大体积砼温度监测方案
大体积混凝土测温施工方案
大体积混凝土测温施工方案混凝土是建筑施工中常用的材料之一,其性能与质量直接关系到工程的结构稳定性和安全性。
为了确保混凝土的质量,温度监测在混凝土施工过程中起着至关重要的作用。
本文将介绍一种用于大体积混凝土测温的施工方案。
1. 引言大体积混凝土是指在一次浇筑中需要达到较大体积的混凝土工程。
在大体积混凝土施工过程中,混凝土的温度变化对其质量和性能有着重要影响。
因此,对大体积混凝土的温度进行准确监测和控制是确保工程质量的关键之一。
2. 测温原理测温的原理是利用温度计或传感器对混凝土进行实时监测,记录混凝土在不同位置和时间的温度变化。
温度计的种类较多,常见有热电偶温度计、扩散型温度计和电阻温度计等。
根据实际需要选择合适的温度计,并保证测温设备的准确度和可靠性。
3. 施工方案(1)选择测温点:在大体积混凝土浇筑前,需要根据工程要求和设计要求选择测温点。
测温点应尽量分布在混凝土结构的各个关键部位,如底板、墙体、柱子等。
确保测温点能够实时准确反映混凝土的温度变化。
(2)埋设测温设备:在施工前,根据选定的测温点,将温度计或传感器设备埋设于混凝土内部。
在埋设过程中,要保证测温设备与混凝土之间的接触良好,避免温度测量的误差。
(3)数据采集与分析:在混凝土浇筑过程中,对测温设备采集到的数据进行实时记录。
可以借助数据采集系统进行自动采集,或者采用手动方法进行数据记录。
测温数据的采集可以通过有线或无线方式传输至中央控制室,便于施工人员进行实时监测和分析。
(4)温度控制与调整:根据测温数据的分析结果,及时调整施工工艺和条件,确保混凝土的温度在设计要求范围内。
若温度偏离设计要求,可以采取降温或加温措施,如增加/减少冷却水的用量、调整混凝土的配合比等。
4. 施工注意事项(1)保证测温设备的准确度和可靠性,定期进行校准和维护,确保数据的准确性。
(2)在浇筑混凝土时要保证测温设备的完整性,避免设备被损坏或移位。
(3)混凝土测温过程中,要注意施工工艺和操作要求,确保测温数据的可靠性和准确性。
大体积混凝土测温布置(二)
大体积混凝土测温布置(二)引言概述:大体积混凝土测温布置是指在大体积混凝土工程中,合理布置温度测量点,以监测混凝土的温度变化情况。
本文将从测温点的选取、布置方式、测温设备、数据采集及分析等五个大点进行详细阐述。
正文:一、测温点的选取1. 根据混凝土结构和尺寸选取主要测温点,如混凝土心温度点、混凝土表面温度点等。
2. 考虑混凝土温度变化的不均匀性,选取分布均匀的测温点。
3. 针对特殊部位,如跨梁、钢筋浇筑区域,选取靠近该部位的测温点。
二、布置方式1. 根据混凝土工程结构特点,采用直线型、网格型或环形布置方式。
2. 确保测温点之间的距离适当,通常不超过2米。
3. 避免测温点过于集中或过于分散,保证整体布置的有效性。
三、测温设备1. 选择适合大体积混凝土测温的传感器,如热电偶、光纤光栅等。
2. 确保传感器的测温范围和精度满足实际需求。
3. 防止传感器受到混凝土浇筑过程中的损坏,采取保护措施。
四、数据采集1. 使用专业的数据采集设备,确保测温数据的准确性和稳定性。
2. 定期校准传感器,避免测温数据产生偏差。
3. 建立完备的数据采集记录系统,确保数据存档和备份。
五、数据分析1. 对测温数据进行实时监测和记录。
2. 通过数据分析,判断混凝土的温度变化趋势,及时发现异常情况。
3. 结合混凝土的温度变化情况,优化施工方案,确保混凝土的质量和安全。
总结:大体积混凝土测温布置是保障工程质量的重要环节。
合理选取测温点、科学布置方式、使用适当的测温设备、精确进行数据采集和深入分析,可以有效监测和控制混凝土温度变化,在工程施工中起到重要作用。
大体积混凝土温度监测技术(二)2024
大体积混凝土温度监测技术(二)引言概述:大体积混凝土结构在施工过程中需要进行温度监测,以保证混凝土的质量和性能。
本文将继续介绍大体积混凝土温度监测技术的相关内容,并深入探讨其中的五个重要方面。
正文:1. 传感器安装与布置- 选择适当的传感器类型,如热敏电阻温度传感器或光纤传感器。
- 合理安排传感器的布置位置,确保能够准确监测混凝土的温度变化。
- 对传感器进行校准和检测,确保其准确度和可靠性。
2. 数据采集和处理- 使用数据采集设备进行实时数据采集,记录混凝土温度的变化。
- 将采集到的数据存储和处理,获取温度变化的趋势和规律。
- 利用数据分析软件对采集到的数据进行处理和挖掘,提供有价值的信息。
3. 温度控制与管理- 根据混凝土的温度变化情况,采取相应的控制措施,如调整混凝土的配合比、控制浇筑速度等。
- 监测混凝土内部的温度梯度,预防温度裂缝和内部应力的产生。
- 通过温度监测数据,制定合理的施工计划和措施,确保混凝土的质量和性能。
4. 实时监测与远程访问- 建立实时监测系统,通过互联网等方式实时获取混凝土温度数据。
- 利用远程访问技术,随时随地监控温度变化,及时发现问题并采取措施进行调整。
- 提供实时监测数据的展示和报警功能,方便施工人员及时做出反应。
5. 监测结果分析与优化- 将监测到的温度数据与设计要求进行对比分析,评估混凝土温度的合理性。
- 根据监测结果进行优化调整,提高混凝土施工的效率和质量。
- 基于温度监测数据的长期分析,改进施工工艺和措施,积累经验并提供指导。
总结:大体积混凝土温度监测技术是保证混凝土质量与性能的重要手段。
通过传感器安装与布置、数据采集和处理、温度控制与管理、实时监测与远程访问以及监测结果分析与优化等五个大点,我们可以全面了解大体积混凝土温度监测技术的重要性和应用。
通过合理利用这些技术,可以提高施工效率,减少质量问题,并保障大体积混凝土结构的安全和可靠性。
大体积混凝土温度监测表
大体积混凝土温度监测表在建筑工程中,大体积混凝土的施工是一项具有挑战性的任务。
由于混凝土在硬化过程中会释放出大量的水化热,如果不能有效地控制温度变化,可能会导致混凝土出现裂缝,从而影响结构的安全性和耐久性。
因此,对大体积混凝土进行温度监测是至关重要的。
大体积混凝土温度监测表是用于记录和跟踪混凝土在浇筑、养护期间温度变化的重要工具。
通过对温度数据的分析,可以及时发现温度异常情况,并采取相应的措施来控制混凝土的温度,防止裂缝的产生。
一、温度监测的目的大体积混凝土温度监测的主要目的有以下几点:1、控制混凝土内部与表面的温差,确保温差在规范允许的范围内。
一般来说,混凝土内部与表面的温差不宜超过 25℃,否则容易产生温度裂缝。
2、掌握混凝土的降温速率,避免降温过快导致混凝土收缩过大而产生裂缝。
3、为施工过程中的养护措施提供依据。
根据温度监测结果,调整养护方式,如覆盖保温材料的厚度、浇水的频率等。
二、温度监测的设备和方法1、监测设备常用的温度监测设备包括热电偶温度传感器、电子测温仪等。
热电偶温度传感器具有测量精度高、稳定性好的特点,能够准确地测量混凝土内部的温度。
电子测温仪则便于数据的读取和记录。
2、监测方法在混凝土浇筑前,将热电偶温度传感器按照预定的位置埋入混凝土中。
传感器的布置应具有代表性,能够反映混凝土不同部位的温度变化。
通常在混凝土的中心、表面、边角等部位设置传感器。
监测过程中,定时使用电子测温仪读取传感器的数据,并将温度值记录在温度监测表中。
三、温度监测表的内容大体积混凝土温度监测表通常包含以下内容:1、工程名称、施工部位、混凝土强度等级等基本信息,以便明确监测对象。
2、监测日期和时间,精确到小时。
3、传感器的编号和位置,如混凝土中心、表面、距边缘1m 处等。
4、对应的温度值,包括混凝土内部温度、表面温度、大气温度等。
5、温差计算,如混凝土内部与表面的温差、混凝土表面与大气的温差等。
6、备注栏,用于记录监测过程中的异常情况、采取的措施等。
大体积混凝土测温方案
大体积混凝土测温方案一、工程概述在本次工程项目中,涉及到大体积混凝土的施工。
大体积混凝土由于其体积较大,水泥水化热释放集中,内部温升较快,容易产生温度裂缝,从而影响混凝土的质量和结构的安全性。
因此,为了有效控制大体积混凝土的温度变化,确保混凝土的质量,特制定本测温方案。
二、测温目的1、实时监测混凝土内部的温度变化,及时掌握混凝土的温升和降温情况。
2、发现温度异常,及时采取有效的温控措施,防止混凝土出现温度裂缝。
3、为施工过程中的养护措施提供依据,确保混凝土在适宜的温度环境下硬化。
三、测温设备选择1、采用电子测温仪进行温度测量,其具有测量精度高、响应速度快、数据存储方便等优点。
2、测温传感器选用热敏电阻式传感器,能够准确地感知混凝土内部的温度变化。
四、测温点布置1、根据混凝土的结构特点和尺寸,合理布置测温点。
在平面上,测温点应分布均匀,在重点部位(如基础的边角、结构的核心部位等)应适当加密。
2、在垂直方向上,测温点应沿混凝土的厚度方向布置,一般在混凝土表面以下50mm、混凝土中部和距底面50mm 处分别设置测温点。
3、每个测温点应设置多个传感器,以监测不同深度的温度变化。
五、测温时间及频率1、从混凝土浇筑开始,即进行温度测量。
2、在混凝土浇筑后的前 3 天,每 2 小时测量一次;第 4 7 天,每4 小时测量一次;第 8 14 天,每 8 小时测量一次;14 天后,每天测量一次,直至混凝土内部温度与环境温度之差小于 25℃为止。
六、测温数据记录与分析1、每次测量后,应及时记录测温数据,包括测量时间、测温点位置、各深度的温度值等。
2、对测温数据进行整理和分析,绘制温度变化曲线,观察温度的上升和下降趋势。
3、当发现混凝土内部温度过高或温差过大时,应及时报告,并采取相应的温控措施。
七、温控措施1、优化混凝土配合比,减少水泥用量,降低水化热。
2、分层浇筑混凝土,控制每层的浇筑厚度,以利于散热。
3、在混凝土中埋设冷却水管,通过循环水降低混凝土内部温度。
大体积混凝土水化热温度检测方案
大体积混凝土水化热温度检测方案方案编制人:方案批准人:XX工程质量检测有限责任公司20年月日目录封面 (1)一、测温描述第3页二、工程概况第4页三、依据标准标准及温控指标第5页四、测温仪器及设备第5页五、测温点的布置 (5)六、温度测试元件的安装及爱惜第7页七、测温时刻 (7)八、温控方法与建议 (8)九、监测程序 (9)十、平安、文明方法 (9)十一、质量保证体系及效劳许诺 (10)十二、委托单位的配合工作……………………………第11页十三、测温点布置图附图页XX名都工程2#、3#楼筏板根底保证大体积混凝土施工质量, 大体积混凝土水化热温度和温差监测方案一、测温描述因大体积混凝土的截面尺寸较大,由荷载引发裂痕的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。
在混凝土硬化初期,水泥水化释放出较多热量,而混凝土与周围环境的热互换较慢,故混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。
随着混凝土水化速度减慢,释放的热量也愈来愈少,积聚在混凝土中的热量由于热互换的进展慢慢减少,混凝土的温度降低,混凝本地货生收缩。
当此收缩受到约束时,混凝土内部产生拉应力〔此应力简称为温度应力〕,现在混凝土的强度较低,如缺乏抗击拉应力时,混凝土内部就产生了裂痕。
另外,混凝土的导热系数较小。
混凝土内部热量不易散失,而外表热量易与周边环境进展热互换而减少,从而温度降低,就形成了混凝土里表温差。
如温差较大,那么混凝土内外收缩不一致,也使混凝土开裂。
因此,在大体积混凝土中,必需考虑温度应力和温差引发的不均匀收缩应力〔简称温差应力〕的阻碍。
而温度应力和温差应力大小,又涉及到构造的平面尺寸,构造厚度,约束条件,周边环境情形,含筋率,混凝土各类组成材料的特性和物理力学性能,施工工艺等许多因素阻碍。
故为了家成立部发布的GB-50496-2021?大体积混凝土施工标准?中:大体积混凝土浇筑体里表温差、降温速度及环境温度及温度应变的测试,在混凝土浇筑后,每日夜可不该少于4次;入模温度的测量,每台班很多于2次。
大体积混凝土测温方案
1、按照图纸要求,筏板厚度大于800mm长度大于6000mm得混凝土为大体积混凝土,一般要求最小断面尺寸大于2米以上混凝土结构构件视为大体积混凝土。
按照此定义,主楼筏板与柱墩混凝土为大体积混凝土,必须采取相应得技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展得混凝土结构。
施工混凝土内部热量较难散发,外部表面热量散发较快,内部与外部热胀冷缩过程相应会在混凝土表面产生拉应力。
温差大到一定程度,混凝土表面拉应力超过精品文档,超值下载当时得混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。
另外,混凝土硬化后随温度降低产生收缩,由于受到地基约束,会产生很大外约束力,当超过当时得混凝土极限抗拉强度时,也会产生裂缝。
为了了解基础大体积混凝土内部由于水化热引起得温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间得温度变化情况,以便采取必要得措施。
2、测温得方法:采用采用温度计测温。
具体操作如下:(1)、混凝土浇捣前测出大气温度及入模混凝土温度并作好记录。
(2)、自混凝土入模至浇捣完毕得四天期间内每隔二小时测温一次,以后每隔四小时测温一次。
一般七天后可停止测温,或温度梯度<20度时,可停止测温。
(3)、每测温一次,应记录、计算每个测温点得升降值及温差值。
3、测温导管得具体埋设:1)、测温导管得制作测温导管采用薄壁钢管管制作而成,内径16㎜,上口用胶带封口,下口压扁并用胶带封堵,导管内尽可能不要进水。
长度按照埋设位深度、位置而定。
在同一测温点,按照测温深度上中下分别将三根测温导管插入混凝土(混凝土初凝前)。
2、测温点得布置测温点得布置原则应在有代表性得整个基础底板最深处、底板四个角点及结构尺寸变化较大得地方。
测温点得具体布置为:主楼每个柱墩设置一个测温点,主楼筏板按照距筏板边3米间距每6米设置一个测温点。
详见测温点布置图,测温点分别设置在筏板得下部与中间位置,表面温度在砼面向下5-10㎝部位量取。
大体积混凝土温度测控技术规范
大体积混凝土温度测控技术规范一、引言大体积混凝土在现代建筑工程中应用广泛,如大型基础、桥梁墩台、高层建筑物的地下室等。
由于其体积大,水泥水化热释放集中,内部温升快,如果控制不当,容易产生温度裂缝,影响结构的安全性和耐久性。
因此,对大体积混凝土进行温度测控是保证工程质量的重要措施。
二、大体积混凝土温度测控的目的和意义(一)目的通过对大体积混凝土温度的监测和控制,及时掌握混凝土内部温度变化情况,采取有效的温控措施,将混凝土内外温差控制在允许范围内,防止温度裂缝的产生。
(二)意义保证大体积混凝土结构的质量和安全,延长结构的使用寿命,减少后期维修成本。
同时,合理的温度测控还可以优化施工工艺,提高施工效率,降低工程造价。
三、大体积混凝土温度测控的基本要求(一)测温点的布置测温点的布置应具有代表性和均匀性,能反映混凝土内部温度场的分布情况。
一般应在混凝土的中心、表面、角部、边缘等部位设置测温点,间距不宜大于 500mm。
对于厚度较大的混凝土,还应在厚度方向上分层布置测温点。
(二)测温设备的选择应选用精度高、稳定性好、响应速度快的测温设备,如热电偶、热敏电阻等。
测温设备在使用前应进行校准和调试,确保测量数据的准确性。
(三)测温时间间隔在混凝土浇筑后的前 3 天,测温时间间隔不宜大于 2 小时;3 天后,测温时间间隔可适当延长,但不宜大于 6 小时。
当混凝土内部温度变化较大或接近温控指标时,应加密测温次数。
(四)温控指标大体积混凝土的温控指标一般包括混凝土内部最高温度、内外温差、降温速率等。
混凝土内部最高温度不宜超过 75℃,内外温差不宜超过25℃,降温速率不宜大于 20℃/d。
四、大体积混凝土温度监测的方法和步骤(一)监测方法1、人工监测采用温度计等设备进行人工测量和记录温度数据。
这种方法简单易行,但劳动强度大,数据准确性受人为因素影响较大。
2、自动监测利用自动化测温系统,通过传感器将温度信号传输至数据采集器,再由计算机进行数据分析和处理。
大体积混凝土测温方案及测温方法
大体积混凝土测温方案及测温方法X交通大学第一医院l号、2号高层住宅楼采用筏板混凝土基础,剪力墙结构,地上33层.地下2层(含夹层),建筑高度97.8 m,建筑面积72,469rn2。
1号、20楼筏板混凝土总方量分别约为1 250m 3,筏板强度等级C35,抗渗等级P6。
筏板混凝土厚度为600mm,基础梁l400mm,核心承台1 800mm。
本筏板工程属于大体积混凝土。
大体积混凝土施二r中要求控制混凝土内外温差,混凝土厚度小于2. 0m时,内外温差不宜大于25℃;对于厚度超过2.0m的混凝土,根据已有的经验,只要控制温度梯度小于12.5℃/m。
可适当放宽内外温差至30~ 33℃,否则会产生温差裂缝。
1 大体积混凝土施工的技术要求1.1 本工程大体积混凝±筏板的特点(1)筏板要求具有足够的强度,达到设计强度等级C35。
水泥、粉煤灰、膨胀剂等胶凝材料在水化过程中将放出大量的热量。
(2)筏板要求具有良好的抗渗性,因此,原材料要严格控制含泥量。
在混凝土配合比设计中要加入优质的泵送减水剂,提高混凝土密实度,同时掺入膨胀剂,以补偿混凝土收缩。
(3)筏板要求具有良好的整体性,防止贯穿性裂缝产生,同时尽量减少浅层裂缝的出现。
1.2 大体积混凝±施工技术要求本工程采用商品混凝土,l号楼于2O04年5月3日(16:30)至5日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为10~28℃。
混凝土入模温度15—22℃。
2号楼于2004年6月1日(4:30)至2日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为16~29 ℃,混凝土入模温度22~3l℃。
白天温度较高的时候只覆盖塑料布保湿,晚上温度较低的时候及时增加覆盖棉毡进行保湿保温养护;如遇大雨天则在混凝土上面再加盖塑料布,防止积水太多(不超过20mm)导致混凝土表面温度太低而加大温差。
经过9d的温度监测,1号楼大体积混凝土筏板的内部最高温度从59.9 ℃降至40℃以下,表面温度相应降至30℃左右;2号楼大体积混凝土筏板的内部最高温度从64. 8℃降至40℃以下,表面温度相应降至30℃左右,已达到安全温度,可不对筏板混凝土进行温度监控。
大体积混凝土测温方案
大体积混凝土测温方案随着房地产行业的发展,大体积混凝土的使用越来越广泛。
然而,在浇筑大体积混凝土时,温度的控制成为一个关键问题。
因为温度的过高或过低都会影响混凝土的强度和耐久性,甚至导致开裂。
因此,制定一个有效的大体积混凝土测温方案至关重要。
1.使用温度传感器温度传感器是大体积混凝土测温的关键工具。
可以使用贴片式温度传感器或插入式温度传感器。
贴片式温度传感器可以直接粘贴在混凝土表面,通过测量混凝土表面温度来推算内部温度。
插入式温度传感器则是将传感器插入混凝土内部,直接测量混凝土内部的温度。
这两种传感器都具有优点和缺点,需要根据具体情况选择适合的传感器。
2.测量点布置在测量温度时,应该合理布置测量点,以获取尽可能准确的温度数据。
可以根据实际情况,例如混凝土的体积和形状,以及温度的变化情况,来决定测量点的数量和位置。
通常情况下,应该在混凝土表面和内部设置多个测量点,以确保获取全面的温度数据。
3.数据采集和记录测温方案不仅要求准确测量温度,还需要进行数据采集和记录。
可以使用数据采集设备,将测得的温度数据实时传输到计算机或数据存储设备上。
同时,应该建立完善的数据记录系统,将测温数据进行备份并进行分析,以便后续的温度控制和质量评估。
4.温度控制测温方案的目的是为了控制大体积混凝土的温度,以确保其强度和耐久性。
根据测温数据,可以及时采取措施,如降低或增加环境温度、调节水泥的配比,来控制混凝土的温度。
同时,还需要根据测温数据对施工进度进行调整,以避免温度过高或过低对混凝土造成不利影响。
5.质量评估测温方案还可以用于评估大体积混凝土的质量。
通过对测温数据的分析,可以了解混凝土的温度分布情况,判断是否存在过热或过冷的问题。
同时,还可以对不同测量点的温度变化进行比较,以评估施工质量和温度控制的效果。
总之,制定一个有效的大体积混凝土测温方案对于保证混凝土的强度和耐久性至关重要。
通过使用温度传感器、合理布置测量点、进行数据采集和记录、根据测温数据进行温度控制和质量评估,可以为大体积混凝土的施工提供可靠的技术支持。
大体积混凝土测温方案
大体积混凝土测温方案标准化管理部编码-[99968T-6889628-J68568-1689N]1、按照图纸要求,筏板厚度大于800mm长度大于6000mm的混凝土为大体积混凝土,一般要求最小断面尺寸大于2米以上混凝土结构构件视为大体积混凝土。
按照此定义,主楼筏板和柱墩混凝土为大体积混凝土,必须采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的混凝土结构。
施工混凝土内部热量较难散发,外部表面热量散发较快,内部和外部热胀冷缩过程相应会在混凝土表面产生拉应力。
温差大到一定程度,混凝土表面拉应力超过当时的混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。
另外,混凝土硬化后随温度降低产生收缩,由于受到地基约束,会产生很大外约束力,当超过当时的混凝土极限抗拉强度时,也会产生裂缝。
为了了解基础大体积混凝土内部由于水化热引起的温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间的温度变化情况,以便采取必要的措施。
2、测温的方法:采用采用温度计测温。
具体操作如下:(1)、?混凝土浇捣前测出大气温度及入模混凝土温度并作好记录。
(2)、自混凝土入模至浇捣完毕的四天期间内每隔二小时测温一次,以后每隔四小时测温一次。
一般七天后可停止测温,或温度梯度<20度时,可停止测温。
(3)、每测温一次,应记录、计算每个测温点的升降值及温差值?。
3、测温导管的具体埋设:1)、测温导管的制作测温导管采用薄壁钢管管制作而成,内径16㎜,上口用胶带封口,下口压扁并用胶带封堵,导管内尽可能不要进水。
长度按照埋设位深度、位置而定。
在同一测温点,按照测温深度上中下分别将三根测温导管插入混凝土(混凝土初凝前)。
2、测温点的布置测温点的布置原则应在有代表性的整个基础底板最深处、底板四个角点及结构尺寸变化较大的地方。
测温点的具体布置为:主楼每个柱墩设置一个测温点,主楼筏板按照距筏板边3米间距每6米设置一个测温点。
大体积混凝土温度监测与控制
大体积混凝土温度监测与控制1、大体积混凝土浇筑体里表温差、降温速率及环境温度的测试,在混凝土浇筑后,每昼夜不应少于4次;入模温度测量,每台班不应少于2次。
2、大体积混凝土浇筑体内监测点布置,应反映混凝土浇筑体内最高温升、里表温差、降温速率及环境温度,可采用下列布置方式:1测试区可选混凝土浇筑体平面对称轴线的半条轴线,测试区内监测点应按平面分层布置;2测试区内,监测点的位置与数量可根据混凝土浇筑体内温度场的分布情况及温控的规定确定;3在每条测试轴线上,监测点位不宜少于4处,应根据结构的平面尺寸布置;4沿混凝土浇筑体厚度方向,应至少布置表层、底层和中心温度测点,测点间距不宜大于500mm;5保温养护效果及环境温度监测点数量应根据具体需要确定;6混凝土浇筑体表层温度,宜为混凝土浇筑体表面以内50mm处的温度;7混凝土浇筑体底层温度,宜为混凝土浇筑体底面以上50mm处的温度。
3、应变测试宜根据工程需要进行。
4、测试元件的选择应符合下列规定:125C。
环境下,测温误差不应大于0.3C。
;2温度测试范围应为一30C。
〜120C o;3应变测试元件测试分辨率不应大于5με;4应变测试范围应满足一1000με〜1000με要求;5测试元件绝缘电阻应大于500MQ。
5、温度测试元件的安装及保护,应符合下列规定:1测试元件安装前,应在水下Im处经过浸泡24h不损坏;2测试元件固定应牢固,并应与结构钢筋及固定架金属体隔离;3测试元件引出线宜集中布置,沿走线方向予以标识并加以保护;4测试元件周围应采取保护措施,下料和振捣时不得直接冲击和触及温度测试元件及其引出线。
6、测试过程中宜描绘各点温度变化曲线和断面温度分布曲线。
7、发现监测结果异常时应及时报警,并应采取相应的措施。
8、温控措施可根据下列原则或方法,结合监测数据实时调控:1控制混凝土出机温度,调控入模温度在合适区间;2升温阶段可适当散热,降低温升峰值,当升温速率减缓时,应及时增加保温措施,避免表面温度快速下降;3在降温阶段,根据温度监测结果调整保温层厚度,但应避免表面温度快速下降;4在采用保温棚措施的工程中,当降温速率过慢时,可通过局部掀开保温棚调整环境温度。
大体积砼温度监测方案
大体积砼温度监测方案大体积混凝土在施工和养护过程中可能会发生温度变化,这可能导致混凝土的质量和性能受到影响。
因此,监测混凝土的温度变化对于施工和养护至关重要。
下面将介绍一个针对大体积混凝土温度监测的方案。
一、温度监测设备的选择在选择温度监测设备时,需要考虑以下几个因素:1.准确度:温度监测设备应该有足够的准确度,以确保得到准确的温度数据;2.稳定性:设备应该具有良好的稳定性,能够长时间保持准确的温度测量;3.耐用性:由于大体积混凝土的施工周期长,温度监测设备应该足够耐用,能够在长时间的使用中保持正常运作;4.适应性:设备应该能够适应不同温度范围和环境条件下的使用。
常用的大体积混凝土温度监测设备包括温度计、热电偶、红外测温仪等。
具体选择哪种设备,可以根据工程的具体要求和预算来确定。
二、温度监测位置的确定在大体积混凝土的施工过程中,应该选择合适的监测位置来监测温度变化。
通常来说,可以选择混凝土整体体积的几个代表性位置进行监测。
这些位置应该代表整个混凝土体积的温度变化情况。
一般来说,可以选择混凝土表面、内部和边缘等位置进行监测。
三、温度数据的记录和分析温度数据的记录和分析是大体积混凝土温度监测的重要环节。
一般来说,可以使用数据采集设备将温度数据自动记录下来。
这些数据可以包括温度的实时值、最大值、最小值等。
同时,还可以使用数据分析软件对温度数据进行分析和处理,以得到更详细的温度变化趋势。
四、温度控制和调节基于温度监测数据的分析结果,可以对大体积混凝土的温度进行控制和调节。
例如,可以通过加水、降温剂等方式来调节混凝土的温度。
通过合理的温度控制和调节,可以提高混凝土的质量和性能,并减少施工和养护过程中的问题。
总结起来,大体积混凝土温度监测方案需要选择合适的监测设备,确定监测位置,记录和分析温度数据,并进行温度控制和调节。
通过有效的温度监测和控制,可以提高大体积混凝土的质量和性能,确保工程的施工质量和使用寿命。
大体积混凝土温度监测
大体积混凝土温度监测在现代建筑工程中,大体积混凝土的应用越来越广泛。
由于其体积较大,水泥水化热释放集中,内部温升迅速,如果不加以有效的温度监测和控制,很容易产生温度裂缝,从而影响混凝土结构的安全性和耐久性。
因此,大体积混凝土温度监测是施工过程中至关重要的环节。
一、大体积混凝土温度裂缝产生的原因要理解大体积混凝土温度监测的重要性,首先需要了解温度裂缝产生的原因。
混凝土在硬化过程中,水泥会发生水化反应,释放出大量的热量。
对于大体积混凝土而言,由于其体积庞大,热量不易散发,导致内部温度迅速升高。
而混凝土表面与外界环境接触,散热较快,这样就形成了较大的内外温差。
当内外温差超过一定限度时,混凝土内部产生压应力,表面产生拉应力。
由于混凝土在早期抗拉强度较低,当表面拉应力超过混凝土的抗拉强度时,就会产生裂缝。
此外,混凝土在降温阶段,由于体积收缩受到约束,也会产生拉应力,从而导致裂缝的出现。
二、大体积混凝土温度监测的目的大体积混凝土温度监测的主要目的是及时掌握混凝土内部的温度变化情况,以便采取有效的温控措施,预防温度裂缝的产生。
具体来说,通过温度监测可以实现以下几个方面的目标:1、了解混凝土内部温度场的分布规律,为优化施工方案提供依据。
2、控制混凝土的内外温差,确保其不超过规定的限值。
3、指导混凝土的养护工作,合理调整养护措施,如覆盖保温材料的时间和厚度等。
4、为混凝土结构的质量评估提供数据支持。
三、大体积混凝土温度监测的方法目前,常用的大体积混凝土温度监测方法主要有以下几种:1、热电偶测温法热电偶是一种常用的温度传感器,具有测量精度高、响应速度快等优点。
在大体积混凝土中,将热电偶预先埋设在混凝土内部的不同位置,通过导线将测量信号传输到数据采集仪,从而实现对混凝土温度的实时监测。
2、热敏电阻测温法热敏电阻的阻值会随着温度的变化而变化,通过测量热敏电阻的阻值来确定温度。
与热电偶相比,热敏电阻成本较低,但测量精度和稳定性稍逊一筹。
大体积混凝土的温度监测实例
大体积混凝土的温度监测实例一、大体积混凝土的温度监测实例大体积混凝土是在水泥胶结材料中,加入了更多的填充材料,使用更高的水灰比,以获得更大体积的混凝土,而不会影响混凝土的力学性能。
这样的混凝土具有更高的强度,耐久性和耐腐蚀性,适合用于建筑物的基础支撑,如堤坝、大型水坝、桥梁、涵洞及其他工程。
但是,大体积混凝土在施工过程中容易受到较大的温度影响,使混凝土表面温度升高,并可能对混凝土强度,结构性能和耐久性产生不利影响。
因此,对大体积混凝土进行温度监测是十分必要的。
1. 温度监测方案为了保证大体积混凝土的施工质量,应制定温度监测方案。
温度监测方案应根据混凝土施工现场的实际情况,确定温度监测的范围和监测时间,并制定相应的温度控制措施,将合理的温度监测范围和时间纳入混凝土施工质量检查计划。
2. 温度监测原理温度监测的原理是利用热电偶、温度传感器或温度计等温度测量仪器,通过温度传感器将混凝土内部温度实时转化为电流,然后将温度数据转变为数字信号,传输到计算机上,进行实时监测。
3. 温度监测范围在广泛的混凝土施工现场,温度监测范围可以分为混凝土表面温度和混凝土内部温度两部分。
混凝土表面温度的测量,可以通过利用温度传感器、热电偶或温度计,将混凝土表面温度转换为电流,实时监测混凝土表面温度,及时发现混凝土表面温度的变化。
混凝土内部温度测量,可以通过在混凝土中钻孔,插入温度传感器,实时监测混凝土内部温度的变化,及时发现混凝土受热、受冷的情况,以避免混凝土受损。
4. 温度监测时间温度监测的时间可以根据混凝土施工现场的实际情况,制定合理的温度监测时间,一般情况下,在混凝土浇筑后的24小时内,每2小时监测一次混凝土的表面温度,在混凝土浇筑后的72小时内,每6小时监测一次混凝土的内部温度,以及混凝土7天内的温度变化情况。
5. 温度控制措施当混凝土表面温度升高或混凝土内部温度超过一定阈值时,应立即采取相应的温度控制措施,以防止混凝土受到不利影响。
大体积混凝土测温及监控措施
大体积混凝土测温及监控措施
1、为了掌握混凝土的内外温差情况,必须对内外温度进行监测。
在进行底板施工时,应埋设测温传感器(WZC-010铜热电阻),测温点布设在板底部以上10cm及表面以下10cm及中间点。
2、预埋测温点时,先将电阻应变片固定在钢筋上,再将钢筋固定在预定位置。
测温仪器采用温度监测显示仪,为提高精度和效率,每点位处的三点应同时观测。
3、测温时间要求:首测放在点位混凝土浇灌完毕后24h,在此后的1d内每4h观测一次、3-6d内每6h观测一次、7-10d内每12h 观测一次。
依据两次测温间的温升值,温升快时应加密测量次数。
4.混凝土浇筑抹平后,即应马上用塑料薄膜覆盖。
每次测温一圈后,应立即计算并分析混凝土的内外温差情况。
5、当砼内部处于降温阶段,且里表温差小于25°C,且其降温速度在2°C/d,大气温度和表面温差小于20°C时,根据规范可以揭掉保温覆盖层,进行洒水保湿养护。
6、测温负责人每天将测温情况记录并汇报给总工。
大体积混凝土测温方案及测温方法(一)
大体积混凝土测温方案及测温方法(一)引言概述:本文将介绍大体积混凝土测温方案及测温方法。
大体积混凝土在建筑工程中应用广泛,为确保其施工质量和持久性,对其温度进行监测至关重要。
本文将以五个大点为主线,详细阐述大体积混凝土测温的方案和具体方法。
正文:一、温度传感器选择1. 预埋式电阻温度计:预埋式电阻温度计可直接嵌入混凝土内部,测量混凝土温度。
其优点是准确、稳定,适用于长期测温,但安装细节要注意,避免损坏电阻体。
2. 分布式光纤传感器:分布式光纤传感器可连续、实时地测量混凝土温度分布。
它具有灵敏度高、可靠性好的优点,但需要专业技术和设备配合进行安装。
二、测点布置方案1. 测点密度:根据混凝土施工的特点和具体要求,确定合适的测点密度。
通常,大体积混凝土需要在其内部设置多个测点来获取温度分布数据。
2. 测点布置位置:测点应尽可能分布在混凝土横截面上,包括顶部、中部和底部等位置,以全面了解混凝土的温度变化情况。
三、测温方法1. 实时测温:通过连续监测某个测点的温度变化,获取混凝土的实时温度数据。
可以使用温度传感器实时采集数据,并通过数据采集系统进行记录和分析。
2. 定点测温:选取几个特定测点进行定点测温,了解混凝土的温度变化趋势。
可以通过手持式测温仪器对测点进行测温,也可使用远程测温装置。
四、温度数据处理与分析1. 数据采集与存储:使用数据采集系统实时采集温度数据,并进行存储。
可以选择云端存储或本地存储的方式,以便后续的数据分析和结论。
2. 温度数据分析:对采集到的数据进行分析,包括温度变化趋势、温度分布等,以获得对混凝土采取相应的调控措施的依据。
五、温度控制与调节1. 温度监控:根据温度测量结果,及时监控混凝土的温度情况,确保其在施工过程中的质量和安全。
2. 温度调节:根据温度监测结果,对混凝土施工过程中的温度进行调控。
可采取降温措施,如增加外部冷却措施,或调节混凝土配方等方式。
总结:通过选择合适的温度传感器、科学布置测点、合理选取测温方法,结合温度数据处理与分析以及温度控制与调节,可以实现对大体积混凝土的准确测温和有效控制。
大体积混凝土测温规范
大体积混凝土测温规范大体积混凝土测温规范1. 引言大体积混凝土是指单个施工部位需浇筑的混凝土体积大于3m³的混凝土。
由于大体积混凝土在硬化过程中温度变化较大,会对混凝土的强度、收缩、裂缝等性能产生影响,因此需要对混凝土进行温度监测。
本规范旨在规范大体积混凝土测温的方法和要求,保证混凝土施工的质量和安全。
2. 测温仪器2.1 温度计应选择精确、灵敏,并能满足施工要求的仪器。
2.2 常用的测温仪器包括接触式温度计、红外线测温仪和电子数据采集系统等。
3. 测点设置3.1 测温点应平均分布在混凝土体积中,覆盖混凝土体积的不同高度和位置。
3.2 测量剂的设置应在施工前确定,并进行标记和记录,以便后续的数据采集和分析。
4. 测温方法4.1 接触式测温方法4.1.1 将温度计的探头插入混凝土内部,直接测量混凝土的温度。
4.1.2 测温过程中应保证温度计与混凝土接触良好,排除外界环境对测温结果的干扰。
4.1.3 测温时间应根据混凝土的特性和测温点的位置确定,确保测量结果准确可靠。
4.2 红外线测温方法4.2.1 使用红外线测温仪对混凝土表面进行测温。
4.2.2 测温过程中应保证测温仪与混凝土表面保持一定距离,并保持仪器的稳定性。
4.2.3 测温时间应根据混凝土的特性和测温点的位置确定,确保测量结果准确可靠。
4.3 电子数据采集系统4.3.1 使用电子数据采集系统对混凝土进行实时温度监测。
4.3.2 数据采集系统应具备多点测温、数据存储和分析功能。
4.3.3 测温数据应及时传输到数据采集系统,并进行实时监测和分析。
5. 数据记录与分析5.1 测温数据应及时、准确地记录下来,并进行编号和标记。
5.2 数据记录应包括测温时间、测温点位置、测温方法和温度数值等信息。
5.3 测温数据的分析应结合混凝土的强度、收缩、裂缝等性能要求,评估混凝土的质量和工程安全性。
6. 结论大体积混凝土测温是保证混凝土施工质量和安全的重要环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复地·云阅二期5#、6#、7#楼基础筏板大体积混凝土水化热温度
监
测
方
案
技术负责人:
审核人:
编制人:
测温人:
四川省第六建筑有限公司
复地·云阅二期项目部
目录
监测方案———————————————————2
一、工程概况—————————————————3
二、温控指标—————————————————4
三、测点布置—————————————————4
四、施工及养护的注意事项———————————4
五、温控过程—————————————————5
六、测温数据—————————————————6 附表1
附图1
筏板大体积混凝土水化热温度和温差
监测方案
随着高层建筑的发展,基础工程大多采用大体积混凝土结构。
大体积混凝土除了要满足强度要求外,还必须具有良好的耐久性和抗渗性。
由于大体积混凝土的强度等级比较高,单位水泥用量大,从而会使混凝土在硬化过程初期释放大量的热;加之混凝土的导热系数相对较小,水化产生的热量不容易散失,热量就蓄积在内部使温度升高较大;在混凝土表面,由于热量与周围环境进行交换而减少,温度降低,就形成了混凝土的内外温差。
此时,混凝土的强度较低还不足以抵抗由于温差产生的应力,混凝土就会开裂,结构的耐久性和抗渗性就可能受到影响。
因此,在大体积混凝土施工过程中,对温度及内外温差的控制是一个突出的问题。
我国相关标准、规程为此作出了规定和要求。
如:国家标准GB50164-92《混凝土质量控制标准》第4.6.5条:“大体积混凝土的养护,应进行热工计算确定其保温、保湿或降温措施,并应设置测温孔或埋设热电偶等测定混凝土内部和表面温度,使温差控制在设计要求的范围内,当无设计要求时,温差不宜超过25℃”。
建设部JGJ6-99《高层建筑箱形与筏形技术规范》第6.7条:“要求施工中应对大体积混凝土进行测温工作,指导混凝土养护”。
JGJ3-2002《高层建筑混凝土结构技术规程》中,第13.7.11条:“基础大体积混凝土连续施工时,应实测混凝土内外温差,内部温度和温度徒降。
混凝土内外温差
不应超过25℃,温度徒降不应超过10℃”。
一、工程概况
(一)工程简介
工程地址:本工程位于成都市高新区大源组团,花荫沟以东,盛华南路以西,瞻远西二街以北,德赛二街以南。
(二)编制依据
GB50164-92《混凝土质量控制标准》第4.6.5条条文说明中关于大体积混凝土的定义;“大体积混凝土是指最小边尺寸在1m以上的混凝土结构。
”
本工程基础筏板混凝土强度等级为C30,底板厚度为1.6m,采用泵送的施工工艺,属于大体积混凝土结构。
经分析计算,混凝土的水化热温度T=T0+K0=18+3.5×12=60℃,局部厚度大于2.0m的区域混
凝土内部温度可达68℃左右。
二、温控指标
依据GB50164-92《混凝土质量控制标准》、GB50204-2002《混凝土工程质量验收规范》、JGJ3-2002《高层建筑混凝土结构技术规程》及JGJ6-99《高层建筑箱形与筏形技术规范》的相关规定:
1、混凝土浇筑体的里表温差,不宜大于25℃;
2、混凝土浇筑体的降温速率不宜大于2.0℃/d。
三、测点布置
本次测温,采用DM-801A电子式数字显示温度探测仪器与热电偶传感器(K型),每个测温点在筏板厚度的中部以下200mm、上表面以下50mm处分别用热电偶传感器测量;在底板厚度≥2.0m的区域按上、中、中下分别用热电偶传感器测量。
考虑到基础的平面形状,本工程总共布置35处测温,测温布点平面图详见附件所示。
四、施工及养护的注意事项
混凝土搅制时,应严格控制骨料的含泥量,使用高效减水剂,使用有利于降低混凝土水化热的外加剂。
以达到推迟混凝土水化热高峰出现的时间、降低水化热峰值的目的,从而减少混凝土温度裂缝。
在混凝土浇筑前,应做好用于保温、保湿的塑料薄膜和干麻袋(或干草垫)等准备工作,并指定专人负责混凝土的保温、保湿覆盖,且要与测温人员随时保持联系直至测温结束。
浇筑混凝土时,应按照合
理的浇筑顺序进行,同时加强振捣,以提高混凝土的密实性。
混凝土浇筑后应采取保温、保湿等有效措施,以控制混凝土内外温度的差值不大于25℃。
在温度监测期间,不得向覆盖的薄膜下浇水,不得使混凝土降温速度过快。
混凝土应在温差得到控制的前提下缓慢地降温,缓慢地收缩,以有效降低约束应力,提高结构抗拉能力。
重点控制如下:
1、混凝土表面未发白、未覆盖前再次压实抹面,消除塑性裂
纹。
2、覆盖的塑料薄膜应搭接在20cm以上,然后在其上盖干麻
袋(或干草垫)。
3、遇下雨、雪时,应及时在其上在增加覆盖塑料薄膜,以保
持麻袋(草垫)干燥状态。
在测温期间,施工杂物切不要压盖测温点位,以免压坏测温线头,影响温度的测试,检测人员必须昼夜值班,轮换交接记录在案,检测人员必须记录真实,发现问题及时汇报项目主管,以及时处理。
五、温控过程
根据常规测温经验,混凝土浇筑后10小时内,混凝土升温较慢,约为每小时0.5-1℃,10小时后升温加快,历时40小时左右达到峰值温度,接下来,混凝土内部温度就持续下降了,直到与外界温度平衡。
因此混凝土浇筑速度应尽可能快速、连续,以防止施工冷缝出现和较
大温差。
施工测温在浇筑覆盖后10-12小时后即开始测温,之后混凝土每4小时测温一次。
在混凝土内部峰值温度出现以后,根据测得的温差情况,适当延长测温周期时间。
以横坐标为时间,纵坐标为测试温度,描绘时间-温度曲线,密切注意水化热温度的峰值、混凝土内外温差值、降温幅度、大气温度等数据。
当出现温差超临界时及发生其他异常情况时,测温人员应负责及时通知项目技术主管会同有关方面,采取紧急的保温、保湿加强措施,即加盖干麻袋或干草垫再加盖塑料薄膜。
六、测温数据
温度检测报告在测温结束后的5日内,正式提交给项目技术主管,报送监理和业主,其内容包括:
1、混凝土内部温度-时间曲线;
2、混凝土外表温度-时间曲线。