倾向值匹配法PSM)
propensity score matching 连续变量
propensity score matching 连续变量
倾向得分匹配(Propensity Score Matching,简称PSM)是一种在观察性研究中用于校正选择偏差的方法。
在倾向得分匹配中,如果自变量是连续变量,可以使用以下方法进行匹配:
1. 构建倾向得分:对于每个个体,计算其接受处理(如治疗组)的倾向得分。
倾向得分是一个个体接受处理的概率,可以通过逻辑回归或其他模型来估计。
在逻辑回归中,自变量是连续变量,可以直接将其纳入模型。
2. 设定匹配比例:确定每个个体在处理组和对照组之间的匹配比例。
通常,匹配比例可以设置为1:1 或1:n,其中1 表示处理组,n 表示对照组。
3. 进行匹配:根据倾向得分和设定的匹配比例,将处理组和对照组中的个体进行匹配。
可以使用各种匹配算法,如最近邻匹配、半径匹配、核匹配等。
4. 检查平衡性:匹配后,检查处理组和对照组在协变量上的平衡性。
可以通过比较匹配前后的标准化差异或计算均衡性检验统计量来评估平衡性。
5. 分析匹配后的样本:使用匹配后的样本进行后续的分析,以评估处理效果。
在使用倾向得分匹配时,需要满足一些假设,如共同支撑假设和无混淆假设。
同时,匹配过程可能会导致样本损失,因此需要确保匹配后的样本具有足够的样本量进行分析。
倾向得分匹配固定效应模型
倾向得分匹配固定效应模型"倾向得分匹配固定效应模型" 可能是对于倾向得分匹配法(Propensity Score Matching, PSM)和固定效应模型(Fixed Effects Model)的结合的描述。
让我们分别讨论这两个概念:
1. 倾向得分匹配法(Propensity Score Matching, PSM): PSM 是一种用于处理观察研究中潜在选择偏差(confounding bias)的统计方法。
在处理观察研究中的因果推断时,研究者常常会面临到无法进行实验的情况,因此需要通过控制观察到的变量来模拟实验研究。
PSM 就是一种通过估计处理组(接受了某个处理或干预的组)和对照组(没有接受处理的组)之间的概率分数(倾向得分)来匹配相似个体,以减少混淆变量的影响。
2. 固定效应模型 (Fixed Effects Model): 固定效应模型是面板数据分析中的一种模型。
在面板数据中,同一组体(例如个人、公司)被观察多次,即在不同的时间点或条件下。
固定效应模型通过引入组体特定的固定效应,控制了个体固定特征对因变量的影响,从而减少了固定特征的影响。
如果将这两种方法结合起来,可能是在进行面板数据的观察研究时,使用倾向得分匹配法来处理选择偏差,然后在固定效应模型中引入处理组和对照组的固定效应。
这样做的目的是更好地控制潜在的混淆变量,使得对因果效应的估计更为可靠。
综合而言,"倾向得分匹配固定效应模型" 描述了一种在处理选择偏差和面板数据时,同时使用倾向得分匹配和固定效应模型的方法。
这种结合可以帮助研究者更准确地估计因果效应。
倾向得分匹配法步骤
倾向得分匹配法步骤
倾向得分匹配法(Propensity Score Matching, PSM)是一种常用的统计方法,用于处理因果推断中的选择偏差。
下面我将从多个角度介绍倾向得分匹配法的步骤。
1. 确定研究目的,在使用倾向得分匹配法之前,首先需要明确研究的目的和问题,确定需要进行匹配的变量和研究对象。
2. 计算倾向得分,倾向得分是指个体被暴露于某个处理(例如接受某种治疗)的概率。
通常使用logistic回归等方法来计算每个个体的倾向得分,得到一个介于0到1之间的概率值。
3. 匹配处理组和对照组,根据计算得到的倾向得分,将处理组和对照组中的个体进行配对,使得处理组和对照组在倾向得分上尽可能接近,从而达到减少选择偏差的效果。
4. 检验匹配质量,匹配完成后,需要进行匹配质量的检验,通常会使用标准化差异(Standardized Mean Difference, SMD)等指标来评估匹配的效果,确保处理组和对照组在匹配后的特征上没有显著差异。
5. 进行因果推断,匹配完成后,可以利用匹配后的样本进行因果效应估计,比较处理组和对照组在结果变量上的差异,从而得出处理对结果变量的影响。
6. 稳健性检验,最后,为了确保结果的稳健性,可以进行一些敏感性分析,例如倾向得分模型的选择、不同的匹配算法等,来检验结果的稳健性。
综上所述,倾向得分匹配法的步骤包括确定研究目的、计算倾向得分、匹配处理组和对照组、检验匹配质量、进行因果推断以及稳健性检验。
这些步骤有助于减少因果推断中的选择偏差,提高研究结论的可信度。
propensity-score matched analysis
propensity-score matched
analysis
倾向性评分匹配(propensity score matching,PSM)是一种统计学
方法,旨在减少研究中的偏差和混杂变量影响,以便对观察组和对照
组进行更合理的比较。
这种方法最早由Paul Rosenbaum和Donald Rubin在1983年提出,此后获得了快速发展并且在各个方面不断改进。
倾向性评分匹配的基本原理是用一个分值来替代多个协变量,均衡处
理组和对照组之间的协变量的分布。
通过匹配倾向性评分,可以使得
两个组之间的比较更加合理和公正。
倾向性评分匹配被广泛应用于观察性临床研究和临床试验研究的亚组
分析中,可以有效降低混杂偏倚,并在整个研究设计阶段,得到类似
随机对照研究的效果。
在观察性临床研究和RCT研究亚组分析中,由于种种原因,导致偏倚
和混杂变量较多,PSM可以有效减少这些偏差和混杂变量的影响,以便对观察组和对照组进行更合理的比较。
倾向得分匹配法原理及其实现
倾向得分匹配法(Propensity Score Matching,简称PSM)是一种在经济学和其他社会科学中广泛使用的统计方法,主要用于处理自选择偏误和观察数据中的潜在偏差。
其基本原理是通过计算一个倾向得分,将处理组(例如,接受某种干预或处理的对象)与控制组(未接受处理的对象)进行匹配,以消除非处理因素(即干扰因素)的影响,从而更准确地估计处理效应。
原理:倾向得分匹配法的核心在于建立一个倾向得分模型。
这个模型基于一系列可能影响处理分配的协变量(即特征变量),计算每个观察对象接受处理的概率,即倾向得分。
这个得分反映了观察对象在给定其协变量特征的情况下,接受处理的倾向程度。
通过倾向得分,我们可以将处理组和控制组中的观察对象进行匹配。
匹配的目标是找到与处理组对象在协变量特征上尽可能相似的控制组对象。
这样,匹配后的处理组和控制组在协变量上应该是平衡的,即它们在这些特征上的分布应该是相似的。
因此,处理效应的估计就可以更准确地归因于处理本身,而不是其他潜在的干扰因素。
实现:倾向得分匹配法的实现通常包括以下步骤:1.选择协变量:首先,需要确定哪些协变量可能影响处理分配和结果变量。
这些协变量应该被包括在倾向得分模型中。
2.估计倾向得分:使用逻辑回归或其他适当的模型来估计倾向得分。
这个模型以处理分配为因变量,以选定的协变量为自变量。
3.进行倾向得分匹配:根据估计得到的倾向得分,使用适当的匹配方法(如k近邻匹配、卡尺匹配等)将处理组和控制组进行匹配。
4.计算处理效应:在匹配后的样本上计算处理效应。
这通常涉及到比较处理组和控制组在结果变量上的差异。
在实际应用中,倾向得分匹配法可以通过各种统计软件来实现,如Stata、R和Python等。
这些软件提供了丰富的功能和工具,可以帮助研究者进行倾向得分估计、匹配和处理效应的计算。
需要注意的是,倾向得分匹配法虽然可以有效地处理自选择偏误和潜在偏差,但它也有一些局限性和假设条件。
1:1倾向性评分匹配(PSM)-SPSS教程
1:1倾向性评分匹配(PSM)-SPSS教程一、问题与数据谈起临床研究,如何设立一个靠谱的对照,有时候成为整个研究成败的关键。
对照设立的一个非常重要的原则就是可比性,简单说就是对照组除了研究因素外,其他的因素应该尽可能和试验组保持一致,这里就不得不提随机对照试验。
众所周知,随机对照试验中研究对象是否接受干预是随机的,这就保证了组间其他混杂因素均衡可比。
但是有些时候并不能实现随机化,比如说观察性研究。
这时候倾向性评分匹配(propensity score matching, PSM)可以有效降低混杂偏倚,并且在整个研究设计阶段,得到类似随机对照研究的效果。
与常规匹配相比,倾向性评分匹配能考虑更多匹配因素,提高研究效率。
这么“高大上”的倾向性评分匹配,是不是超级难学?错矣!今天就带大家轻松搞定1:1倾向性评分匹配。
作为“稀罕”大招,并不是在所有版本的SPSS都可以实现倾向性评分匹配,仅在SPSS22及以上自带简易版PSM。
本次使用SPSS22为大家演示1:1倾向性评分匹配。
某研究小白想搞明白吸烟和高血压之间的关系,准备利用某项调查的资料进一步随访研究吸烟和高血压的关联,该项研究包括233名吸烟者,949 名不吸烟者。
如果全部随访,研究小白感觉鸭梨山大,所以打算从中选取部分可比的个体进行随访。
这两组人群一些主要特征的分布存在显著差异(见表1),现准备采用PS最邻近匹配法选取可比的个体作为随访对象。
表1. 两组基线情况比较(匹配前)二、SPSS操作1. 数据录入(1) 变量视图(2) 数据视图2. 倾向性评分匹配选择Data→Propensity Score Matching,就进入倾向性评分匹配的主对话框。
将分组变量Smoke放入Group Indicator中(一般处理组赋值为“1”,对照组赋值为“0”);将需要匹配的变量放入Predictors中;Name for Propensity Variable为倾向性评分设定一个变量名PS;Match Tolerance用来设置倾向性评分匹配标准(学名“卡钳值”),这里设定为0.02,即吸烟组和不吸烟组按照倾向性评分±0.02进行1:1匹配(当然,卡钳值设置的越小,吸烟组和不吸烟组匹配后可比性越好,但是凡事有个度,太小的卡钳值也意味着匹配难度会加大,成功匹配的对子数会减少,需要综合考虑~~~);Case ID确定观测对象的ID;Match ID Variable Name设定一个变量,用来明确对照组中匹配成功的Match_ID;Output Dataset Name这里把匹配的观测对象单独输出一个数据集Match。
倾向得分匹配法原理 -回复
倾向得分匹配法原理-回复倾向得分匹配法(Propensity Score Matching,PSM)是一种常用于处理因果推断问题的统计方法。
它的基本原理是通过构建倾向得分模型,将被处理的个体(处理组)与未处理的个体(对照组)进行配对,以便在某些特定的变量上达到类似或相同的分布,从而减少处理选择引起的偏倚。
PSM方法主要适用于在实验条件不具备的情况下进行因果推断。
在实验研究中,研究人员可以通过随机分组将个体分配到处理组和对照组,从而控制潜在的混淆因素。
然而,在实际应用中,一些因果问题无法通过实验进行研究,因此需要使用非实验数据来进行推断。
在这种情况下,倾向得分匹配法就能派上用场。
PSM方法的核心思想是通过估计个体的倾向得分,来度量个体进入处理组的概率。
倾向得分(Propensity Score)是指个体进入处理组的条件概率。
我们可以使用一些统计模型,例如逻辑回归模型,来估计这个得分。
这个模型会基于一系列观察到的协变量(confounding variables),也就是可能影响个体进入处理组的变量,比如年龄、性别、教育水平等,来预测个体进入处理组的概率。
在得到个体的倾向得分后,我们可以使用这个得分来进行配对。
具体来说,我们首先将处理组中的个体与对照组中的个体按照倾向得分进行配对。
一般可以使用一对一匹配、一对多匹配或者多对多匹配等方式。
匹配的目标是使处理组和对照组在倾向得分上的分布相似。
配对完成后,我们可以比较处理组和对照组在结果变量上的差异,来得到处理的因果效应。
这种比较可以通过计算平均处理效应(Average Treatment Effect,ATE)来实现。
ATE表示处理组与对照组在结果变量上的平均差异。
在计算ATE时,常常还会考虑到一些非随机选择问题带来的偏倚。
例如,可能存在选择性个体退出、数据缺失或者其他特殊情况。
为了解决这些问题,可以使用倾向得分匹配法的改进方法,如加权倾向得分匹配法(Weighted Propensity Score Matching)或者可接受性函数(Acceptance Function)等。
SPSS—倾向性评分匹配法(PSM)
SPSS—倾向性评分匹配法(PSM)倾向评分匹配(propensity score matching, PSM)的概念由Rosenbaum和Rubin在1983年首次提出。
2010年之后,这一方法日益受到人们的关注。
国际上越来越多的研究者将倾向指数法应用到流行病学、健康服务研究、经济学以及社会科学等许多领域。
在流行病学研究中,该方法可以在分析和设计阶段有效平衡非随机对照研究中的混杂偏倚,使研究结果接近随机对照研究的效果。
在观察性研究中,如病例对照研究,经常会见到匹配的概念,即按照某些因素或特征,将病例组(或暴露组)和对照组的研究对象进行匹配,以保证两组研究对象具有可比性,从而排除匹配因素的干扰。
同样,既然倾向性评分是一个能够反映多个混杂因素影响的综合评分,我们也可以将两组人群按照倾向性评分从小到大来进行匹配,仅用匹配倾向性评分一个指标来达到同时控制多个混杂因素的目的。
倾向性评分匹配是倾向性分析中应用最为广泛的一种方法。
首先我们要计算出每一个研究对象的倾向性评分,然后从小到大进行排序,对于每一个暴露/处理组的研究对象,从对照组中选取与其倾向性评分最为接近的所有个体,并从中随机抽取一个或N个研究对象作为匹配对象,直至所有的研究对象均匹配完毕,未匹配上的研究对象则进行舍去。
当然,有多少研究对象可以成功匹配,常常与选择匹配的比例和匹配的标准有关。
匹配的比例最常见的为1:1匹配,需要根据两组人群的数量来决定合适的匹配比例,建议不要超过1:4匹配。
对于匹配标准,如果匹配的标准很高,则能够成功匹配的对象就可能会少,甚至出现匹配不上的现象,造成研究对象信息的浪费,如果匹配的标准很宽泛,则匹配的效果就会较差,有可能出现两组人群在匹配后依然存在混杂因素分布不均衡的现象。
例如某个个体的倾向性评分为0.8,如果设定匹配标准为±0.02,则需要为其寻找倾向性评分在0.78-0.82之间的对照进行匹配,匹配范围太窄就可能出现匹配不上的情况;如果设定匹配标准为±0.2,则需要为其寻找倾向性评分在0.8-1.0之间的对照进行匹配,匹配范围太宽则可能降低匹配的效果。
真实世界研究统计分析方法(二):倾向性评分匹配(PSM)
真实世界研究统计分析方法(二):倾向性评分匹配(PSM)试验性研究(例如RCT)做随机化分组目的是:控制混杂。
真实世界研究,不人为分配X(Assigned Exposure X),不做随机分组,需要通过数据分析的方法控制混杂。
2006年美国流行病学杂志Am J Epidemiol 总结了真实世界研究控制混杂常用的五种方法[1],包括:1. 多元回归模型调整混杂2. 倾向性评分匹配(PSM)后构建回归模型3. 回归模型调整倾向性评分(PS)4. 回归模型加权(IPTW)处理5. 回归模型加权(SMR)处理本文分享第二种方法:倾向性评分匹配(PSM)往期相关资料:真实世界研究统计分析方法(一):调整混杂2015年在NEJM发表了一项研究[2],支架和CABG手术相比,对于多支病变的冠心病的疗效。
研究对象:冠心病患者X:两种治疗方式,第二代药物支架(PCI)与冠脉搭桥(CABG)相比Y:预后包括死亡、心梗、再次血运重建和卒中研究设计:观察性研究(observational)中的队列(cohort)研究。
没有随机分配治疗方案,不是RCT,是在真实世界中观察不同治疗方案的疗效。
纳入了3万多人,PSM后剩下不到2万人,样本量少了很多。
目的是控制混杂:挑出一部分人,使得接受不同治疗方案(X)的患者基线情况相似。
这一点非常重要。
试想,如果病情重的人偏向于做搭桥手术,病情重的人预后不好,就会得出搭桥手术疗效差的假象。
解决办法:研究设计时通过PSM的方法选择患者,使得不同X组的人基线相似。
即纳入的人既有可能接受PCI,又有可能接受CABG。
给定一个病例,从数据库里找出满足配对条件的所有可能的对照,然后根据匹配数随机选择对照。
如1:1匹配,随机选一个作对照;1:2匹配,随机选2个配对。
因此PSM的方法又被成为事后随机化,相当于在队列里面构建RCT。
这个就厉害了!正因为倾向性评分(Propensity score ,PS)在控制混杂方面有独特的优势,肿瘤领域的真实世界研究,近年运用PS方法论文的比例出现了爆发[3]:使用PS分析方法的论文数量随发表年份的变化图2017年发布了PS论文报告标准,规范了19条需要在论文中描述的重要内容[3]。
倾向得分匹配法结果解读
倾向得分匹配法结果解读倾向得分匹配法(Propensity Score Matching,PSM)是一种常用的统计方法,用于处理观察性数据中的因果推断问题。
它通过建立一个倾向得分模型,将处理组(接受某种处理或干预)与对照组(未接受处理或干预)进行匹配,从而消除处理组和对照组之间的潜在选择偏差,使得比较更具可靠性。
解读倾向得分匹配法的结果需要考虑以下几个方面:1. 倾向得分模型的质量,首先需要评估倾向得分模型的拟合程度和预测准确性。
常用的评估指标包括C统计量(C-statistic)、区分度指数(Discrimination Index)等。
较高的指标值表明模型的质量较好,倾向得分的预测能力较强。
2. 平衡性检验,在进行倾向得分匹配后,需要检验处理组和对照组之间的基线特征是否得到平衡。
常用的平衡性检验方法包括t 检验、卡方检验等。
如果处理组和对照组在倾向得分匹配后的基线特征上没有显著差异,说明匹配效果较好,处理组和对照组的比较更具可靠性。
3. 效应估计与统计显著性,倾向得分匹配后,可以通过比较处理组和对照组之间的平均差异来估计处理效应。
常见的效应估计方法包括平均处理效应(Average Treatment Effect,ATE)、平均处理效应对于受处理的人群(Average Treatment Effect on the Treated,ATT)等。
此外,还需要进行统计显著性检验,判断处理效应是否显著。
4. 敏感性分析,倾向得分匹配方法对于倾向得分模型的假设敏感,因此需要进行敏感性分析,检验结果的稳健性。
常见的敏感性分析方法包括倾向得分模型的功能形式敏感性分析、倾向得分模型的变量选择敏感性分析等。
综上所述,解读倾向得分匹配法的结果需要综合考虑倾向得分模型的质量、平衡性检验、效应估计与统计显著性以及敏感性分析等多个方面,以确保结果的可靠性和有效性。
倾向值评分匹配方法PSMppt课件
1
RCT:很多限制,如费用,伦理学要 求,操作困难,不适合发病率很低的 疾病 非RCT:避免以上繁杂的问题,容易 组间基线不齐,使之成为处理效应的 混杂因素从而产生偏移
2
• 为了消除混杂因素的影响,传统的解决方式是,用多变 量配对,多变量分析模型,M-H分层分析,协变量分析。
14
• 比较的效果是接受治疗后1 年内的生存率,成本是所有疾病相关 的医疗成本,研究分别对成本和效果未经过调整的结果、多元回 归结果、基于倾向值匹配的结果和基于倾向值分层的结果进行了 比较。
15
讨论
倾向值分析只能尽量减少混杂因素产生的影响,并不能完全消除, 其消除程度取决于可以被观测和控制的变量数量以及匹配的质量。 此外,倾向值分析只能对可观测的混杂因素进行平衡和控制,并不 能够控制不可观测的混杂因素,当有重要的混杂因素缺失或不可观 测时,采用倾向值分析所得结果可能与真实值存在较大偏差。
8
估计倾向值
• Logistic 回归模型 • 令y=组别,x为各协变量 每个个体在给定可观测混杂因素的条件下接受干预的条件概率。
9
选择匹配方法
最近邻匹配
卡钳匹配 马氏距离匹配
贪婪匹配法
10
匹配后的均衡性检验
• 协变量的平衡可通过均值上的绝对标准化差值来衡量
• 通常dX>dXm,说明在匹配后样本的平衡程度有所改善。
• 目的:将多个变量(多维)转化为一个中间变量(一维) • 特点:不在关注每个需要控制的混杂因素的具体取值,转为关注将这
些变量纳入logistic回归方程后预测出来的倾向值。只要保证倾向值匹 配,这些所有需要控制的混杂因素都考虑了。
5
PSM适用情形
• 前提:logistic多因素分析已经无法校正 • 1:实验组与对照组人数相差甚远(>4:1) • 2:两组变量差异太大,可比性差,如基线不齐,或混杂因素多 • 3:变量过多,样本量偏少
倾向得分匹配法介绍
倾向得分匹配法介绍本研究主要考察政府对企业研究开发补贴的影响,由于传统的模型例如采用普通最小二乘法(OLS)估计的多元线性模型难以有效地解决可能存在的样本选择性偏差和遗漏关键变量所造成的内生性这两个关键性问题。
因此,本研究主要采用倾向得分匹配法(propensityscorematching,PSM)对政府对企业研究开发的补贴与企业发展水平的实证关系进行稳健性的因果推断。
一、模型构建);另一D s={0,1}lnincome1Rubin(ATT)、。
样本(获取政府补贴的企业样本)在获取政府补贴前后发展水平变化的期望值;控制组平均处理效应(ATU)测度的是对照组样本(未获取政府补贴的企业样本)在获取政府补贴前后发展水平变化的期望值;平均处理效应(ATE)测度的是样本满足“个体处理效应稳定假设”前提下,同一样本企业在获取政府补贴前后发展变化的期望值。
3、倾向得分匹配过程(matching)在公式(1)和(2)中,E(lnincome0|X,subside=1)表示获得补贴的企业如果不接受政府补贴时的企业发展水平,E(lnincome1|X,subside=0)表示没有获得补贴的企业如果接受政府补贴时的企业发展水平,由此可以看出,这两个期望均值是非事实以及不可观测的。
解决这一问题的关键思路是,如果可以找到与获得政府补贴的企业“相似”的未获取政府补贴的企业,那么,就可以通过观察未获取补贴企业来判断接受补贴的企业在反事实情况下的发展水平,这一过程被称之为匹配过程(matching)。
通过匹配,可以使得获取补贴的企业和未获取补贴的企业所有的特征变量都尽量相同,但这些特征变量的权重在很多情况下难以衡量。
基于此,采用倾向得分匹配法则可以将众多指标合成(。
倾向得分匹配法(PSM)举例及stata实现
倾向得分匹配法(PSM )举例及stata 实现——读书笔记【例】培训对工资的效应1政策背景:国家支持工作示范项目(National Supported Work,NSW )研究目的:检验接受该项目(培训)与不接受该项目(培训)对工资的影响。
基本思想:分析接受培训组(处理组,treatment group )接受培训行为与不接受培训行为在工资表现上的差异。
但是,现实可以观测到的是处理组接受培训的事实,而处理组没有接受培训会怎样是不可能观测到的,这种状态也成为反事实(counterfactual )。
匹配法就是为了解决这种不可观测事实的方法。
在倾向得分匹配方法(Propensity Score Matching )中,根据处理指示变量将样本分为两个组,一是处理组,在本例中就是在NSW 实施后接受培训的组;二是对照组(comparison group ),在本例中就是在NSW 实施后不接受培训的组。
倾向得分匹配方法的基本思想是,在处理组和对照组样本通过一定的方式匹配后,在其他条件完全相同的情况下,通过接受培训的组(处理组)与不接受培训的组(对照组)在工资表现上的差异来判断接受培训的行为与工资之间的因果关系。
变量定义:变量 定义TREAT * 处理指示变量,1表示接受培训(处理组),0表示没有接受培训(对照组)AGE 年龄(年)EDUC 受教育年数(年)BLACK 种族虚拟变量,黑人时,1BLACK =HSIP 民族虚拟变量,西班牙人时,=1HSIPMARR婚姻状况虚拟变量,已婚,1MARR = 74RE 1974年实际工资(1982年美元)75RE 1975年实际工资78RE 1978年实际工资74U 当在1974年失业,741U =75U当在1975年失业,751U = NODEGREE 当12EDUC <时,1NODEGREE =,否则为0 AGESQAGE AGE × 1 本例选自Cameron&Trivedi 《微观计量经济学:方法与应用》(中译本,上海财经大学出版社,2010)pp794-800 所有数据及程序均来自于本书的配套网站(/mmabook/mmaprograms.html )。
倾向评分匹配法
倾向评分匹配法(Propensity Score Matching, PSM)是一种常用的非实验研究方法,用于解决因果推断问题。
它通过将参与某个处理(例如接受某项政策、干预或治疗)的个体与没有参与该处理的个体进行匹配,以消除因群体选择偏差带来的潜在混杂变量的影响。
PSM的基本步骤如下:
1. 确定研究问题和处理变量:明确需要进行因果分析的研究问题,并确定影响因变量的处理变量。
2. 构建倾向评分模型:利用回归分析等方法,建立一个预测参与处理的倾向评分模型,该模型能够根据个体的特征预测其选择处理的概率。
3. 匹配样本:根据个体的倾向评分,将参与处理的个体与未参与处理的个体进行配对匹配,使得两组个体在处理前的特征上尽可能相似。
4. 检验平衡性:检验匹配后的样本是否在处理前的特征上达到平衡状态,以确保匹配的有效性。
5. 进行因果推断:比较处理组和对照组在因变量上的差异,以得出因果效应的估计结果。
6. 敏感性分析:进行敏感性分析,检验倾向评分模型的稳健性,并评估结果对潜在假设的依赖程度。
PSM方法在通过实验研究来解决问题存在困难或不可行的情况下,为研究人员提供了一种处理群体选择偏差的有效工具。
然而,PSM也有
一些限制,如依赖于建模假设、匹配质量和结果的解释等方面存在一定挑战。
因此,在应用PSM时需要谨慎选择合适的方法和适用范围,并结合其他方法进行结果验证和分析。
倾向性得分匹配(PSM)
倾向性得分匹配(PSM)倾向值(Propensity Score,倾向性得分)分析近些年来火的一塌糊涂,PubMed自由词搜索Propensity Score,相关文章近些年大有井喷之势(图标数据截止2020.05.21)。
但严格来说,倾向性得分算不得一种“分析”方法,而是一种用于数据处理的方式,常用于观察性研究混杂因素的控制。
比如你想研究施加某种干预对结局指标是否有改善,数据来自回顾性的既有资料的收集,由于是观察性研究,大概率存在混杂因素在组间不均衡的问题(如基线不平),这个时候你就可以考虑倾向性得分分析了。
PS就是以干预因素(组别)为因变量,以所有观测到的非研究性因素为自变量进行logistic或probit回归,在给定的协变量条件下,个体接受干预因素处理的概率。
根据PS,我们就可以对试验组和对照组进行筛选,使得不同组的非研究性因素实现均衡,从而达到控制的目的。
倾向性得分本身并不能控制混杂,而是通过PS匹配、加权、分层或进入回归模型直接调整混杂等方式,不同程度地提高对比组间的均衡性,从而削弱或平衡协变量对效应估计的影响,达到“类随机化”的效果,又称为事后随机化。
简单理解,就是从大量的样本数据中将具有共同特征的干预组和对照组样本挑选出来,然后对这些符合要求的样本进行分析。
倾向性得分可以同时调整大量的混杂因素,省时间省钱,但是需要的样本量较大,只能均衡已观测的指标变量,而且可能会以丢失样本为代价。
大部分软件给出的是两水平的干预因素的倾向性得分,SPSS直接给出了1:1的倾向性得分匹配结果。
数据来自STATA16的自带数据,是一项关于孕期妇女吸烟对新生儿体重的影响的观察性研究,由Cattaneo (2010)报道。
调查数据涉及众多变量包括新生儿出生体重(bweight)外,还有孕母的婚姻状况(mmarried)、孕期是否饮酒(alcohol)、年龄(mage)、教育水平(medu)、是否吸烟(mbsmoke)、母亲是否白人(mrace)、是否首胎(fbaby)、首次产前检查是否在头三个月内(prenatal1)以及父亲的年龄(fage)、是否白人(frace)等众多变量。
stata:倾向得分匹配(PSM)
stata:倾向得分匹配(PSM)导读:在经济学中,我们常常希望评估项目实施后的效应,一般的做法是加入虚拟变量,但是这种做法并不科学。
例如政府推行就业培训计划,该项目的参与者,我们将其称作处理组(treatment group),未参与的培训的样本称作控制组(control group)也叫对照组。
PSM考虑就业培训的处理效应评估。
我们一般的做法是比较两组的收入状况。
如果这样处理,可能得到的结论是参加培训的收入低于未参加培训者。
这是由于一开始选择控制组的样本时,选择范围比较广阔,存在选择偏差。
所以在此介绍倾向得分匹配方法(PSM)。
本文在此就不介绍相关理论了,因为小编的理论也不是特别的好,如果想学习的可以参阅连玉君老师的相关视频(重点推介),大概有5个课时;同时也可以参考陈强老师的《高级计量经济学及stata应用》中的第28章处理效应。
在此小编仅仅介绍stata的相关操作。
1、安装psmatch2ssc install psmatch2,replace2、导入数据,方法比较多,可以粘贴复制、也可以使用命令use E:\BaiduNetdiskDownload\A\labor.dta,clear3、命令语法格式介绍psmatch2 D x1 x2 x3 ,outcome(y) logit ties ate common odds /// pscore(varname) qui对以上的标准命令进行解析D为处理变量,是虚拟变量即是否参加培训x1 x2 x3是协变量,一般的称呼也叫解释变量outcome(varname)是输出变量,例如收入logit 表示计算得分的时候使用logit模型,如果不写Logit,默认为probit模型计算得分,在连玉君的视频中论述了二者并不存在明显的差异。
ties表示包括所有倾向得分相同的并列个体,默认按照数据排序选择其中一位个体。
ATE表示同是汇报ATE、ATU、ATT,大家看书重点了解common表示仅对共同取值范围内的个体进行匹配odds使用几率比(odds ratio)算法为p/(1-p),熟悉logit模型的应该了解qui屏幕中不显示logit模型估计过程,可以节省运算时间4 匹配方法连玉君的视频教程讲了三种:最近0匹配、半径匹配、核匹配;陈强老师讲了6种,如果想详细学习,可以参考他们的相关视频与书籍。
倾向值匹配法(PSM)
匹配前后变量的差异对比 命令:pstest re78 $x(pstest re78 $x,both graph)
匹配前后密度函数图
twoway (kdensity _ps if _treat==1, legend(label(1 "Treat"))) (kdensity _ps if (_wei!=1&_wei!=.), legend(label(2 "Control"))), xtitle("Pscore") title("After Matching")
通过对处理组和对照组的匹配在其他条件完全相同的情况下通过接受培训的组处理组与不接受培训的组控制组在工资表现上的差异来判断接受培训的行为与工资之间的因果关系
倾向值匹配法(PSM)
Q:为什么要使用PSM?
A:解决样本选择偏误带来的内生性问题 例:上北大有助于提高收入吗? 样本选择偏误:考上北大的孩子本身就 很出色(聪明、有毅力、能力强…) 解决方法:样本配对
方法二:半径匹配法 (radius matching)
方法三:分层匹配法 (stratification matching)
内容:分层匹配法是根据估计的倾向得分将全 部样本分块,使得每块的平均倾向得分在处理 组和控制组中相等。 优点:Cochrane ,Chambers(1965)指出五 个区就可以消除95%的与协变量相关的偏差。 这个方法考虑到了样本的分层问题或聚类问题。 就是假定:每一层内的个体样本具有相关性, 而各层之间的样本不具有相关性。 缺点:如果在每个区内找不到对照个体,那么 这类个体的信息,会丢弃不用。总体配对的数 量减少。
配对过程中的两个核心问题(2)
倾向匹配(PSM)分析:观察性研究的统计学利器 - 预防医学讨论版 -丁香园论坛
rinyxa科室保密何为PSM分析呢?这个问题需要先从临床研究的类型说起。
众所周知,临床研究分为干预性研究和观察性研究。
干预性研究的论证强度是高于观察性研究的,原因就在于干预性研究可以通过“随机分配”的方式平衡混杂因素。
比如研究一种药物治疗抑郁症的疗效,研究者在招募了一些抑郁症患者后,将其随机分为实验组和对照组,实验组接受药物治疗,对照组接受安慰剂治疗。
经过治疗一段时间后,如果两组患者的预后不同,则我们可以认为这种“预后”上的差异完全是有治疗措施的差异引起的(实际上,我认为这句话值得商榷!),因为从理论上讲,实验组和对照组的临床特征是相同的,或者说具有可比性的。
正因我的丁香客精品栏目找人随便看看更多版内搜索此时,如果贫血组和非贫血组患者在三年缺血时间发生风险上存在差异,则就可以将原因归结为贫血,因为两组患者其他特征都是相同的。
关于PSM的统计学原理,笔者在此以JTD这篇文章为例进行一简要介绍。
其基本流程为:首先将患者分为贫血患者非贫血患者,然后采用logistic回归,以贫血与否作为应变量(Y),以其他所有已知的临床特征(比如BMI、NYHA分级、高血压等)作为自变量(X),计算出每个患者的“贫血概率”。
这个贫血概率实际上就是PSM最核心的内容之一。
然后,根据贫血概率,将实验组和对照组进行匹配。
比如,贫血组一个患者的贫血概率为0.361,那么就在非贫血患者sunnymilanhuang入门站友黄春雨入门站友htelyon 入门站友影灯麻醉科李珂薇ake 入门站友。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倾向打分
1.设定宏变量 (1)设定宏变量breps表示重复抽样200次 命令:global breps 200 (2)设定宏变量x,表示age agesq educ educsq
married black hisp re74 re75 re74sq re75sq u74black 命令:global x age agesq educ educsq married black hisp re74 re75 re74sq re75sq u74black
ATT(平均处理效应的衡量)
匹配前后变量的差异对比 命令:pstest re78 $x(pstest re78
$x,both graph)
匹配前后密度函数图
twoway (kdensity _ps if _treat==1, legend(label(1 "Treat"))) (kdensity _ps if (_wei!=1&_wei!=.), legend(label(2 "Control"))), xtitle("Pscore") title("After Matching")
缺点:由于不舍弃任何一个处理组,很可能有 些配对组的倾向得分差距很大,也将其配对, 导致配对质量不高,而处理效应ATT的结果中 也会包含这一差距,使得ATT精确度下降。
方法一:最邻近方法 (nearest neighbor matching)
命令 set seed 10101(产生随机数种子) attnd re78 treat $x,comsup boot
缺点:如果在每个区内找不到对照个体,那么 这类个体的信息,会丢弃不用。总体配对的数 量减少。
方法三:分层匹配法 (stratification matching)
命令 set seed 10101 atts re78 treat,pscore(mypscore)
blockid(myblock) comsup boot reps($breps) dots
实例介绍
分组:在倾向值匹配法中,根据处理指示变量 将样本分为两个组。处理组,在本例中就是在 NSW(国家支持工作示范项目)实施后接受培 训的组;控制组,在本例中就是在NSW实施后 不接受培训的组。
研究目的:通过对处理组和对照组的匹配,在 其他条件完全相同的情况下,通过接受培训的 组(处理组)与不接受培训的组(控制组)在 工资表现上的差异来判断接受培训的行为与工 资之间的因果关系。
倾向打分
2.通过logit模型进行倾向打分 命令:pscore treat $x,pscore(mypscore)
blockid(myblock) comsup numblo(5) level(0.05) logit
注:$表示引用宏变量
pscore结果
倾向值分布
倾向值分布
block中样本的分布
2.初步设定 logit treat $x
匹配变量的筛选
3.逐步回归 stepwise,pr(0.1):logit treat $x
ps值的计算
psmatch2 treat $x,out(re78) 倾向得分的含义是,在给定X的情况下,
样本处理的概率值。利用logit模型估计 样本处理的概率值。概率表示如下: P(x)=Pr[D=1|X]=E[D|X]
block中的描述性统计
运用得分进行样本匹配并比较
方法一:最邻近方法 (nearest neighbor matching)
含义:最邻近匹配法是最常用的一种匹配方法, 它把控制组中找到的与处理组个体倾向得分差 异最小的个体,作为自己的比较对象 。
优点:按处理个体找控制个体,所有处理个体 都会配对成功,处理组的信息得以充分使用。
核匹配的Bootstrap检验
内容:分层匹配法是根据估计的倾向得分将全 部样本分块,使得每块的平均倾向得分在处理 组和控制组中相等。
优点:Cochrane ,Chambers(1965)指出五 个区就可以消除95%的与协变量相关的偏差。 这个方法考虑到了样本的分层问题或聚类问题。 就是假定:每一层内的个体样本具有相关性, 而各层之间的样本不具有相关性。
当、……(多维配对)??? PSM:把多个维度的信息浓缩成一个
(降维:多维到一维)
配对过程中的两个核心问题(1)
Q1:哪个样本更好一些?
A1:Sample2较好:比较容易满足共 同支撑假设(common support assumption)
配对过程中的两个核心问题(2)
Q2:stu c1,c2,c3三人中,谁是stu PK的 最佳配对对象?
变量定义
re78
1978年实际工资
u74 agesq
当在1974年失业,u74=1 age*age
educsq educ*educ
re74sq re74*re74
re75sq re75*re75
u74blcak u74*blcak
倾向打分
OLS回归结果
工资的变化到底是来自个体的异质性 性还是培训?
A2:stu c3是最佳配对对象,比较容易 满足平行假设(balancing assumption)
ATT(Average Treatment Effect on the Treated) 平均处理效应的衡量
运用得分进行样本匹配并比较,估计出 ATT值。
ATT=E[Y(1)-Y(0) |T=1] 可观测数据 Y(1):Stu PK 上北大后的年薪 Y(0): Stu PK 假如不上北大的年薪
ATT=12W-9W=3W
不可观测数据, 采用配对者的
收入来代替
实例介绍
实例介绍
研究问题:培训对工资的效应
基本思想:分析接受培训行为与不接受 培训行为在工资表现上的差异。但是, 现实可以观测到的是处理组接受培训的 事实,而如果处理组没有接受培训会怎 么样是不可观测的,这种状态称为反事 实。匹配法就是为了解决这种不可观测 的事实的方法。
运用bootstrap获得ATT标准误
命令:bootstrap,reps(#):psmatch2 treat $x,out( re78)
在统计分析中,样本较少,采用bootstrap,可 以减少小样本偏误。
步骤:首先,从原始样本中可重复地随机抽取 n个观察值,得到经验样本;然后采用PSM计 算改经验样本的平均处理效果ATT;将第一步 和第二步重复进行#次,得出#个ATT值;计算 #个ATT值的标准差。
方法二:半径匹配法 (radius matching)
命令 set seed 10101 attr re78 treat $x,comsup boot
reps($breps) dots logit radius(0.001)
方法二:半径匹配法 (radius matching)
方法三:分层匹配法 (stratification matching)
匹配处理组
最近邻匹配 命令:psmatch2 treat $x(if
soe==1),out(re78) neighbor(2) ate 半径匹配 命令:psmatch2 treat $x,out(re78) ate
radius caliper(0.01) 核匹配 命令:psmatch2 treat $x,out(re78) ate
命令 set seed 10101 attk re78 treat $x,comsup boot
reps($breps) dots logit
方法四:核匹配法 (kernel matching)
psmatch2
匹配变量的筛选
1.设定宏变量 设定宏变量x,表示age agesq educ
变量定义
变量 treat age educ black hsip marr re74 re75
定义 接受培训(处理组)表示1,没有接受培训(控制组)表示0 年龄 受教育年数 种族虚拟变量,黑人时,black=1 民族虚拟变量,西班牙人时,hsip=1 婚姻状况虚拟变量,已婚,marr=1 1974年实际工资 1975年实际工资
倾向值匹配法(PSM)
Q:为什么要使用PSM?
A:解决样本选择偏误带来的内生性问题 例:上北大有助于提高收入吗? 样本选择偏…) 解决方法:样本配对
配对方法
同行业(一维配对) 同行业、规模相当(二维配对) 同行业、规模相当、股权结构相
twoway (kdensity _ps if _treat==1, legend(label(1 "Treat"))) (kdensity _ps if _treat==0, legend(label(2 "Control"))),xtitle(Pscore) title("Before Matching")
educsq married black hisp re74 re75 re74sq re75sq u74black 命令:global x age agesq educ educsq married black hisp re74 re75 re74sq re75sq u74black
匹配变量的筛选
reps($breps) dots logit
方法一:最邻近方法 (nearest neighbor matching)
方法二:半径匹配法 (radius matching)
半径匹配法是事先设定半径,找到所有 设定半径范围内的单位圆中的控制样本, 半径取值为正。随着半径的降低,匹配 的要求越来越严。
kernel
匹配处理组
满足两个假设:A共同支撑假设B平行假 设
ATT(平均处理效应的衡量)