 11 Current Sensing OP Amp AC CharacteristicsNote:(1) Data guaranteed by design.(2) To guarantee stability of the operational amplifier, it is recommended to load the output pin by a capacitor of 47pF, see Figure 5. Here only the single shunt current amplifier is show but all op amp outputs should be loaded with this capacitor.Figure 5 A capacitor of 47pF is recommended at the output pin of all op amps.6.4 SYNC to SVPWM and A/D Conversion AC TimingSYNCIU,IV,IWAINxFigure 6 SYNC timingUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max Unitt wSYNC SYNC pulse width - 32 - SYSCLKt dSYNC1SYNC to currentfeedback conversiontime- - 100 SYSCLKt dSYNC2SYNC to AIN0-5 analoginput conversion time - - 200 SYSCLK(1)t dSYNC3SYNC to PWM outputdelay time- - 2 SYSCLKTable 12 SYNC AC CharacteristicsNote:(1) AIN1 through AIN5 channels are converted once every 6 SYNC events6.5 GATEKILL to SVPWM AC TimingUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max Unitt wGK GATEKILL pulse width 32 - - SYSCLK- - 100 SYSCLK t dGK GATEKILL to PWMoutput delayTable 13 GATEKILL to SVPWM AC Timing6.6 Itrip AC TimingUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max Unit t ITRIP Itrip propagation delay - - 100(sysclk)+1.0usec SYSCLK+usecTable 14 Itrip AC TimingIRMCK1716.7 Interrupt AC TimingFigure 9 Interrupt timingUnless specified, Ta = 25˚C. Symbol Parameter Min Typ Max Unitt wINT INT0, INT1 InterruptAssertion Time4 - - SYSCLK t dINT INT0, INT1 latency--4SYSCLKTable 15 Interrupt AC Timing6.8 I 2C AC TimingFigure 10 I C TimingUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max UnitT I2CLK I 2C clock period 10 - 8192 SYSCLKt I2ST1 I 2C SDA start time 0.25 - - T I2CLKt I2ST2 I 2C SCL start time 0.25 - - T I2CLKt I2WSETUP I 2C write setup time 0.25 - - T I2CLKt I2WHOLD I 2C write hold time 0.25 - - T I2CLKt I2RSETUP I 2C read setup time I 2C filter time (1)- - SYSCLKt I2RHOLD I 2C read hold time 1 - - SYSCLKTable 16 I 2C AC TimingNote:(1) I 2C read setup time is determined by the programmable filter time applied to I 2C communication.6.9 SPI AC TimingSPI Write AC timingFigure 11 SPI write timingUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max Unit T SPICLK SPI clock period 4 - - SYSCLK t SPICLKHT SPI clock high time - 1/2 - T SPICLKt SPICLKLT SPI clock low time - 1/2 - T SPICLK t CSDELAY CS to data delay time - - 10 nsec t WRDELAY CLK falling edge to data delay time- - 10 nsect CSHIGH CS high time between two consecutive byte transfer1 - - T SPICLKt CSHOLD CS hold time - 1 - T SPICLKTable 17 SPI Write AC TimingSPI Read AC TimingFigure 12 SPI read timingUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max Unit T SPICLK SPI clock period 4 - - SYSCLK t SPICLKHT SPI clock high time - 1/2 - T SPICLK t SPICLKLT SPI clock low time - 1/2 - T SPICLK t CSRD CS to data delay time - - 10 nsect RDSU SPI read data setup time 10 - - nsec t RDHOLD SPI read data hold time 10 - - nsec t CSHIGH CS high time between two consecutive byte transfer1 - - T SPICLKt CSHOLD CS hold time - 1 - T SPICLKTable 18 SPI Read AC Timing6.10 UART AC TimingUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max Unit T BAUD Baud Rate Period - 57600 - bit/sec- 1/16 - T BAUDT UARTFIL UART sampling filterperiod (1)Table 19 UART AC TimingNote:(1) Each bit including start and stop bit is sampled three times at center of a bit at an interval of 1/16T BAUD. If three sampled values do not agree, then UART noise error is generated.6.11 CAPTURE Input AC TimingFigure 14 CAPTURE timingUnless specified, Ta = 25˚C.Symbol Parameter Min Typ Max Unit T CAPCLK CAPTURE input period 8 - - SYSCLKt CAPHIGH CAPTURE input high time4 - - SYSCLKt CAPLOW CAPTURE input low time 4 - - SYSCLK t CRDELAY CAPTURE falling edge tocapture register latch time - - 4 SYSCLKt CLDELAY CAPTURE rising edge to capture register latch time - - 4 SYSCLKt INTDELAYCAPTURE input interrupt latency time- - 4 SYSCLKTable 20 CAPTURE AC Timing6.12 OTP Programming TimingTCKVPPFigure 15 OTP programming timingUnless specified, Ta = 25˚C.Symbol Parameter MinTypMaxUnit T VPS VPP Setup Time 10 - - nsecT VPH VPP Hold Time 15 - - nsecTable 21 OTP Programming Timing6.13 JTAG AC TimingUnless specified, Ta = 25˚C.Symbol Parameter MinUnitMaxTypT JCLK TCKPeriod - - 50 MHzt JHIGH TCK High Period 10 - - nsect JLOW TCK Low Period 10 - - nsec0 - 5 nsect CO TCK to TDO propagation delaytimet JSETUP TDI/TMS setup time 4 - - nsect JHOLD TDI/TMS hold time 0 - - nsecTable 22 JTAG AC Timing7 I/O StructureThe following figure shows the motor PWM output (PWMUH/PWMUL/PWMVH/PWMVL/PWMWH/PWMWL)Figure 17 PWMUL/PWMUH/PWMVL/PWMVH/PWMWL/PWMWH outputThe following figure shows the digital I/O structure except the motor PWM output6.0V6.0VInternal digital circuit VSSFigure 18 All digital I/O except motor PWM outputIRMCK171The following figure shows RESET and GATEKILL I/O structure.Figure 19 RESET, GATEKILL I/OThe following figure shows the analog input structure.Figure 20 Analog inputThe following figure shows all analog operational amplifier output pins and AREF pin I/O structure.Figure 21 Analog operational amplifier output and AREF I/O structureIRMCK171The following figure shows the VPP pin structurePINVSS270Figure 22 VPP programming pin I/O structureFigure 23 VSS and AVSS pin structureThe following figure shows the VDD1 and VDDCAP pin structurePINVSSFigure 24 VDD1 and VDDCAP pin structureFigure 25 XTAL0/XTAL1 pins structure8 Pin ListPinNumber Pin Name Internal Pull-up /Pull-downPinType Description1 XTAL0 I Crystalinput2 XTAL1 O Crystaloutput3 P1.0/T2 I/O Discrete programmable I/O or Timer/Counter 2 input4 SCL/SO-SI I/O I2C clock output (open drain, need pull up) or SPI data5 SDA/CS0 I/O I2C data (open drain, need pull up) or SPI Chip Select6 P1.3/SYNC/SCK I/O Discrete programmable I/O or SYNC output or SPIclock output, needs to be pulled up to VDD1 in order toboot from I2C EEPROM7 P1.4/CAP I/O Discrete programmable I/O or Capture timer input8 VDD1 P 3.3V digital power9 VSS P Digitalcommon10 VDDCAP P Internal 1.8V output, Capacitor(s) to be connected11 P2.0/NMI I/O Discreteprogrammable I/O or Non-maskable Interruptinput12 P3.2/INT0 I/O Discrete programmable I/O or Interrupt 0 input13 P2.7/AOPWM1 I/O Discrete programmable I/O or PWM 1 digital output14 AIN0 I Analog input channel 0, 0-1.2V range, needs to bepulled down to AVSS if unused15 AIN1 I Analog input channel 1, 0-1.2V range, needs to bepulled down to AVSS if unused16 AIN2 I Analog input channel 2, 0-1.2V range, needs to bepulled down to AVSS if unused17 AIN3 I Analog input channel 3, 0-1.2V range, needs to bepulled down to AVSS if unused18 AIN4 I Analog input channel 4, 0-1.2V range, needs to bepulled down to AVSS if unused19 IFB- I Single shunt current sensing OP amp input (-)20 IFB+ I Single shunt current sensing OP amp input (+)21 IFBO O Single shunt current sensing OP amp output22 CMEXT O Unbuffered 0.6V output. Capacitor needs to beconnected.23 AREF O Analog reference voltage output (0.6V)24 AIN5- I Analog input channel 5, 0-1.2V range, needs to bepulled down to AVSS if unused25 AIN5+ I Analog input channel 5, 0-1.2V range, needs to bepulled down to AVSS if unused26 AIN5O O Analog output 5, 0-1.2V range,27 AVSS P Analogcommon28 VDDCAP P Internal 1.8V output, Capacitor(s) to be connected29 VDD1 P 3.3V digital power30 VSS P Digitalcommon31 P3.1/AOPWM2 I/O Discrete programmable I/O or PWM 2 digital output32 PWMWL 58kΩ Pulldown O PWM gate drive for phase W low side, configurableeither high or low true.。

DSC-CN5711

DSC-CN5711

最大结温…………………...150℃ 存储温度…………………....-65℃ to 150℃ 焊接温度…………………...260℃
超出以上所列的极限参数可能造成器件的永久损坏。以上给出的仅仅是极限范围,在这样的极限条件下 工作,器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

输入电源
3
4
8
VCC VCC
CE
5 LED LED 6
CN5711
可调 电阻
RISET2
RISET1
1 ISET
GND 2
图5 用可变电阻调整发光二极管的亮度

6
REV 1.1
如韵电子 CONSONANCE
稳定性
通常情况下,在ISET管脚没有外加电容时,在此管脚可以接一个阻值最大为30K的电阻。如果在ISET管 脚有外接的电容,则在此管脚允许外接的电阻值会减小。为了保证电流回路的稳定性,ISET管脚外接电 阻,电容所形成的极点应高于300KHz。假设ISET管脚外接电容C,用下面的公式可以计算ISET管脚允许 外接的最大电阻值:
REV 1.1
如韵电子 CONSONANCE
典型应用电路:
图 1 典型应用电路
订购信息:
器件型号 CN5711
封装形式 SOP8
包装 盘装,每盘 2500 只
工作环境温度 -40℃ 到 85℃
功能框图:
CE ISET

Sc hmitt
VCC
+
电压基准源
电流镜
GND
图 2 功能框图
2
LED
REV 1.1
如韵电子 CONSONANCE
管脚描述:
序号.

IR选型指南

IR选型指南

600V 应用系统,输出推/拉电流为 200/420mA
型号
电路
VCC 范围
IR2130 3-Phase Bridge Driver IR2131 3HI/3LO MOS Driver IR2132 3-Phase Bridge Driver 10-25V with UVLO IR2133 3-Phase Bridge Driver IR2135 3-Phase Bridge Driver
Ton/Toff
VIH/VIL
Vitrip+ UVCC/BS+/CCBS-
IR2136
IR21362
12-25V with UVLO
IR21363
IR21365
IR21366 IR21367
12-20V with UVLO
IR21368
10V/20V
___ __ 400ns/380ns 2.7V/1.7V 0.46V
电路
IC@25°C IC@100°C VCE(on)@25°C
Co-Pack 12A
6.8A
2.1V
Co-Pack 12A
6.8A
2.1V
Co-Pack 13A
7A
1.8V
Co-Pack 17A
9A
1.8V
Co-Pack 22A
12A
1.8V
Co-Pack 31A
15A
1.8V
Isolated TO-220 Full-Pak
Co-Pack 9A
6A
1.8V
Isolated TO-220 Full-Pak
Co-Pack 12A
Hale Waihona Puke 8A1.8VIsolated TO-220 Full-Pak

芯片pn551a参数

芯片pn551a参数

芯片pn551a参数全文共四篇示例,供读者参考第一篇示例:芯片PN551A是一款高性能、多功能的芯片,在电子产品中广泛应用。

它具有很多强大的参数和功能,下面我们来详细介绍一下它的各项参数。

芯片PN551A的尺寸为5mm x 5mm x 1mm,非常小巧,适合安装在各种小型电子产品中。

它采用了先进的工艺技术,具有高度集成的芯片结构,同时具备了高性能的处理能力和低功耗的特点。

芯片PN551A支持多种接口协议,包括I2C、SPI和UART等,使得它能够与不同类型的主控芯片进行通信,实现更加灵活的应用场景。

它还支持多种传输速率,可以满足不同产品的通信需求。

芯片PN551A具有丰富的功能模块,包括蓝牙、射频、NFC、USB等,涵盖了多种无线通信方式,能够实现蓝牙音频传输、数据传输、支付功能等多种应用场景。

它还具有强大的数据处理能力,能够实现实时的数据传输和处理,使产品性能更加优越。

芯片PN551A还具有丰富的安全功能,包括身份认证、加密解密、随机数生成等多种安全机制,可以保护产品的数据安全。

它还支持多种电源管理模式,能够实现低功耗的工作状态,延长产品的使用时间。

芯片PN551A是一款具有多项强大参数和功能的芯片,适用于各种小型电子产品中,能够满足不同需求的设计要求。

它具有高性能、低功耗、丰富的功能模块、多种通信接口、强大的数据处理能力和安全功能等特点,是一款非常值得推荐的芯片。

第二篇示例:芯片PN551A采用的是32位ARM Cortex-M4内核,运行主频可达到100MHz。

这样的高性能处理器可以保证芯片在进行复杂计算和数据处理时能够快速高效地完成任务。

低功耗设计也是芯片PN551A 的特点之一,可以在保证性能的同时延长电池续航时间,提高产品的使用体验。

芯片PN551A内置了多种接口和外设模块,例如USB接口、SPI 接口、I2C接口等,可以方便地与外部设备进行通信和数据交换。

芯片还内置了丰富的模拟和数字引脚,可以满足各种外部传感器和器件的连接需求。

介绍几种电机驱动芯片

介绍几种电机驱动芯片

介绍几种电机驱动芯片[作者:佚名转贴自:本站原创点击数:1493 更新时间:2005-4-22 文章录入:白桦]减小字体增大字体在自制机器人的时候,选择一个合适的驱动电路也是非常重要的,本文详细介绍了几种常用的机器人驱动芯片。

介绍几种机器人驱动芯片(注:本文已经投稿至《电子制作》)在自制机器人的时候,选择一个合适的驱动电路也是非常重要的。

最初,通常选用的驱动电路是由晶体管控制继电器来改变电机的转向和进退,这种方法目前仍然适用于大功率电机的驱动,但是对于中小功率的电机则极不经济,因为每个继电器要消耗20~100mA的电力。

当然,我们也可以使用组合三极管的方法,但是这种方法制作起来比较麻烦,电路比较复杂,因此,我在此向大家推荐的是采用集成电路的驱动方法:马达专用控制芯片LG9110芯片特点:低静态工作电流;宽电源电压范围:2.5V-12V ;每通道具有800mA 连续电流输出能力;较低的饱和压降;TTL/CMOS 输出电平兼容,可直接连CPU ;输出内置钳位二极管,适用于感性负载;控制和驱动集成于单片IC 之中;具备管脚高压保护功能;工作温度:0 ℃-80 ℃。

描述:LG9110 是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC 之中,使外围器件成本降低,整机可靠性提高。

该芯片有两个TTL/CMOS 兼容电平的输入,具有良好的抗干扰性;两个输出端能直接驱动电机的正反向运动,它具有较大的电流驱动能力,每通道能通过750 ~800mA 的持续电流,峰值电流能力可达1.5 ~2.0A ;同时它具有较低的输出饱和压降;内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器、直流电机、步进电机或开关功率管的使用上安全可靠。

LG9110 被广泛应用于玩具汽车电机驱动、步进电机驱动和开关功率管等电路上。

管脚定义:1 A 路输出管脚、2和3 电源电压、4 B 路输出管脚、5和8 地线、6 A 路输入管脚、7 B 路输入管脚2、恒压恒流桥式1A驱动芯片L293图2是其内部逻辑框图图3是其与51单片机连接的电路原理图L293是著名的SGS公司的产品,内部包含4通道逻辑驱动电路。

IRMCK201高性能数字运动控制芯片IRMCK201功能及其应用

IRMCK201高性能数字运动控制芯片IRMCK201功能及其应用

Data Sheet No. PD60224 Rev.BIRMCK201High Performance Configurable Digital ACServo Control ICFeatures∙ Complete closed loop current control(Synchronously Rotating Frame Field Orientation ∙ Versatile Space Vector PWM ∙ Direct interface to IR2175 current sensing high voltage IC∙ Direct Encoder interface with multiplexed/non- multiplexed Hall A/B/C signals ∙ Direct interface to IR213x 3-phase gate driver IC ∙ Closed loop velocity control ∙ Configurable architecture o Supports AC PM motor or Induction motoro Closed loop or open loop control ∙ Asynchronous serial communication interface (RS232C, RS422 ∙ Fast SPI interface∙ 4 channel 12-bit A/D interface with simultaneous sample/hold∙ 8-bit parallel bus interface for microcontrollerexpansion (supports most 8-bit microprocessors ∙ Integrated brake IGBT control ∙ServoDesignerTM(Configuration Tool availableProduct SummaryMax. Clock Input (Sysclk33.3 MHz Max. PLL clock for current feedback133.3 MHzClosed loop current control computation time 6 µsec max Closed loop current loop bandwidth (-3 dB5.5 kHzClosed loop velocity loop update rate 5 / 10kHz PWM carrier frequency83.3 kHz max PWM counter resolution12bit Current feedback temp drift/offset calibrated Max SPI clock8 MHz Package: QFP100DescriptionIRMCK201 is a complete AC servo motor control IC. It contains closed loop current control for sinusoidal AC current, and closed loop velocity control based on encoder position feedback interface. A standard communication port is provided for RS232C or RS422, in addition to a fast SPI communication interface. Unlike a traditional DSP or a microcontroller, the IRMCK201 does not require any programming effort to complete the complex control algorithm. It allows users to configurethe algorithm for specific application needs. Permanent magnet motor or AC induction motor are supported. IRMCK201 facilitates high performance servo design together with the IR2175 current sensing IC and IR213x high voltage 3-phase gate driver IC, which simplifies the hardware design while minimizing cost. For multi-axis applications, IRMCK201 can be usedOverviewIRMCK201IRMCK201 is a new International Rectifier integrated circuit device designed as a one-chip solution for completeclosed loop current control and velocity control for a high performance servo drive system. Unlike a traditional microcontroller or DSP, IRMCK201 does not require any programming to complete complex AC servo algorithm development. Combined with International Rectifier's high voltage gate drive and current sensing IC, the user can implement a complete AC servo control with minimum component count and virtually no design effort. Although IRMCK201 contains dedicated logic to perform closed loop control of AC current and velocity, it has a wide range of application coverage through its flexible configuration ability. The drive can be easily configured for induction machine closed loop vector control or permanent magnet motor servo drive. Rich motion peripherals, analog and digital I/O can also be configured. Host communication logic contains an asynchronous RS232C or RS422 communication interface, a fast slave SPIinterface and an 8-bit-wide Host Parallel Interface. All communication ports have the same access capability to the host register set. The user can write to and read from the predefined registers to configure and monitor the drive through these communication ports.IRMCK201 Main Features∙Complete closed loop current control based on Synchronously Rotating Frame Field Orientation∙Configurable update rate with PWM carrier frequency∙Configurable parameters (all PI controller gains, PI output limit range, current feedback scaling, encoder feedback scaling∙Configurable control structure for Induction machine or AC Permanent Magnet machine (Disable/enable slip gain∙Closed loop velocity control with configurable update rate∙Enable/disable velocity loop∙Selectable reference input for torque and speed input∙Analog reference input∙RS232C/RS422 reference input∙Dynamic braking control for excess DC bus voltage∙Cycle-by-cycle on/off Control for Brake IGBT∙DC bus voltage feedback∙Standard Encoder interface with Hall ABC support∙A/B quadrature signal input up to 1 MHz∙Choice of separate or multiplexed Hall A/B/C signal input∙Auto-initialization with Hall A/B/C plus Z pulse input∙Adaptable for any line count encoder from 200 PPR to 10,000 PPR∙1/T counter (1 MHz for low speed performance improvement∙Space Vector PWM with deadtime insertion∙IR2175 current sensing IC interface∙IR213x high voltage gate driver IC interface∙Low cost serial 12 bit A/D interface with multiplexer and sample/hold circuit∙4 channel analog output by PWM0-3.3 V, 120 kHz output∙EEPROM for startup initialization of internal data/parameters through host register interfaceAT24C01A, 128 x 8IRMCK201 ∙Versatile host communication interfaceRS232C or RS422 host interfaceFast SPI slave host interface with multi-drop capability Parallel Host interface (total 12 pins∙Multiplexed data/address busAddress EnableRD/WR∙Discrete I/OStart (InputStop (InputIFBCAL (InputFault Clear (InputFault (OutputSYNC (OutputPWM Active (Output∙LEDTwo-bit bi-colorIRMCK201Table of ContentsOverview ....................................................................................................................... ................................................... 2 IRMCK201 MainFeatures ............................................................................................................................................ 2 IRMCK201 BlockDiagrams ............................................................................................................................... .. (7)Basic BlockDiagram ................................................................................................................................. ................... 7 Detailed Block Diagram.................................................................................................................................. .. (8)Input/Output ofIRMCK201 ........................................................................................................................... ............... 9 Typical ApplicationConnections . ......................................................................................................................... . (13)IC Crystal ClockCircuitry ................................................................................................................................ .......... 14 Low Pass Filter....................................................................................................................................... ..................... 15 Implementing the Low Pass FilterShield ............................................................................................................... 16 Cp Rp and Cs Component Values (16)PLL Reset....................................................................................................................................... ............................. 16 DC Electrical Characteristics and OperatingConditions (17)Absolute Maximum Ratings................................................................................................................................... ..... 17 Recommended OperatingConditions ......................................................................................................................... 17 DCCharacteristics ....................................................................................................................... ............................... 18 Common Quiescent and LeakageCurrent .................................................................................................................. 18 Input Characteristics ñ Non Schmitt TriggerInputs ................................................................................................... 18 Input Characteristics ñ Schmitt TriggerInputs ........................................................................................................... 18 Output Characteristics . ..................................................................................................................... ........................... 18 Output CharacteristicsOSC2CLK ..............................................................................................................................19 Pin and I/O CharacteristicTable .................................................................................................................................20 PowerConsumption ......................................................................................................................... ........................... 22 AC Electrical Characteristics and OperatingConditions ......................................................................................... 23 System Level AC Characteristics........................................................................................................................ ........ 23 Sync Pulse to Sync Pulse Timing. (23)FAULT and REDLED Response toGATEKILL ................................................................................................... 24 Host Interface AC Characteristics............................................................................................................................... 25 SPITiming ................................................................................................................................... ........................... 25 Host ParallelTiming ................................................................................................................................... . (26)IRMCK201Host Parallel Read Cycle...................................................................................................................................... ... 26 Host Parallel Write Cycle...................................................................................................................................... .. 27 Discrete I/O ElectricalCharacteristics ........................................................................................................................28 Motion Peripheral Electrical Characteristics (29)PWM ElectricalCharacteristics ....................................................................................................................... ....... 29 IR2175Interface ................................................................................................................................ ..................... 29 Encoder Electrical Characteristics........................................................................................................................ (30)Analog To Digital Interface ElectricalCharacteristics ............................................................................................... 31 ADC Timing.................................................................................................................................... ........................ 31 PLL Interface ElectricalCharacteristics......................................................................................................................33Appendix A Host RegisterMap (34)Host Parallel Access.................................................................................................................................... ............ 34 SPI RegisterAccess ................................................................................................................................... ............. 34 RS-232 RegisterAccess . ................................................................................................................................. .. (34)Write RegisterDefinitions ............................................................................................................................. ............. 40 QuadratureDecode Register Group (Write Registers............................................................................................. 40 PwmConfig Register Group (WriteRegisters (41)CurrentFeedbackConfig Register Group (WriteRegisters .................................................................................... 42 SystemControl Register Group (WriteRegisters . (43)CurrentLoopConfig Register Group (WriteRegisters ........................................................................................... 44 VelocityControl Register Group (WriteRegisters . ................................................................................................ 45 FaultControl Register Group (WriteRegisters (47)SVPWMScaler Register Group (WriteRegisters (47)DiagnosticPwmControl Register Group (WriteRegisters ..................................................................................... 48 SystemConfig Register Group (WriteRegisters . (49)DirectHostVoltageControl Register Group (WriteRegisters ................................................................................ 49 32bitQuadDecode Register Group (Write Registers.............................................................................................. 50 EepromControl Registers (Write Registers (51)HallSensorEncoderInit (Write Registers ñ EEPROMonly ................................................................................... 52 Read RegisterDefinitions ............................................................................................................................. .............. 53 QuadratureDecodeStatus Register Group (Read Registers.................................................................................... 53 SystemStatus Register Group (Read Registers ......................................................................................................53 DcBusVoltage Register Group (ReadRegisters (54)FocDiagnosticData Register Group (ReadRegisters . ............................................................................................ 54 FaultStatus Register Group (Read Registers. (56)VelocityStatus Register Group (ReadRegisters (56)CurrentFeedbackOffset Register Group (ReadRegisters (57)32bitQuadDecodeStatus Register Group (ReadRegisters . .................................................................................... 57 EepromStatus Registers (ReadRegisters . (58)FOCDiagnosticDataSupplement Register Group (ReadRegisters ........................................................................ 59 Appendix BPackage ................................................................................................................................. ................ 60 Appendix CErrata . ................................................................................................................................... . (62)IRMCK201List of FiguresFigure 1. Basic Block Diagram ofIRMCK201 . (7)Figure 2. Detailed Block Diagram ofIRMCK201 ........................................................................................................ 8 Figure 3. Input/Output ofIRMCK201 ..........................................................................................................................9 Figure 4. Typical Connection ofIRMCK201 (13)Figure 5. Oscillator Circuit.................................................................................................................................... ...... 14 Figure 6. PLL Low Pass FilterShielding (15)Figure 7. System Level SYNC-to-SYNCTiming ....................................................................................................... 23 Figure 8. FAULT and REDLED Response toGATEKILL ........................................................................................ 24 Figure 9. SPI Timing ................................................................................................................................... ................ 25 Figure 10. Host Parallel Read Cycle Timing............................................................................................................... 26 Figure 11. Host Parallel Write Cycle Timing.............................................................................................................. 27 Figure 12. Discrete I/OTiming ...................................................................................................................................28 Figure 13. PWMTiming ................................................................................................................................... .......... 29 Figure 14. IR2175Interface ................................................................................................................................ ........ 29 Figure 15. EncoderTiming ................................................................................................................................... ...... 30 Figure 16. Top Level ADCTiming . (31)Figure 17. ADC SpecificTiming ................................................................................................................................32 List of TablesTable 1: Typical Values for the ClockCircuit ................................................................................................................ 14 Table 2: PLL Test Pin Assignments........................................................................................................................... ..... 15 Table 3: PLL Low Pass FilterValues (16)Table 4: Absolute MaximumRatings (17)Table 5: Recommended OperatingConditions (17)Table 6: DCCharacteristics ....................................................................................................................... ..................... 18 Table 7: Non Schmitt Trigger InputCharacteristics ....................................................................................................... 18 Table 8: Schmitt Trigger InputCharacteristics (18)Table 9: Output Characteristics........................................................................................................................ ............... 18 Table 10: Output CharacteristicsOSC2CLK (19)Table11 ........................................................................................................................................... ............................... 20 Table 12: Pin and I/OCharacteristics ....................................................................................................................... ...... 22 Table 13: IRMCK201 Power Consumption.. (22)Table 14: System Level SYNC-to-SYNCTiming .......................................................................................................... 24 Table 15: FAULT and REDLED Response toGATEKILL ........................................................................................... 24 Table 16: SPI Timing ................................................................................................................................... ................... 25 Table 17: Host Parallel Read Cycle Timing.................................................................................................................... 26 Table 18: Host Parallel Write CycleTiming . .................................................................................................................. 27 Table19: Discrete I/OTiming ................................................................................................................................... ..... 28 Table 20: PWMTiming ................................................................................................................................... ............... 29 Table 21: IR2175Interface ................................................................................................................................ ............. 29 Table 22: EncoderTiming ................................................................................................................................... ........... 30 Table 23: Top Level ADCTiming . .................................................................................................................................31 Table 24: ADC SpecificTiming ................................................................................................................................... .. 32 Table 25: PLL Electrical Characteristics.........................................................................................................................33 Table 26: QFP100Package . ............................................................................................................................... ............. 60 Table 27: QFP100Dimensions ........................................................................................................................... (61)IRMCK201IRMCK201 Block DiagramsBasic Block DiagramFigure 1 shows the basic block diagram of the IRMCK201 surrounded by various Accelerator ICs. Host communications are provided over SPI, RS-232C or Host parallelports. Two current sensing ICs (IR2175 and a three phase high voltage gate drive typically implement the high voltage / current interface between the IRMCK201 IC and motor.The IRMCK201 can operate in a ìst and-al oneîmode without the host controller. A serial EEPROM could beutilized to load motor-specific parameters into the IC.AC PowerFigure 1. Basic Block Diagram of IRMCK201IRMCK201Detailed Block DiagramFigure 2 shows a detailed block diagram or the IRMCK201. All logic and algorithms are pre-programmed, and the user does not need to make any effort to develop code, alleviating the tedious design process. If needed, the user can configure the drive to tailor the control per specific needs to meet the required specification. This configuration is easily done by accessing the host register set through the communication interface.Figure 2. Detailed Block Diagram of IRMCK201IRMCK201Input/Output of IRMCK201Figure 3 shows the interface signals divided into sub-groups. For detailed pin assignment, please refer to Table 12 in this data sheet.SYSCLK PWMUH PLL &System ClockRESETN XPDOSC1CLKOSC2CLKPLLTESTCHGO LPVSSPWMUL PWMVH PWMVL PWMWH PWMWL BRAKEGATEKILLPWM gate signalInterfaceHostCommunicationInterfaceSCLK MISO MOSI CSNHP_nOE HP_nWE HP_D[0-7]HP_A IFB0 IFB1ENA ENB ENZ HALLAHALLB HALLCIR2175 InterfaceEncoder InterfaceHP_nCS Discrete I/OTX RX BAUDSEL SYNCFAULT ADCLK ADOUT ADCOVST ADMUX0ADMUX1REDLEDA/D InterfaceLEDSerial EEPROMSCA SCLPID[0-1] POWER IDFigure 3. Input/Output of IRMCK201 IRMCK201IRMCK201IRMCK201IRMCK201Typical Application ConnectionsTypical application connection is shown in Figure 4. In order to complete a high performance servo drive control, all necessary components are shown in connection to IRMCK201.Optional Current sensingOptional Current sensingFigure 4. Typical Connection of IRMCK201IRMCK201IC Crystal Clock CircuitryThe clock input to the IC is a 33.33 MHz crystal oscillator. Two shunt capacitors and possibly a series resistor is required to terminate the crystal to the IC.The values of the R/C will vary based on actual PCB attributes, and some empirical analysis may be required to get the PLL to start oscillating. Once oscillating, verify that the signal waveforms at the OSC1CLK and OSC2CLK pins are sinusoidal rather than trapezoidal. Refer to Table 1 for suggested R/C values. Most low-cost crystals can be used in this application. An example is a Citizen Part number CM309B33.333MABJT available from Digi-Key under part number 300-4160-1-ND.Figure 5. Oscillator CircuitTable 1: Typical Values for the Clock CircuitPLL Clock CircuitryIRMCK201The IRMCK201 contains a PLL that creates a 2X and 4X clock from the input 33.33 MHz input clock pin. There are a number of pins on the IC allocated for factory testing purposes, which need to be left unconnected. Table 2 shows required PCB signal connections for these pins. Note that N/C is for factory use only.Low Pass FilterThe low pass filter for this PLL resides between the CHGO and LPVSS pins. Three passive components arerequired to implement this filter: Cp, Rp and Cs. Figure 6 shows how to place these components around the IC. A shield should be placed below Rp, Cp and Cs made out of copper etch.Shielded by LPVSSIRMCK201I m p l e m e n t i n g t h e L o w P a s s F i l t e r S h i e l dMake all connections between CHGO, Rp, Cp, Cs and LPVSS as short as possible. Create the underlining shield by ìcopper fillingî a larger area in the signal plane of the PCB. Connect this shield to the LPVSS pin of the IC. Do not connect this shield to signal ground (VSS.C p R p a n d C s C o m p o n e n t V a l u e sFor a typical FR4 PCB, the values of the passive components are shown in Table 3.PLL ResetTable 3: PLL Low Pass Filter ValuesThere are two reset pins on the IC, XPD and RESETN both low true. XPD holds the PLL circuitry in reset when low. Upon XPD going high, the PLL circuitry begins to lock onto the 33.33 MHz clock input. The PLL circuit may take up to 1 ms to become stable. RESETN asserted low holds the internal DSP logic in reset. Upon RESETN going high, the IC digital logic becomes active.RESETN should be held low during and at least 1 ms after XPD goes high false to hold the internal DSP logic in reset while the PLL becomes stable.IRMCK201DC Electrical Characteristics and Operating ConditionsAbsolute Maximum RatingsNote: VSS = 0 VoltPARAMETER SYMBOL LIMITSUNIT S NOTEPower SupplyVoltage VDDVSS-0.3 to 4.0 VVSS-0.3 to VDD+0.5V Non 5 VoltInput Voltage VITolerant Pins VSS-0.3 to 7V Only on 5 Volt Tolerant PinsOutput Voltage VO VSS-0.3 to VDD+0.5 V Output Currentper Pin IOUT +/- 30 mATemperatureTstg-65 to 150°CTable 4: Absolute Maximum RatingsRecommended Operating ConditionsNote: VSS = 0 Volt PARAMETER SYMBOL MIN TYP MAX UNITS NOTE Power SupplyVoltage VDD 3.0 3.3 3.6 V VDD V Non 5 Volt Tolerant Pins Input Voltage VI VSS - 5.5 V Pins Ambient TemperatureTa-40-85°CNote 1Table 5: Recommended Operating ConditionsNotes:1. The ambient temperature range is recommended for Tj = -40 to 125 °CDC CharacteristicsIRMCK201Common Quiescent and Leakage CurrentPARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VI=VDD or VSSQuiescentCurrentIDDSInput Leakage Current ILIVDD=MAXIOH=IOL=0Ta=Tj=85°CVDD=MAXVIH=VDDVIL=VSS- - 0.35 uA -1 - 1 uA Table 6: DC CharacteristicsInput Characteristics – Non Schmitt Trigger InputsPARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS High LevelInput VoltageVIH1 VDD=MAX 2.0 - - V Input VoltageVIL1 VDD=MIN - - 0.8 V Table 7: Non Schmitt Trigger Input CharacteristicsInput Characteristics – Schmitt Trigger InputsPARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Input VoltageVT1+ VDD=MAX 1.1 - 2.4 V Input VoltageVT1- VDD=MIN 0.6 - 1.8 V VoltageVH1 VDD=MIN 0.1 - - V Table 8: Schmitt Trigger Input Characteristics Output CharacteristicsPARAMETER SYMBOL CONDITIONS MIN TYP MAX UNIT SHigh LevelOutput VoltageVOH3Low Level Output Voltage VOL3VDD=MINIOH=-12mAVDD - 0.4 - - V VDD=MINIOH = 12mA- - VSS + 0.4 V Table 9: Output CharacteristicsIRMCK201Output Characteristics OSC2CLK。

机器人常用芯片

机器人常用芯片

常用芯片常用芯片1:介绍本文档旨在介绍常用的芯片类型和其应用领域。

芯片是的核心部件,它们负责控制和驱动的运动、感知和决策能力。

了解不同的芯片类型和其特点可以帮助开发者选择合适的芯片,从而设计出更高性能和更智能的系统。

2:控制芯片控制芯片是中最重要的部件之一,它负责处理的运动控制、姿态控制和运动规划等任务。

常见的控制芯片包括:2.1 单片机(Microcontroller)单片机是一种集成了微处理器、存储器和各类接口的单芯片系统。

它通常用于较简单的应用,如遥控车、简单机械臂等。

2.2 嵌入式处理器(Embedded Processor)嵌入式处理器是一种专用的处理器,具有低功耗、高性能和丰富的外设接口。

它广泛用于工业、服务等复杂的系统。

2.3 FPGA(Field-Programmable Gate Array)FPGA是一种可编程逻辑器件,具有高度灵活性和可重构性。

它可以实现定制化的控制逻辑,常用于需要高实时性和并行计算能力的应用。

3:感知芯片感知芯片是实现环境感知和人机交互的关键组件,它可以接收、处理和分析传感器信号,以获取周围环境的信息。

常见的感知芯片包括:3.1 视觉处理器(Vision Processor)视觉处理器是一种专用的处理器,用于实时图像处理和分析。

它可以提取图像特征并实现目标识别、跟踪和三维重建等功能。

3.2 深度学习芯片(Deep Learning Chip)深度学习芯片是一种专用的芯片,用于实现深度学习算法。

它具有高并行计算能力和低功耗特点,可以用于图像识别、语音识别和自然语言处理等任务。

3.3 传感器接口芯片(Sensor Interface Chip)传感器接口芯片是一种与传感器连接的接口芯片,它可以将传感器信号转化为数字信号,并提供给控制芯片进行处理和分析。

4:决策芯片决策芯片是实现自主决策和规划能力的关键组件,它可以处理感知数据并相应的动作。

常见的决策芯片包括:4.1 高级控制单元(High-level Control Unit)高级控制单元是一种专用的芯片,用于实现的高级决策和规划算法。

克罗韦尔 MagneMotion QuickStick HT QSMC 电机控制器 数据表

克罗韦尔 MagneMotion QuickStick HT QSMC 电机控制器 数据表

Catalog Number 700-1563-00Physical SpecificationsEnvironmental Specifications*All dimensions are millimeters.Electrical Specifications†Power drawn varies based on the vehicles being used and the maximum acceleration or velocity of the vehicles.•QuickStick High Thrust systems consist of modules that include motors mounted to user-designed support structures, magnet arrays mounted to user-designed vehicles, motor controllers, system controllers, and power supplies.•External controller for one QuickStick ® HT 1m motor.•Separate LVDC power source allows motor configuration without enabling propulsion power.•IP20 (IEC 60529) ingress protection rating.•CE Certified, UL Recognized.•19” rack mounting kit available.Dimensions *:253.5 W x 330.0 L x 87.3 H Ambient Temperature:0°C to 50°C [32°F to 122°F]Weight:5.89kg [13lb]Relative Humidity:85% max (relative, non-condensing)Input Power Rating †:HVDC: 270VDC min - 400VDC, 5A typ, 15A max (2 sec max) (Powerfast, 3-Pin, Male)LVDC: 24 VDC ±5%, 0.6 A (M12 Eurofast, FSFD 4.4, Male)Output Power (Stator Drive):400V max, 3phase, 10A RMS cont., 15A RMS max (16S-1S, 7-Pin, Female)Network:Standard 10/100/1000 BaseTx, full duplex, Ethernet (M12 Eurofast, FKFDD, Female)Stator Sense:Magnet array position sense (M12 Eurofast, 6-Pin, Female)Up/Down Stream:RS-422 for Node Controller communication (M8, Nano-Mizer, 4-Pin, Male)3.816.56.6HV DCStator Drive NetworkStator SenseQuickStick HT Motor Controller QSMCRockwell Automation SupportUse the following resources to access support information.Documentation FeedbackY our comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are W e Doing? form at /idc/groups/literature/documents/du/ra-du002_-en-e.pdf .Technical Support CenterKnowledgebase Articles, How-to Videos, FAQs, Chat, User Forums, and Product Notification Updates.https:///Local Technical Support Phone Numbers Locate the phone number for your country./global/support/get-support-now.page Direct Dial Codes Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer./global/support/direct-dial.page Literature LibraryInstallation Instructions, Manuals, Brochures, and Technical Data./global/literature-library/overview.page Product Compatibility and Download Center (PCDC)Get help determining how products interact, check features and capabilities, and find associated firmware./global/support/pcdc.pageRockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, T el: +90 (216) 5698400Rockwell Automation maintains current product environmental information is on its website at /rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page .Product certificates are located in the Rockwell Automation Literature Library: /global/literature-library/overview.page Allen-Bradley, Rockwell Software, and Rockwell Automation are trademarks of Rockwell Automation, Inc.Trademarks not belonging to Rockwell Automation are property of their respective companies.Copyright © 2015–2018 MagneMotion, A Rockwell Automation Company. All Rights Reserved.139 Barnum Road, Devens, MA 01434, USA +1 978-757-9100Publication MMI-TD026D-EN-P - January 2018DIR 990000681Supersedes 990000681 Rev. C。

无人机8大主流主控芯片大起底

无人机8大主流主控芯片大起底

无人机8大主流主控芯片大起底在刚刚结束的CES 2016上,各大芯片厂商和设备厂商展开了一场空中争夺战,让无人机这种新兴产品形式着实火了一把,究其原因,如果无人机一直定位在个人消费品应用,它的市场容量其实十分有限,厂商对它的热情也不会这么高,但随着它在农业、物流等其他应用场景下的需求被不断发掘,一次足以席卷产业上下游的狂热也就自然随之而来。

本年度的CES上跟无人机相关的主题随处即是,而与非网小编可以颇引以为傲的说,因为大疆、亿航等国内公司凭敏锐市场嗅觉抢占先机,让国内厂商在这块市场上很是风光了一把,也掌握了产业链上的重要话语权。

但遍观无人机市场的上游芯片供应商,尤其是主控芯片,却还是以欧美韩系厂商为主导,与非网小编特别盘点了当下主流的8大无人机主控芯片,供大家参考:•1. 意法半导体STM32系列目前意法半导体的STM32系列是国内采用率很高的无人机主控芯片,在这点上意法半导体有个做法很聪明,它很早就赞助了全国大学生电子设计大赛,赛事推荐的无人机项目的主控芯片就是STM32,学生们熟悉了它的主控平台,工作后要做无人机自然也会选择它。

STM32系列又有STM32 F0/F1/F2/F3/F4/F7/L0/L1/L4多个产品系列,其中,STM32 F4系列在无人机中应用较为广泛。

基于ARM Cortex-M4的STM32F4系列MCU采用了意法半导体的NVM工艺和ART加速器,在高达180 MHz的工作频率下通过闪存执行时其处理性能达到225 DMIPS/608 CoreMark,这是迄今所有基于Cortex-M内核的微控制器产品所达到的最高基准测试分数。

由于采用了动态功耗调整功能,通过闪存执行时的电流消耗范围为STM32F410的89 µA/MHz到STM32F439的260 µA/MHz。

STM32F4系列包括八条互相兼容的数字信号控制器(DSC)产品线,是MCU实时控制功能与DSP信号处理功能的完美结合体:•高级系列•· STM32F469/479 – 180 MHz CPU/225 DMIPS,高达2 MB 的双区闪存,带SDRAM和QSPI接口,Chrom-ART Accelerator™、LCD-TFT控制器和MPI-DSI接口•· STM32F429/439 – 180 MHz CPU/225 DMIPS,高达2MB的双区闪存,具有SDRAM接口,Chrom-ART Accelerator™ 和LCD-TFT控制器•· STM32F427/437 – 180 MHz CPU/225 DMIPS,高达2 MB 的双区闪存,具有SDRAM接口、Chrom-ART Accelerator™、串行音频接口,性能更高,静态功耗更低•基础系列•· STM32F446 – 180 MHz/225 DMIPS,高达512 KB的Flash,具有Dual Quad SPI和SDRAM接口•· STM32F407/417 – 168 MHz CPU/210 DMIPS,高达1MB的Flash,增加了以太网MAC和照相机接口•· STM32F405/415 – 168 MHz CPU/210 DMIPS,高达1MB的Flash、具有先进连接功能和加密功能•基本型系列•· STM32F411 – 100 MHz CPU/125 DMIPS,具有卓越的功率效率,更大的SRAM和新型智能DMA,优化了数据批处理的功耗(采用批采集模式的动态效率系列)•· STM32F410 – 100 MHz CPU/125 DMIPS,为卓越的功率效率性能设立了新的里程碑(停机模式下89 µA/MHz和6 µA),采用新型智能DMA,优化了数据批处理的功耗(采用批采集模式的动态效率™系列),配备真随机数发生器、低功耗定时器和DAC•· STM32F401 – 84 MHz CPU/105 DMIPS,尺寸最小、成本最低的解决方案,具有卓越的功耗效率(动态效率系列)•2. 高通骁龙Flight平台在CES2016上,Qualcomm Incorporated子公司QualcommTechnologies、腾讯和零度智控发布并展示了一款基于高通骁龙Flight平台的商用无人机YING,将于2016年上半年在全球上市。

英飞凌EiceDRIVER门极驱动芯片 选型指南2019说明书

英飞凌EiceDRIVER门极驱动芯片 选型指南2019说明书

英飞凌EiceDRIVER™门极驱动芯片2尊敬的客户及合作伙伴:您好!电力电子应用需要用到功率器件开关,而功率器件开关需要最合适的门极驱动解决方案。

电池驱动的应用、小型和大型家电、计算和电信服务器、电动车充电桩、太阳能和机器人等应用都电路设计有特殊的需求。

合适的门极驱动配置对于所有功率器件——无论是分立式还是功率模块——都至关重要。

运用最新技术的分立式器件——包括CoolMOS™和OptiMOS™ MOSFET、TRENCHSTOP™IGBT、CoolGaN™氮化镓HEMT、CoolSiC™碳化硅MOSFET——以及开放框架模块(如Easy、Econo功率模块),都需要细调门极驱动电路才能充分发挥出它们的能力。

针对CoolGaN™和CoolSiC™等新式宽带隙功率器件,我们最常被问及的问题之一是“你们是如何驱动它们的呢?”英飞凌门极驱动提供从0.1 A到10 A的一系列典型的输出电流选项,适用于任何功率器件型号。

快速短路保护、可编程的死区时间、直通短路保护及有源关断等全面的门极驱动保护功能,使得这些驱动适用于包括CoolGaN™和CoolSiC™在内的所有功率器件。

英飞凌门极驱动还具备集成自举二极管、使能、故障报告、输入过滤器、OPAMP和DESAT保护等更先进的功能。

有源米勒箝位,和独立的拉/灌电流输出引脚功能,还有助于提高设计的灵活性。

英飞凌EiceDRIVER™系列门极驱动让客户更容易驱动所有功率器件和功率模块。

针对电气隔离需求,英飞凌既提供基础型隔离产品,也提供增强型隔离产品。

我们始终坚守承诺,让英飞凌成为品质的代名词。

英飞凌拥有现代化的前瞻性质量管理体系,可通过将客户需求转化为实实在在的行动来支持公司的卓越运营。

我们致力于在成本、质量和上市时间上做到一流。

英飞凌的质量方针相当于一个安全屏障,能够避免以牺牲品质为代价来提高生产率。

英飞凌是功率半导体解决方案全球领先的供应商之一,可让您的生活更轻松、更安全、更环保。

IR_IRMCKF171-灵活易用的电机控制芯片介绍

IR_IRMCKF171-灵活易用的电机控制芯片介绍

IRMCK/F171 灵活易用的电机控制芯片 IRMCK/F171-灵活易用的电机控制芯片国际整流器公司 2012-1-11内容•概 概述 • 传统方案存在的问题 • IR的解决方案:简单易用的电机控制 芯片IRMCF171 • 方案辅助工具和测试结果 • 结论概述• 全球能源短缺导致越来越严格的政府节能规章出 台 • 在中国,能效标签制度的实施以及能效标准的不 在中国 能效标签制度的实施以及能效标准的不 断提高使很多电器转向变频控制 • 变频空调已经完全确立了市场的主导地位 • 家电的变频化趋势也越来越明确,电机调速市场 竞争将更加激烈,产品更新的周期越来越短。

随 之而来的新产品研发 险也越来越大 之而来的新产品研发风险也越来越大 • 节能热点:– – – – 高效率永磁电机 无位置传感正弦波控制 宽的调速范围 低的振动和噪声传统方案存在的问题• • • • 大容量存储单元的高速DSP或32位单片机 软件算法复杂 控制器计算任务繁重 软件算法复杂,控制器计算任务繁重 对于传统的软件编程控制方案,完成电机控制算法已经很复杂, 对于系统设计人员的要求很高1. 2. 3. 熟悉实时的FOC控制算法,熟悉相关的外设; 熟悉DSP或32位RISC的C或汇编语言编程; 熟悉各种数模混合电路,高压电路和功率开关电路.••开发周期长,开发成本和开发风险都很高后续的软件维护成本高电机控制系统框图IR电机控制IC-IRMCF171电机控制器: IRMCK/F171模数控制器IC• MCU (微控制器) - 60MIPS 8bit 微处理器 • MCE (运动控制引擎) – 可配置的控制模块集 • ASE (模拟信号引擎) – 信号调理和A/D转换IRMCK/F171内部功能框图MCE™ (Motion Control Engine)•不需要写代码 •图形化模块编辑 •硬件实现算法无传感FOC控制速度环和弱磁控制环路运动控制引擎TM– MCE 作为单片机的一个外部设备,控制架 构,参数设置由共享RAM里的数据决定 决 . – 独立于单片机快速执行电机控制算法 – 特点:• • • • • • • • 不需要编程 专用控制模块 小的运动控制序列控制器 丰富的运动控制外设 (低损耗PWM, 负母线或桥臂 电阻电流重构) 双端口RAM与应用层交换信息 多种保护功能 内嵌过流保护比较器 硬件关断脚 (GATEKILL)Dual ua Port ot RAMMotion Control BusMCE 内部框图6To Motor 1 gate drive GATEKILLLow Loss SVPWMMotion Control M d l ModulesPFC PWMTo PFC gate drive PFC GATEKILLSingle shunt current reconstIFB (Motor 1)MCE Program g RAMA/D MUX S/HIFB (PFC) DC bus AC input Analog RefMotion Control SequencerASE (模拟信号引擎)IRMCF171特点特点()•运动控制引擎(MCE TM) 独立完成复杂的电机控制算法–可靠的底层控制模块•FOC 模块–磁通估算器和角度锁相环–(直轴和交轴) 电流调节器电流调节–Catching spin功能–制动、弱磁•低损耗空间矢量PWM–开放的速度环方便用户灵活设计–模拟信号引擎提供功率电路和控制器之间完整的接口•直流负母线电流反馈,电机相电流重构•辅助的模拟信号通道•嵌入8051单片机方便用户实现单芯片系统控制–与MCE共享4KBRAM–多路数字I/O口–JTAG口调试8051软件.自检功能符合标准–自检功能----符合IEC标准•IRMCK171为对应的OTP版驱动参数计算工具•MCEWizard•IR 提供MCE控制电机所需配置寄存器的计算工具•您只需输入简单的电机参数和应用参数,MCEWizard会自动为您导出所内部寄存器值。

IRMCK311TR;中文规格书,Datasheet资料

IRMCK311TR;中文规格书,Datasheet资料

Data Sheet No. PD60338IRMCK311 Dual Channel Sensorless Motor Control IC forAppliancesFeaturesMCE TM (Motion Control Engine) - Hardware based computation engine for high efficiency sinusoidal sensorless control of permanent magnet AC motor Integrated Power Factor Correction controlSupports both interior and surface permanent magnet motorsBuilt-in hardware peripheral for single shunt current feedback reconstructionNo external current or voltage sensing operational amplifier requiredDual channel three/two-phase Space Vector PWM Three-channel analog output (PWM)Embedded 8-bit high speed microcontroller (8051) for flexible I/O and man-machine controlJTAG programming port for emulation/debugger Two serial communication interface (UART)I2C/SPI serial interfaceWatchdog timer with independent analog clockThree general purpose timers/countersTwo special timers: periodic timer, capture timer Internal ‘One-Time Programmable’ (OTP) memory and internal RAM for final production usagePin compatible with IRMCF311 RAM version1.8V/3.3V CMOS Product SummaryMaximum crystal frequency 60 MHz Maximum internal clock (SYSCLK) frequency 128 MHz Maximum 8051 clock frequency 33 MHz Sensorless control computation time 11 μsec typ MCE TM computation data range 16 bit signed 8051 OTP Program memory 56K bytes MCE program and Data RAM 8K bytes GateKill latency (digital filtered) 2 μsec PWM carrier frequency counter 16 bits/ SYSCLK A/D input channels 6 A/D converter resolution 12 bits A/D converter conversion speed 2 μsec 8051 instruction execution speed 2 SYSCLK Analog output (PWM) resolution 8 bits UART baud rate (typ) 57.6K bps Number of I/O (max) 14 Package (lead-free) QFP64 Operating temperature -40°C ~ 85°CDescriptionIRMCK311 is a high performance OTP based motion control IC designed primarily for appliance applications. IRMCK311 is designed to achieve low cost and high performance control solutions for advanced inverterized appliance motor control. IRMCK311 contains two computation engines. One is Motion Control Engine (MCE TM) for sensorless control of permanent magnet motors; the other is an 8-bit high-speed microcontroller (8051). Both computation engines are integrated into one monolithic chip. The MCE TM contains a collection of control elements such as Proportional plus Integral, Vector rotator, Angle estimator, Multiply/Divide, Low loss SVPWM, Single Shunt IFB. The user can program a motion control algorithm by connecting these control elements using a graphic compiler. Key components of the sensorless control algorithms, such as the Angle Estimator, are provided as complete pre-defined control blocks implemented in hardware. A unique analog/digital circuit and algorithm to fully support single shunt current reconstruction is also provided. The 8051 microcontroller performs 2-cycle instruction execution (16MIPS at 33MHz). The MCE and 8051 microcontroller are connected via dual port RAM to process signal monitoring and command input. An advanced graphic compiler for the MCE TM is seamlessly integrated into the MATLAB/Simulink environment, while third party JTAG based emulator tools are supported for 8051 developments. IRMCK311 comes with a small QFP64 pin lead-free package.TABLE OF CONTENTS1 Overview (5)2 IRMCK311 Block Diagram and Main Functions (6)3 Pinout (8)4 Input/Output of IRMCK311 (9)4.1 8051 Peripheral Interface Group (10)4.2 Motion Peripheral Interface Group (10)4.3 Analog Interface Group (11)4.4 Power Interface Group (11)4.5 Test Interface (12)5 Application Connections (13)6 DC Characteristics (14)6.1 Absolute Maximum Ratings (14)6.2 System Clock Frequency and Power Consumption (14)6.3 Digital I/O DC Characteristics (15)6.4 PLL and Oscillator DC Characteristics (15)6.5 Analog I/O DC Characteristics (16)6.6 Under Voltage Lockout DC Characteristics (17)6.7 AREF Characteristics (17)7 AC Characteristics (18)7.1 PLL AC Characteristics (18)7.2 Analog to Digital Converter AC Characteristics (19)7.3 Op Amp AC Characteristics (19)7.4 SYNC to SVPWM and A/D Conversion AC Timing (20)7.5 GATEKILL to SVPWM AC Timing (21)7.6 Interrupt AC Timing (21)7.7 I2C AC Timing (22)7.8 SPI AC Timing (23)7.8.1 SPI Write AC timing (23)7.8.2 SPI Read AC Timing (24)7.9 UART AC Timing (25)7.10 CAPTURE Input AC Timing (26)7.11 JTAG AC Timing (27)7.12 OTP Programming Timing (28)8 I/O Structure (29)9 Pin List (32)Dimensions (35)10 Package11 Part Marking Information (36)Information (36)12 OrderingTABLE OF FIGURESFigure 1. Typical Application Block Diagram Using IRMCK311 (5)Figure 2. IRMCK311 Internal Block Diagram (6)Figure 3. IRMCK311 Pin Configuration (8)Figure 4. Input/Output of IRMCK311 (9)Figure 5. Application Connection of IRMCK311 (13)Figure 6. Clock Frequency vs. Power Consumption (14)Figure 7 Crystal oscillator circuit (18)Figure 8 Voltage droop of sample and hold (19)Figure 9 SYNC to SVPWM and A/D conversion AC Timing (20)Figure 10 GATEKILL to SVPWM AC Timing (21)Figure 11 Interrupt AC Timing (21)Figure 12 I2C AC Timing (22)Figure 13 SPI AC Timing (23)Figure 14 SPI Read AC Timing (24)Figure 15 UART AC Timing (25)Figure 16 CAPTURE Input AC Timing (26)Figure 17 JTAG AC Timing (27)Figure 18 OTP Programming Timing (28)Figure 19 All digital I/O except motor PWM output (29)Figure 20 RESET, GATEKILL I/O (29)Figure 21 Analog input (30)Figure 22 Analog operational amplifier output and AREF I/O structure (30)Figure 23 VPP programming pin I/O structure (30)Figure 24 VSS and AVSS pin structure (31)Figure 25 VDD1 and VDDCAP pin structure (31)Figure 26 XTAL0/XTAL1 pins structure (31)TABLE OF TABLESTable 1. Absolute Maximum Ratings (14)Table 2. System Clock Frequency (14)Table 3. Digital I/O DC Characteristics (15)Table 4. PLL DC Characteristics (15)Table 5. Analog I/O DC Characteristics (16)Table 6. UVcc DC Characteristics (17)Table 7. AREF DC Characteristics (17)Table 8. PLL AC Characteristics (18)Table 9. A/D Converter AC Characteristics (19)Table 10. Current Sensing OP Amp AC Characteristics (19)Table 11. SYNC AC Characteristics (20)Table 12. GATEKILL to SVPWM AC Timing (21)Table 13. Interrupt AC Timing (21)Table 14. I2C AC Timing (22)Table 15. SPI Write AC Timing (23)Table 16. SPI Read AC Timing (24)Table 17. UART AC Timing (25)Table 18. CAPTURE AC Timing (26)Table 19. JTAG AC Timing (27)Table 20. OTP Programming Timing (28)Table 21. Pin List (32)1 OverviewIRMCK311 is a new International Rectifier integrated circuit device primarily designed as a one-chip solution for complete inverter controlled appliance dual motor control applications. Unlike a traditional microcontroller or DSP, the IRMCK311 provides a built-in closed loop sensorless control algorithm using the unique Motion Control Engine (MCE TM) for permanent magnet motors. The MCE TM consists of a collection of control elements, motion peripherals, a dedicated motion control sequencer and dual port RAM to map internal signal nodes. IRMCK311 also employs a unique single shunt current reconstruction circuit to eliminate additional analog/digital circuitry and enables a direct shunt resistor interface to the IC. The sensorless control is the same for both motors with a single shunt current sensing capability. Motion control programming is achieved using a dedicated graphical compiler integrated into the MATLAB/Simulink TM development environment. Sequencing, user interface, host communication, and upper layer control tasks can be implemented in the 8051 high-speed 8-bit microcontroller. The 8051 microcontroller is equipped with a JTAG port to facilitate emulation and debugging tools. Figure 1 shows a typical application schematic using IRMCK311.IRMCK311 is intended for volume production purpose and contains 64K bytes of OTP (One Time Programming) ROM, which can be programmed through a JTAG port. For a development purpose use, IRMCF311 contains a 48k byte of RAM in place of program OTP to facilitate an application development work. Both IRMCF311 and IRMCK311 come in the same 64-pin QFP package with identical pin configuration to facilitate PC board layout and transition to mass productionFigure 1. Typical Application Block Diagram Using IRMCK3112 IRMCK311 Block Diagram and Main FunctionsM o t i o n C o n t r o l B u sFigure 2. IRMCK311 Internal Block DiagramIRMCK311 contains the following functions for sensorless AC motor control applications:• Motion Control Engine (MCE TM )o Proportional plus Integral block o Low pass filtero Differentiator and lag (high pass filter) o Ramp o Limito Angle estimate (sensorless control) o Inverse Clark transformation o Vector rotator o Bit latch o Peak detect o Transitiono Multiply-divide (signed and unsigned)o Divide (signed and unsigned)o Addero Subtractoro Comparatoro Countero Accumulatoro Switcho Shifto ATAN (arc tangent)o Function block (any curve fitting, nonlinear function)o16-bit wide Logic operations (AND, OR, XOR, NOT, NEGATE)o MCE TM program and data memory (6K byte). Note 1o MCE TM control sequencer• 8051 microcontrollero Three 16-bit timer/counterso16-bit periodic timero16-bit analog watchdog timero16-bit capture timero Up to 36 discrete I/Oso Eleven-channel 12-bit A/DFive buffered channels (0 – 1.2V input)One unbuffered channel (0 – 1.2V input)o JTAG port (4 pins)o Up to three channels of analog output (8-bit PWM)o Two UARTo I2C/SPI porto 64K byte Note 1program One-Time Programmable memoryo2K byte data RAM. Note 2Note 1: Total size of OTP memory is 64K byte, however MCE program occupiesmaximum 8K byte which will be loaded into internal RAM at a powerup/bootprocess. Therefore only 56K byte OTP memory area is usable for 8051microcontroller.Note 2: Total size of RAM is 8K byte including MCE program, MCE data, and 8051data. Different sizes can be allocated depending on applications.3 PinoutXTAL0XTAL1P1.1/RXD P1.2/TXDVDD1VSS VDD2P1.3/SYNC/SCKP1.4/CAPP 3.6/R X D 1P 3.7/T X D 1FPWMVL FPWMUL V S SV D D 2A V D DA V S SA I N 0A R E FP 2.7/A O P W M 1P 2.6/A O P W M 0CPWMUH CPWMVH CPWMWH CPWMUL CPWMVL CPWMWL CGATEKILL VDD1VSS I F B C OI F B C +I F B C -P L L V S SP L L V D DR E S E TN CT C KP 5.3/T D IP 5.2/T D OP 5.1/T M SS D A /C S 0S C L /S O -S I /V P PP 5.0/P F C G K I L LP F C P W M V S SFGATEKILL FPWMWL VAC-VAC+VACO IPFCO IPFC+IPFC-I F B F OI F B F +I F B F -P3.0/INT2/CS1C M E X TFPWMVH FPWMUHFPWMWH A I N 1P 3.2/I N T 0Figure 3. IRMCK311 Pin Configuration4 Input/Output of IRMCK311All I/O signals of IRMCK311 are shown in Figure 4. All I/O pins are 3.3V logic interface except A/D interface pins.Figure 4. Input/Output of IRMCK3114.1 8051 Peripheral Interface GroupUART InterfaceP1.1/RXD Input, Receive data to IRMCK311, can be configured as P1.1P1.2/TXD Output, Transmit data from IRMCK311, can be configured as P1.22nd channel Receive data to IRMCK311, can be configured as P3.6 P3.6/RXD1 Input,P3.7/TXD1 Output,2nd channel Transmit data from IRMCK311, can be configured as P3.7Discrete I/O InterfaceP1.3/SYNC/SCK Input/output port 1.3, can be configured as SYNC output or SPI clock P1.4/CAP Input/output port 1.4, can be configured as Capture Timer inputP3.0/INT2/CS1 Input/output port 3.0, can be configured as external interrupt 2 or SPIchip select 1P3.2/INT0 Input/output port 3.2, can be configured as external interrupt 0Analog Output InterfaceP2.6/AOPWM0 Input/output, can be configured as 8-bit PWM output 0 withprogrammable carrier frequencyP2.7/AOPWM1 Input/output, can be configured as 8-bit PWM output 1 withprogrammable carrier frequencyCrystal InterfaceXTAL0 Input, connected to crystalXTAL1 Output, connected to crystalReset InterfaceRESET Inout, system reset, needs to be pulled up to VDD1 but doesn’t requireexternal RC time constantI2C/SPI InterfaceSCL/SO-SI/VPP Output, I2C clock output, SPI SO-SII2C Data line, Chip Select 0 of SPISDA/CS0 Input/output,P3.0/INT2/CS1 Input/output port 3.0, can be configured as external interrupt 2 or SPIchip select 1P1.3/SYNC/SCK Input/output port 1.3, can be configured as SYNC output or SPI clock 4.2 Motion Peripheral Interface GroupPWMCPWMUH Output, motor 1 PWM phase U high side gate signalCPWMUL Output, motor 1 PWM phase U low side gate signalCPWMVH Output, motor 1 PWM phase V high side gate signalCPWMVL Output, motor 1 PWM phase V low side gate signalCPWMWH Output, motor 1 PWM phase W high side gate signalCPWMWL Output, motor 1 PWM phase W low side gate signalFPWMUH Output, motor 2 PWM phase U high side gate signalFPWMUL Output, motor 2 PWM phase U low side gate signal分销商库存信息: IRIRMCK311TR。

IRMCF341中文数据手册

IRMCF341中文数据手册

Data Sheet No. 2006-11-03IR Xi’an, No. 2007-1-4IRMCF341高性能家电用无传感器正弦波电机控制IC产品特性:n MCE TM (Motion Control Engine) -针对永磁交流电机基于硬件的高效正弦波控制引擎n 特有的硬件电路实现单电阻电流采样和电机电流重构n 支持表面式(SPM)和内嵌式磁钢(IPM)的永磁电机无传感器控制n 电流和电压采样不需外加运算放大器n 低损耗的空间矢量PWM(SVPWM)n 三路8位PWM D/A模拟输出通道n 内嵌高性能的51核可实现灵活的I/O和交互控制n JTAG接口实现8051代码仿真/调试功能n 232串行通讯端口(UART)n I2C/SPI端口n 3路通用定时器/计数器n 3路专用定时器: 看门狗定时器, 周期定时器, 捕获口定时器n 外部EEPROM与内部RAM配合的程序存储方式简化代码开发和调试n 与掩模和OTP版本IRMCK341引脚完全兼容n 1.8V/3.3V CMOS工艺主要参数:最大输入时钟(晶体振荡器频率)60 MHz 最大内部时钟(系统工作频率)128MHz 无传感器电机控制运算时间(典型值)11 μs MCE TM数据处理精度16位有符号数内部程序RAM空间(从外部E2ROM加载)48K字节内部数据RAM空间8K字节过流保护延迟时间(数字滤波) 2 μs PWM载频范围16位/ SYSCLK A/D输入通道数8 A/D转换精度12位A/D转换速度 2 μs 8051指令执行速度 2 SYSCLK D/A模拟输出(PWM)精度8 位UART波特率(典型值)57.6K bps 最大可用I/O 24 封装(无铅)QFP64产品描述IRMCF341是针对家电永磁交流正弦波电机无传感器控制应用的高性能低成本电机控制IC。

IRMCF341具有特有的硬件电路可实现单电阻电流采样和电机电流重构。

红外热释电处理芯片BISS0001介绍

红外热释电处理芯片BISS0001介绍

红外热释电处理芯片BISS0001介绍BISS0001是一款具有较高性能的传感信号处理集成电路,它配以热释电红外传感器和少量外接元器件构成被动式的热释电红外开关。

它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。

特点CMOS工艺数模混合具有独立的高输入阻抗运算放大器内部的双向鉴幅器可有效抑制干扰内设延迟时间定时器和封锁时间定时器采用16脚DIP封装管脚图管脚说明引脚名称I/O功能说明1 A I 可重复触发和不可重复触发选择端。

当A为“1”时,允许重复触发;反之,不可重复触发2 VO O 控制信号输出端。

由VS的上跳前沿触发,使Vo输出从低电平跳变到高电平时视为有效触发。

在输出延迟时间Tx之外和无VS的上跳变时,Vo保持低电平状态。

3 RR1 -- 输出延迟时间Tx的调节端4 RC1 -- 输出延迟时间Tx的调节端5 RC2 -- 触发封锁时间Ti的调节端6 RR2 -- 触发封锁时间Ti的调节端7 VSS -- 工作电源负端8 VRF I 参考电压及复位输入端。

通常接VDD,当接“0”时可使定时器复位9 VC I 触发禁止端。

当VcVR时允许触发(VR≈0.2VDD)10 IB -- 运算放大器偏置电流设置端11 VDD -- 工作电源正端12 2OUT O 第二级运算放大器的输出端13 2IN- I 第二级运算放大器的反相输入端14 1IN+ I 第一级运算放大器的同相输入端15 1IN- I 第一级运算放大器的反相输入端16 1OUT O 第一级运算放大器的输出端工作原理BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。

以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。

不可重复触发工作方式下的波形。

IRMCK201

IRMCK201

IRMCK201芯片资料1 概述国际整流器件公司(IR)针对高性能交流伺服驱动的需求熒杓瞥隽嘶于FPGA技术的完整的伺服驱动控制解决方案IRMCK201芯片.与传统的运动控制专用DSP芯片不同的是,IRMCK201不仅包含运动控制的外围功能如PWM、编码计数电路、电流传感接口等,而且也包含通过硬件实现的FOC算法和速度控制算法,从而省略了编程任务熂蚧了高性能交流伺服系统的设计,此外它还适用于不同类型的永磁电机或感应电机,因而有很好的应用前景.IRMCK201采用标准的100管脚封装形式,其主要电气特点如下:●完整的电流闭环控制和速度闭环控制;●使用PWM载波频率可以配置速度和电流更新率;●可以配置感应电机或者永磁电机的控制系统;●带死区的空间矢量PWM;●最大时钟输入33.3MHz,最大PWM载波频率83.3kHz,电流环带宽5.5kHz,速度环更新率5/10kHz;●具有与高压线性电流传感器IR2175、高压驱动芯片IR213x、霍尔A/B/C信号、光电编码器、RS232或RS422、快速SPI的接口;●配置光电码盘的线数范围从200PPR~10000PPR;●可以监视直流母线电压;●可以配置模拟参考输入;●2MHz的计数器改善低速性能;●具有4路采样/保持的A/D转换接口;●通过主机寄存器接口,A T24C01A可对内部数据/参数进行初始化;●智能IGBT保护封锁控制;●可以配套使用ServoDesigner配置工具软件.2 IRMCK201内部功能结构图1为IRMCK201内部详细控制结构图.从图中可以看出,作为运动控制芯片,IRMCK201在硬件上具备了伺服控制所必需的控制单元,如带死区时间设置的空间矢量PWM、PARK变换和Clark变换、电流环PI调节器、速度环PI调节器、速度测量单元等,这样用户就省去了编写代码的任务,简化了复杂的设计过程.IRMCK201通过硬件逻辑实现伺服控制功能,芯片的接口可以灵活配置,因而为了实现不同的控制算法,可以通过接口对IRMCK201进行参数设置.以矢量控制的感应电机为例,在内部控制结构中有一个前馈滑模增益路径,可以通过设置相关寄存器来实现这种控制功能.也就是说,上位机仅需将“1”或“0”写入相关寄存器中,就可使该控制功能IRM-CK201也支持其它结构,如除IR2175外的电流传感器接口芯片、电流控制中的前馈增益路径使能/禁止、闭环速度控制的使能/禁止以及速度给定值的选择等.也就是说采用IRMCK201配置伺服系统,只需了解它内部的功能模块和寄存器的情况,并通过上位机对它的寄存器进行配置,即可迅速实现各种功能.例如,要为逆变器设置一个开关频率为10kHz的PWM驱动信号,用户不需要编写程序代码来实现这个PWM信号的算法,只需要对相关寄存器赋值即可.IRMCK201主机通信接口包括RS232/RS485/RS422、快速SPI接口和8位并行接口.因此它可以方便与主机或控制器进行通信,修改和读取其主控寄存器来控制输出.IRMCK201也可以独立运行而不需要外部主机参与控制,其运行参数通过外部EEPROM来保存,上电时自动从EEPROM中读取参数.现以具有电流环和速度环的永磁无刷电机控制系统为例,分析系统的结构.通过配置相关寄存器使能速度闭环控制.对于电流环,由电流传感器IR2175采样电机V 相和W相绕组电流,经过IRMCK201内部计算可以得到U相电流,与V相和W相电流一起组成三相电流,通过Park变换与矢量旋转被分解为产生磁通的励磁电流分量和产生转矩的转矩电流分量熣饬礁鲋绷髁烤哂卸懒⒌谋壤积分调节器.对于速度环,由光电编码信号通过IRMCK201内部测速单元得到速度反馈,它与速度给定值相互比较产生速度偏差.这个偏差经过速度PI调节器产生一个对应的转矩电流Iq,当采用Id=0控制时,Id、Iq即是内部电流环的给定值,它们与实际反馈电流比较产生电流偏差煹缌髌差经过电流环PI调节以后产生输出电压Us-q和Us-d熢谛转坐标系d、q .电压Us-q和Us-d被反变换成静止坐标系下的电压分量熑缓缶过空间矢量PWM计算后煾逆变器的功率模块发出合适的开关信号,控制功率模块开关工作.3 IRMCK201输入输出接口如图2所示,IRMCK201输入输出接口主要包括主机通讯接口、PWM门极信号接口、正交编码器接口、主机通讯接口、A/D接口、串行EEPROM接口、锁相环和系统时钟接口、控制输入和状态指示接口、电流传感器IR2175接口.3.1 PWM门极信号接口IRMCK201提供6路SVPWM输出熗ü光耦与三相桥驱动芯片IR2136进行连接来驱动MOSFET或IGBT熞部梢灾苯佑胫悄芄β誓?(IPM)的6个驱动信号接口相连.同时还提供驱动故障反馈接口.3.2 主机通讯接口IRMCK201提供了多种与外部主机通信的方式.主机可以通过RS232/RS422、SPI接口或8 位并行接口来配置和监控系统的运行.RS232/RS422通信方式可以根据通讯距离进行选择.RS232接口通过MAX232进行电平转换,它允许PC直接对其进行寄存器的配置修改及状态读取,通信波特率可以通过外部引脚来设置.SPI接口方式中,芯片处于从方式,通信最高时钟可达8MHz,可以实现与主机高速通信.不同通信方式通常都处于激活状态,可以相互切换煹不能同时运行.3.3 正交编码器接口IRMCK201带有光电编码器接口电路熆梢苑奖愕刈槌梢桓鏊欧控制系统.它可以与多种编码器接口熉龀迨为200~10000 个/ 转熉龀迤德首罡呖纱1MHz.编码器接口具有相互正交的ENA、ENB编码信号及零点标志信号接口,同时还具有三路HALL信号输入接口.系统上电时可以通过HALL传感器及Z脉冲估算编码器初始值.3.4 控制输入及状态指示接口控制输入信号包括启动、停止、转动方向、输出使能、故障复位、主机状态等;状态指示信号包括系统故障指示、同步指示及两个双色指示灯.可以直接通过对输入引脚的操作来控制电机的运行.3.5 电流传感器IR2175接口IR2175线性电流传感器可以将电流信号从伺服电机的高端驱动电路转换到低端驱动电路熞员憧刂频缏方行处理.在伺服电机相绕组回路中串联一个取样电阻,随着电机相电流的变化熑⊙电阻两端产生一个很小的交流电压信号作为IR2175的输入,它的输出是频率为130kHz、占空比随电流大小变化的PWM数字信号,经过电平转换,PWM信号被转换成了以地为参考点的信号.IR2175 的输入电压变化范围为-260mV~+260mV,因此过载电流流过取样电阻时所产生电压应小于或等于260mV.对于信号的处理,可将IR2175通过光耦直接与IRM-CK201进行连接,再在IRMCK201内部进行电流计算.3.6 A/D接口IRMCK201提供了直接与ADS7818 A/D转换器相连的接口,通过多路复用器CD4052可以输入四路模拟信号,分别为转速或转矩大小控制的模拟输入、直流母线电压的采样输入和其它电流传感器如HALL电流传感器送来的两路相电流信号.但是这里采样的相电流信号只能作为过流保护,不能作为电流环的反馈,也就是说ADS7818不可以取代IR2175对相电流进行取样.4 应用本文利用IRMCK201与TI公司的DSP芯片TMS320LF2407设计了应用于数控机床的永磁无刷交流伺服系统.4.1 系统硬件设计结构框图系统的结构框图如图3所示,整个系统由以下几部分组成:(1)控制部分该交流伺服系统控制电路主要由TMS320LF 2407、IRMCK201和少量的外围电路组成.DSP用于完成IRMCK201的初始化和系统位置环控制算法的实现,并完成系统的键盘和显示功能.IRMCK201内部硬件电路完成系统的电流环、速度环控制,最终产生SVPWM驱动信号,以完成对功率模块的开关控制,同时通过A/D接口对母线电压进行监测,以实现过压保护功能.系统采用2000PPR的增量式光电码盘和霍尔传感器测量电机位置和速度信号,采用IR2175电流传感器对相电流采样,由于IRMCK201提供了IR2175接口,所以采样的电流信号可直接送到IRMCK201作为控制部分的电流反馈.为了增加系统的抗干扰性,本系统采用高速光耦将系统的控制部分和功率部分进行隔离.(2)主电路部分本系统的主电路为AC-DC-AC 逆变电路.输入的三相交流电压经整流、滤波后得到直流电压供给逆变器.功率器件采用IR公司的智能功率模块IRAMS16UP60A,它包括三相高压高速驱动集成芯片IR2136和6个IGBT,其输入驱动信号的最高频率可达20kHz.4.2 系统程序设计由于系统的电流环、速度环控制和过流、过压、欠压等保护功能都由IRMCK201内部硬件实现,所以系统软件主要是用DSP实现交流伺服系统位置环的控制和对IRMCK201的通讯,相比之下程序设计比较简单.图4所示为DSP的主程序流程和位置环中断服务子程序.本系统采用了IRMCK201芯片,结合使用TI公司的DSP芯片TMS320LF2407,大大简化了系统的软硬件设计,缩短了系统开发周期,提高了系统的可靠性,从而实现了高性能的交流伺服系统.。

IR2101原理

IR2101原理

IR2101原理
IR2101是一种高性能半桥驱动芯片,主要应用在直流至交流(DC-AC)变换器、电机驱动器、逆变器和电源应用中。

该芯片采用了高可靠性和高
时序精度的CMOS工艺,能够驱动高端智能功率模块以及高频变换器,提
供卓越的性能和可靠性。

在IR2101的输入端,一个实时控制输入信号可以控制输出信号的状态。

芯片接收到输入信号后,通过集成的逻辑门进行处理,并将相应的PWM信号驱动给半桥输出级。

IR2101的输出端为半桥驱动级,由一个高端驱动器和一个低端驱动
器构成。

这两个驱动器通过一个共模电平发生器相互连接。

驱动器接收到
来自逻辑控制器的PWM信号后,在高低电平切换时快速给出相应的驱动信号。

高端驱动器会将信号输出到高侧MOSFET,而低端驱动器则输出到低
侧MOSFET。

总之,IR2101是一种高性能的半桥驱动芯片,能够广泛应用在直流
至交流变换器、电机驱动器、逆变器和电源应用中。

其原理基于PWM技术,通过调整PWM信号的占空比来控制输出信号的幅值和频率。

此外,它还具
备过电流保护功能和高速高压隔离技术,提供优异的性能和可靠性,使其
成为电力电子领域不可或缺的元器件之一。

小电流霍尔传感器芯片

小电流霍尔传感器芯片

小电流霍尔传感器芯片主要用于检测磁场并转换成电信号,广泛应用于电流测量、位置检测、速度检测等领域。

下面介绍一些常见的小电流霍尔传感器芯片:
1. ACS758:该芯片是一款高灵敏度、低噪声的霍尔效应传感器,常用于电流检测、磁场测量等领域。

它具有低功耗、线性度好、抗干扰能力强等优点。

2. ACS712:该芯片是一款线性霍尔传感器,专为电流检测而设计。

它能够将电流转换成电压,具有高精度、低噪声、响应速度快等优点。

3. AH800:该芯片是一款高精度、低功耗的霍尔电流传感器芯片,能够测量直流和交流电流。

它具有线性度好、温度稳定性高、响应速度快等优点。

4. ACS724:该芯片是一款数字霍尔传感器,适用于电流检测和位置检测。

它具有高灵敏度、低噪声、低功耗等优点,并且支持SPI和I2C 通信协议。

5. ACS660:该芯片是一款高灵敏度、低噪声的霍尔效应传感器,适用于电动车电池管理和电机控制等领域。

它具有高精度、快速响应、低功耗等优点。

这些小电流霍尔传感器芯片都具有不同的特点和应用领域,可以根据具体需求选择适合的芯片。

Get清风HX711电路

Get清风HX711电路

HX711电路HX711电路优点及特性:HX711是一款专为高精度秤重传感器而设计的24位A/D转换器芯片。

与同类型其它芯片相比,该芯片集成了包括稳压电源、片内时钟振荡器等其它同类型芯片所需要的外围电路,具有集成度高、响应速度快、抗干扰性强等优点、降低了电子秤的整机本钱,提高了整机的性能和可靠性。

该芯片与后端MCU芯片的接口和编程非常简单,所有控制信号由管脚驱动,无需对芯片内部的存放器编程。

输入选择开关可任意选取通道A或通道B,与其内部的低噪声可编程放大器相连。

通道A的可编程增益为128或64,对应的满额度差分输入信号幅值分别为±20mV或±40mV。

通道B那么为固定的64增益,用于系统参数检测。

芯片内提供的稳压电源可以直接向外部传感器和芯片内的A/D转换器提供电源,系统板上无需另外的模拟电源。

芯片内的时钟振荡器不需要任何外接部件。

上电自动复位功能简化了开机的初始化过程。

HX711引脚功能及电器特性表1HX711引脚功能名秤性能描述管脚号1 VSUP 电源稳压电路供电电源:〔不用稳压电路时接AVDD〕2 BASE 模拟输出稳压电路控制输出〔不用稳压电路时为无连接〕3 AVDD 电源模拟电源:4 VFB 模拟输入稳压电路控制输入〔不用稳压电路时应接地〕5 AGND 地模拟地6 VBG 模拟输出参考电源输入7 INA 模拟输入通道A负输入端8 INA+ 模拟输入通道A正输入端9 INB 模拟输入通道B负输入端10 INB+ 模拟输入通道B正输入端11 PD-SCK 数字输入断电控制〔高电平有效〕和串口时钟输入12 DOUT 数字输出串口数据输出13 X0 数字输晶振输入〔不用晶振时为无连入输出接〕14 X1 数字输入外部时钟或晶振输入,0:使用片内振荡器15 RATE 数字输入输出数据速率控制,0:10Hz;1:80Hz16 DVDD 电源数字电源:表2 主要电气参数参数条件及说明最小值典型值最大值单位满额度差分输入范围V〔inp〕-V(inn) ±0.5(AVDD/GAIN)V输入共模电压范围V输出数据速率使用片内振荡器,RATE=010Hz 使用片内振荡器,RATE=DVDD80外部时钟或晶振,RATE=0fclk/1,105,920外部时钟或晶振,RATE=DVDDfclk/138,240输出数据编二进制补码800000码7FFFFF(HEX)输出稳定时间〔1〕RATE=0 400 mv RATE=DVDD 50输入零点漂移增益=128 增益=64输入噪声增益=128,RATE=0 50 nV(ms)增益=128,RATE= DVDD90温度系数输入零点漂移〔增益=128〕±7 nV/℃输入共模信号抑制比增益=128,RATE=0100 dB电源干扰抑制比增益=128,RATE=0100 dB输出参考电压〔VBG〕V外部时钟或晶振频率11.0592 30 MHz 电源电压DVDD VAVDD,VSUP模拟电源电路〔含稳压电路〕正常工作1600 uA 断电数字电源电路正常工作100 uA 断电表3 输入通道和增益选择PD-SCK 脉冲数输入通道增益25 A 12826 B 6427 A 6432..3HX711管脚说明模拟输入通道A模拟差分输入可直接与桥式传感器的差分输出相接。

ir驱动芯片

ir驱动芯片

ir驱动芯片
驱动芯片是电子设备中的重要组成部分,可以控制和管理设备的各种功能和运行状态。

IR驱动芯片是一种专门用于红外线信号传输和接收的芯片,主要应用在无线遥控、红外感应和红外通信等领域。

IR驱动芯片最重要的功能之一是解码红外线信号。

当我们按下遥控器上的按键时,遥控器会发送一串红外线信号,这些信号包含了控制设备的指令和操作码。

IR驱动芯片可以通过接收红外线信号,并解码出其中的指令和操作码,然后将其传递给相应的设备进行处理。

除了解码红外线信号,IR驱动芯片还可以编码和发送红外线信号。

当我们需要通过遥控器来控制设备时,IR驱动芯片可以接收来自控制器的指令,然后将其编码成红外线信号并发送出去。

这样,设备就能接收到红外线信号并执行相应的操作,比如开关机、调节音量等。

另外,IR驱动芯片还可以实现红外感应功能。

通过接收和解码红外线信号,IR驱动芯片可以判断有无外界物体进入感应范围,从而触发相应的警报或控制操作。

这在电子安防系统和自动化控制系统中有着广泛的应用。

此外,IR驱动芯片还可以实现红外通信功能。

通过将数据编码成红外线信号并发送出去,IR驱动芯片可以实现无线的数据传输。

这在无线遥控器、红外传感器和红外通信设备中都得到了广泛的应用。

总的来说,IR驱动芯片在红外线信号传输和接收方面发挥着
重要的作用。

它可以解码红外线信号、编码和发送红外线信号,实现红外感应和红外通信等功能。

随着科技的不断发展,IR
驱动芯片的功能和性能也在不断提升,为我们的生活和工作带来了更多的便利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IRMCK/F171-灵活易用的电机控制芯片 IRMCK/F171 灵活易用的电机控制芯片
国际整流器公司 2012-1-11


内容
• 概述 概 • 传统方案存在的问题 • IR的解决方案:简单易用的电机控制 芯片IRMCF171 • 方案辅助工具和测试结果 • 结论


概述
• 全球能源短缺导致越来越严格的政府节能规章出 台 • 在中国 能效标签制度的实施以及能效标准的不 在中国,能效标签制度的实施以及能效标准的不 断提高使很多电器转向变频控制 • 变频空调已经完全确立了市场的主导地位 • 家电的变频化趋势也越来越明确,电机调速市场 竞争将更加激烈,产品更新的周期越来越短。

随 之而来的新产品研发风险也越来越大 之而来的新产品研发 险也越来越大 • 节能热点:
– – – – 高效率永磁电机 无位置传感正弦波控制 宽的调速范围 低的振动和噪声


传统方案存在的问题
• • • • 大容量存储单元的高速DSP或32位单片机 软件算法复杂,控制器计算任务繁重 软件算法复杂 控制器计算任务繁重 对于传统的软件编程控制方案,完成电机控制算法已经很复杂, 对于系统设计人员的要求很高
1. 2. 3. 熟悉实时的FOC控制算法,熟悉相关的外设; 熟悉DSP或32位RISC的C或汇编语言编程; 熟悉各种数模混合电路,高压电路和功率开关电路.


开发周期长,开发成本和开发风险都很高
后续的软件维护成本高


电机控制系统框图
IR电机控制IC-IRMCF171


电机控制器: IRMCK/F171
模数控制器IC
• MCU (微控制器) - 60MIPS 8bit 微处理器 • MCE (运动控制引擎) – 可配置的控制模块集 • ASE (模拟信号引擎) – 信号调理和A/D转换


IRMCK/F171内部功能框图


MCE™ (Motion Control Engine)
•不需要写代码 不需要写代码 •图形化模块编辑 •硬件实现算法


无传感FOC控制
速度环和弱磁控制环路


运动控制引擎TM
– MCE 作为单片机的一个外部设备,控制架 构,参数设置由共享RAM里的数据决定. 决 – 独立于单片机快速执行电机控制算法 – 特点:
• • • • • • • • 不需要编程 专用控制模块 小的运动控制序列控制器 丰富的运动控制外设 (低损耗PWM, 负母线或桥臂 电阻电流重构) 双端口RAM与应用层交换信息 多种保护功能 内嵌过流保护比较器 硬件关断脚 (GATEKILL)
Dual Port ua o t RAM
Motion Control Bus
MCE 内部框图
6
To Motor 1 gate drive GATEKILL
Low Loss SVPWM
Motion Control Modules M d l
PFC PWM
To PFC gate drive PFC GATEKILL
Single shunt current reconst
IFB (Motor 1)
MCE Program g RAM
A/D MUX S/H
IFB (PFC) DC bus AC input Analog Ref
Motion Control Sequencer


ASE (模拟信号引擎)
IRMCF171特点
特点
()
•运动控制引擎(MCE TM) 独立完成复杂的电机控制算法–可靠的底层控制模块
•FOC 模块
–磁通估算器和角度锁相环
–(直轴和交轴) 电流调节器
电流调节
–Catching spin功能
–制动、弱磁
•低损耗空间矢量PWM
–开放的速度环方便用户灵活设计
–模拟信号引擎提供功率电路和控制器之间完整的接口•直流负母线电流反馈,电机相电流重构
•辅助的模拟信号通道
•嵌入8051单片机方便用户实现单芯片系统控制–与MCE共享4KBRAM
–多路数字I/O口
–JTAG口调试8051软件.
自检功能符合标准
–自检功能----符合IEC标准
•IRMCK171为对应的OTP版
驱动参数计算工具•MCEWizard
•IR 提供MCE控制电机所需配置寄
存器的计算工具
•您只需输入简单的电机参数和应用
参数,MCEWizard会自动为您导出
所内部寄存器值。

.
•所需参数可以从电机厂家获得,IR
也给出用户自己手工测量的方法。

驱动调试工具
MCEDesigner
•使用该工具测试调整你的电
机驱动参数。

•允许用户自己定义运行过程
或速度曲线等。

•在电机运行过程中随时调整
参数。

参数
•使用示波器功能,可以实时
观察系统各个控制节点的变
化情况,为高效率的优化控
制参数提供便利。

重构的电机相电流
总结
•无需编程
•直流负母线电阻或桥臂电阻采样
•低损耗SVPWM
•Catching spin
•弱磁控制和零矢量制动
•过调制限制
•齐全的保护功能------过欠压,过流,缺相等
•方便直观的调试工具
•有对应的OTP版,并具有自测功能,符合IEC 60335-1 Edition 4.2 –Class B。

相关文档
最新文档