专题四圆周运动及其向心力公式的应用
力学应用圆周运动与向心力的关系与计算
力学应用圆周运动与向心力的关系与计算在力学中,圆周运动是一种重要的运动形式,它涉及到向心力的作用。
本文将探讨圆周运动与向心力的关系以及其计算方法。
一、圆周运动的定义与特点圆周运动是指物体沿着圆形轨道做匀速运动的一种运动形式。
其特点是速度大小不变,但方向不断改变。
二、向心力的定义与作用向心力是指物体在圆周运动中由于方向改变而产生的力。
它的方向始终指向圆心,大小与速度、半径有关,由以下公式表示:向心力F = mv² / r其中,m为物体的质量,v为物体的速度,r为运动物体到圆心的距离,也称为半径。
三、向心力的计算方法在圆周运动中,向心力可以通过以下步骤计算:步骤一:确定物体的质量m、速度v和运动半径r的数值。
步骤二:将上述数值代入向心力公式F = mv² / r中,计算向心力的数值。
步骤三:根据题目给出的具体情况,判断向心力的方向(始终指向圆心)。
四、向心力的影响因素向心力的大小取决于物体的质量、速度和运动半径,因此可以通过改变这些因素来影响向心力的大小。
1. 物体质量:质量越大,向心力越大。
2. 速度大小:速度越大,向心力越大。
3. 运动半径:半径越小,向心力越大。
五、向心力的应用向心力在生活和工程中有着广泛的应用。
以下是一些常见的应用示例:1. 银行转盘:银行门口常见的一个装置是一个不断旋转的转盘,乘客在转盘上旋转时会感受到向心力的作用。
这种装置的作用是让人们感到舒适,同时也提供了方便的交通。
2. 汽车转弯:当汽车在转弯时,车轮对地面施加向心力,使汽车保持在弯道上稳定行驶。
3. 摩天轮:摩天轮是一种经典的游乐设施,乘客乘坐在摩天轮上时会体验到向心力的作用。
4. 离心机:离心机是一种常见的实验仪器,在生物化学实验中用于将物质分离。
离心机通过旋转产生向心力,使不同物质按照密度不同分离。
六、总结通过本文的探讨,我们了解了圆周运动与向心力的关系及其计算方法。
向心力是物体在圆周运动中产生的力,其大小取决于物体的质量、速度和运动半径。
圆周运动向心加速度与向心力
向心力与向心加速度的关系
总结词
向心力的大小与向心加速度的大小成正比,方向始终指向圆心。
详细描述
在圆周运动中,向心力的大小与向心加速度的大小成正比,方向始终指向圆心。当物体 受到的向心力增大或减小时,其向心加速度也相应增大或减小,使物体始终沿着圆周路
径运动。
04 圆周运动的实例分析
匀速圆周运动的向心力
物体沿着圆周轨迹运动,速度大小保持不变, 方向时刻变化。例如:旋转木马、钟表指针 等。
在匀速圆周运动中,向心加速度的大小恒定, 方向始终指向圆心,向心力的大小也恒定, 方向始终指向圆心。
变速圆周运动的实例
要点一
变速圆周运动
物体沿着圆周轨迹运动,速度大小或方向发生变化。例如 :过山车、赛车等。
详细描述
向心加速度的大小与线速度的平方成正比,与圆周运动的半 径成反比。当线速度一定时,半径越小,向心加速度越大; 当半径一定时,线速度越大,向心加速度越大。
向心加速度的方向判断
总结词
向心加速度的方向始终指向圆心,可以通过右手定则或左手定则来判断。
详细描述
右手定则:将右手手掌伸直,四指并拢且与线速度方向一致,大拇指与四指垂直,此时若手掌心向下,则向心加 速度方向垂直于掌心指向上;左手定则:将左手手掌伸直,四指并拢且与线速度方向一致,大拇指与四指垂直, 此时若手掌心向下,则向心加速度方向垂直于掌心指向下。
感谢您的观看
向心加速度的求解方法
求解向心加速度的方法有多种,可以通过牛顿第二定律、 运动学公式等求解。
05 圆周运动的应用与拓展
圆周运动在生活中的应用
车辆转弯
车辆在转弯时,由于向心 力的作用,外侧车轮的轮 缘会受到向内的挤压力, 使车辆顺利转弯。
圆周运动中的向心力分析
圆周运动中的向心力分析在自然界中,我们常常可以观察到物体在圆周运动中的现象,比如地球绕太阳运动、月球绕地球运动等。
这些现象都涉及到一个重要的力——向心力。
一、向心力的定义与性质向心力是使物体沿着圆周运动轨迹改变速度方向的力。
在任何一个物体所受到的向心力都指向圆心。
向心力的大小可以用公式F = m * a_c来表示,其中m是物体的质量,a_c是向心加速度。
根据牛顿第二定律F = m * a,我们可以得到向心力与向心加速度的关系式F = m * v^2 / r,其中v是物体的运动速度,r是运动轨迹的半径。
二、向心力的来源在进行圆周运动时,物体所受的向心力来源于其他力对该物体的约束作用,例如:1. 弹力:当我们以线的一端牵引一个物体做圆周运动时,物体所受的向心力来自于线的另一端的弹力。
2. 重力:当天体绕另一个天体作圆周运动时,如地球绕太阳运动,物体所受的向心力来自于两个天体之间的重力。
3. 磁场力:当带电粒子在磁场中做圆周运动时,物体所受的向心力来自于磁场力的作用。
三、向心力对圆周运动的影响向心力对圆周运动有以下几个重要影响:1. 改变速度方向:向心力的作用使物体在圆周运动中改变运动速度的方向,但不影响速度的大小。
这导致物体始终朝向圆心运动,保持了圆周运动的特性。
2. 维持圆周运动:向心力与物体的质量和运动速度成正比,与运动轨迹的半径成反比。
它提供了足够的力量来维持物体在圆周运动中所需的加速度,从而保持运动状态。
3. 影响运动周期:向心力的大小会改变物体在圆周运动中所需的时间。
根据圆周运动的周期公式T = 2πr / v,可以推导出向心力与圆周运动的周期成反比的关系。
四、向心力的应用举例向心力广泛应用于各个领域,下面举几个例子来说明其应用:1. 碎片分选机:采用离心力场,将不同密度的碎片分离,使得轻质碎片朝外圆周运动,而重质碎片则居于内圈。
2. 汽车行驶:车辆在转弯时,汽车车轮上的离心力会使车身产生向外的倾斜,这样可以增加车辆的稳定性。
圆周运动及向心力公式的应用
(1)ω= Δ = 2 π Δt T
(2)单位:rad/s
(1)T= 2 π =r 2 ,π 单位:s v
(2)n的单位:r/s、r/min
(3)f= 1 ,单位:Hz T
(1)描述速度
方向 变化快慢的
物理量(an)
(2)方向指向圆心
(1)an=
v
2
=
ω2r
r
(2)单位:m/s2
2πr
(1)v=ωr=
vA=vB,
ω ω
A B
=r 2
r1
=n 2 T ,A
n1 TB
r =1 n 1 =
r2 n 2
。
式中n1、n2分别表示两齿轮的齿数。两点转动方向相反。
典例1 小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快 速测量自行车的骑行速度。他的设想是:通过计算踏脚板转动的角速度,推 算自行车的骑行速度。经过骑行,他得到如下数据:
5L
解答圆周运动的动力学问题的基本步骤如下: (1)确定研究对象:确定轨道平面和圆心位置,从而确定向心力的方向;(2)受 力分析(不要把向心力作为某一性质的力进行分析);(3)由牛顿第二定律列 方程;(4)求解并说明结果的物理意义。
2-1 (2015天津理综,4,6分)未来的星际航行中,宇航员长期处于零重力状 态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱 形“旋转舱”,如图所示。当旋转舱绕其轴线匀速旋转时,宇航员站在旋转 舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力。为 达到上述目的,下列说法正确的是 ( )
典例3 (2015重庆理综,8,16分)同学们参照伽利略时期演示平抛运动的方 法制作了如图所示的实验装置。图中水平放置的底板上竖直地固定有M
高考物理2020届一轮复习习题:第4章_第3讲_圆周运动及向心力公式的应用_word版含参考答案(已纠错)
第3讲圆周运动及向心力公式的应用A组基础题组1.(2013海南单科,8,5分)(多选)关于物体所受合外力的方向,下列说法正确的是( )A.物体做速率逐渐增加的直线运动时,其所受合外力的方向一定与速度方向相同B.物体做变速率曲线运动时,其所受合外力的方向一定改变C.物体做变速率圆周运动时,其所受合外力的方向一定指向圆心D.物体做匀速率曲线运动时,其所受合外力的方向总是与速度方向垂直2.(2016宁夏银川二中三练)(多选)如图所示,两物块A、B套在水平、粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO'转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO'轴的距离为物块A到OO'轴距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A、B物块受到的静摩擦力都是一直增大B.A受到的静摩擦力是先增大后减小,B受到的静摩擦力一直增大C.A受到的静摩擦力是先指向圆心后背离圆心,B受到的静摩擦力一直增大后保持不变D.A受到的静摩擦力是先增大后减小又增大,B受到的静摩擦力一直增大后保持不变3.(2016安徽淮北三校联考)如图所示,细绳长为L,挂一个质量为m的小球,球离地的高度h=2L,当绳受到大小为2mg的拉力时就会断裂,绳的上端系一质量不计的环,环套在光滑水平杆上,现让环与球一起以速度v=向右运动,在A处环被挡住而立即停止,A离墙的水平距离也为L,球在以后的运动过程中,球第一次碰撞点离墙角B点的距离ΔH是(不计空气阻力)( )A.ΔH=LB.ΔH=LC.ΔH=LD.ΔH=L4.(2015福建理综,17,6分)如图,在竖直平面内,滑道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上。
若小滑块第一次由A 滑到C,所用的时间为t 1,第二次由C 滑到A,所用的时间为t 2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )A.t 1<t 2B.t 1=t 2C.t 1>t 2D.无法比较t 1、t 2的大小5.[2015河北名校联盟质量监测(二),19](多选)如图,三个质点a 、b 、c 质量分别为m 1、m 2、M(M ≫m 1,M ≫m 2)。
知识讲解+圆周运动的向心力及其应用电子教案
知识讲解+圆周运动的向心力及其应用圆周运动的向心力及其应用【要点梳理】要点一、物体做匀速圆周运动的条件物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。
说明:从物体受到的合外力、初速度以及它们的方向关系上探讨物体的运动情况,是理解运动和力关系的基本方法。
要点二、关于向心力及其来源1、向心力(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力. (2)向心力的作用:是改变线速度的方向产生向心加速度的原因。
(3)向心力的大小:22vF ma m mrrω===向向向心力的大小等于物体的质量和向心加速度的乘积;对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方;线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。
如果是匀速圆周运动则有:22222244vF ma m mr mr mr fr Tπωπ=====向向(4)向心力的方向:与速度方向垂直,沿半径指向圆心。
(5)关于向心力的说明:①向心力是按效果命名的,它不是某种性质的力;②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小;③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。
2、向心力的来源(1)向心力不是一种特殊的力。
重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。
(2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):要点三、匀速圆周运动与变速圆周运动的区别1、从向心力看匀速圆周运动和变速圆周运动(1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。
例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。
圆周运动的规律及其应用 知识点总结与典例(最新)
圆周运动的规律及其应用知识点总结与典例【知识点梳理】知识点一 匀速圆周运动及描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。
(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。
2.描述圆周运动的物理量物理量 意义、方向公式、单位 线速度(v )①描述圆周运动的物体运动快慢的物理量 ②是矢量,方向和半径垂直,和圆周相切 ①v =Δs Δt =2πr T ②单位:m/s 角速度(ω)①描述物体绕圆心转动快慢的物理量 ②中学不研究其方向①ω=ΔθΔt =2πT ②单位:rad/s 周期(T )和转速(n )或频率(f )①周期是物体沿圆周运动一周的时间 ②转速是物体单位时间转过的圈数,也叫频率①T =2πrv 单位:s ②n 的单位:r/s 、r/min ,f 的单位:Hz向心加速度(a )①描述速度方向变化快慢的物理量 ②方向指向圆心①a =v 2r =rω2 ②单位:m/s 23.线速度、角速度、周期、向心加速度之间的关系 (1)v =ωr =2πT r =2πrf .(2)a n =v 2r =rω2=ωv =4π2T 2r =4π2f 2r . 知识点二 匀速圆周运动的向心力1.向心力的理解 (1)作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
(2)大小F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。
(3)方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
(4)来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
2.离心现象(1)现象做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
(2)受力特点①当F n=mω2r时,物体做匀速圆周运动。
专题:圆周运动向心力公式的应用
专题:圆周运动向心力公式的应用1、半径为40cm ,转速1200r/min .求(1)砂轮转动的周期;(2)砂轮转动的角速度;(3)砂轮边缘上一点线速度的大小?2.甲、乙两个物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相同的时间内甲转过60度,乙转过45度,则他们的向心力之比为( )A1:4 B2:3 C 4:9 D9:163.图2中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点。
左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心的距离为r 。
c 点和d 点分别位于小轮和大轮的边缘上。
若在传动过程中,皮带不打滑。
则:( )A. a 点与b 点的线速度大小相等B. a 点与b 点的角速度大小相等C. a 点与c 点的线速度大小相等D. a 点与d 点的向心加速度大小相等4.有—个竖直放置的圆形轨道,半径为R ,由左右两部分组成.如图5—4—6所示.右半部分AEB 是光滑的,左半部BFA ,是粗糙的.现在轨道最低点A 放一个质量为m 的小球。
并给小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B ,小球在B 点又能沿BFA 轨道回到A 点,到达A 点时对轨道的压力为4mg .在求小球在A 点的速度v 0?若给小球以初速度但方向向左,小球能到达最高点吗?有关摩擦力的圆周运动1.如图1,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是( )A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力2.如图4所示,A 、B 、C 三个物体放在旋转圆台上,动摩擦因数均为μ,A m ,A 、B 离轴的距离为R ,C 离轴的距离为2R ,则当圆台旋转时(设三物体都没有滑动)( )A .C 物体的向心加速度最大B .B 物体所受的静摩擦力最小C .当圆台转速增加时,C 比A 先滑动D .当圆台转速增加时,B 比A 先滑动3.如图9所示,物体与圆筒壁的动摩擦因数为μ,圆筒的半径为R 。
圆周运动及向心力公式的应用
圆周运动及向心力公式的应用考点一:描述圆周运动的物理量例1:如图所示是自行车传动结构的示意图,其中Ⅰ是半径为r1的牙盘(大齿轮),Ⅱ是半径为r2的飞轮(小齿轮),Ⅲ是半径为r3的后轮,假设脚踏板的转速为n(r/s),则自行车前进的速度为()例2:如图所示为一实验小车中利用光脉冲测量车速和行程的装置的示意图,A为光源,B为光电接收器,A、B均固定在车身上,C为小车的车轮,D为与C同轴相连的齿轮.车轮转动时,A发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B接收并转换成电信号,由电子电路记录和显示.若实验显示单位时间内的脉冲数为n,累计脉冲数为N,则要测出小车的速度和行程还必须测量的物理量或数据是_______________;小车速度的表达式为v=_______________;行程的表达式为s=__________________.考点二:匀速圆周运动及圆周运动向心力的特点例3:汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f甲和F f乙,以下说法正确的是 ( )A. F f甲小于F f乙B. F f甲等于F f乙C. F f甲大于F f乙D. F f甲和F f乙大小均与汽车速率无关例4:(1)为了清理堵塞河道的冰凌,空军实施了投弹爆破,飞机在河道上空高H处以速度v0水平匀速飞行,投掷下炸弹并击中目标。
求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小。
(不计空气阻力)(2)如图17所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H,筒内壁A点的高度为筒高的一半。
内壁上有一质量为m的小物块。
求A 当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;B 当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。
考点三:离心现象及应用例5:铁路转弯处的弯道半径r是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还取决于火车在弯道上的行驶速率,下面表格中是铁路设计人员技术手册中弯道半径r及与之对应的轨道的高度差h.(1)根据表中数据,试导出h和r关系的表达式,并求出当r =440 m时,h的设计值.(2)铁路建成后,火车通过弯道时,为保证绝对安全,要求内外轨道均不向车轮施加侧向压力,又已知我国铁路内外轨的间距设计值为L =1 435 mm,结合表中数据,算出r= 440 m 时火车的转弯速度v.(以km/h为单位,结果取整数;g=10 m/s2,当倾角很小时,取sinα≈tanα)(3)随着人们生活节奏的加快,对交通运输的快捷提出了更高的要求.为了提高运输力,国家对铁路不断进行提速,这就要求铁路转弯速率也需要提高,请根据上述计算原理和上述表格分析提速时应采取怎样的有效措施?:考点四:向心加速度分析例6:有一种叫“飞椅”的游乐项目,示意图如图所示,长为L的钢绳一端系着座椅,另一端固定在半径为r的水平转盘边缘。
圆周运动向心力公式的应用
圆周运动的周期和频率
总结词
周期是指完成一次圆周运动所需的时 间,频率则是指单位时间内完成的圆 周运动次数。
详细描述
周期和频率是描述圆周运动快慢的重 要参数。周期越大,物体完成一次圆 周运动所需时间越长;频率越小,单 位时间内完成的圆周运动次数越少。
圆周运动的线速度和角速度
总结词
线速度是指物体在单位时间内通过的弧长,角速度是指物体在单位时间内转过 的角度。
向心力公式
总结词
向心力公式是 F = m * v^2 / r,其中 F 是向心力,m 是质量, v 是线速度,r 是半径。
详细描述
该公式用于计算在给定速度和半径下,物体在圆周运动中所 受的向心力。其中,质量 m 是物体的固有属性,线速度 v 和 半径 r 是物体运动状态的变化量。
向心力公式的单位和符号
在变速圆周运动中,向心力的大小或方向 可能会发生变化。当物体做向心加速的变 速圆周运动时,向心力方向与速度方向之 间的夹角小于90度;当物体做离心减速 的变速圆周运动时,向心力方向与速度方 向之间的夹角大于90度。例如汽车转弯 时,受到指向圆心的向心力作用,防止汽 车因离心力而冲出弯道。
圆周运动的向心加速度
向心力与离心力的关系
离心现象
当物体受到的合力不足以提供其圆周运动所需的向心力时,物体将沿着切线方向飞离圆 周轨道,这种现象称为离心现象。
应用
向心力和离心力之间的关系在分析卫星轨道、旋转机械、链球运动等领域具有重要应用。
向心力公式的推导和证明
推导过程
证明方法
向心力公式可以通过牛顿第二定律和 向心加速度的定义推导得出。根据牛 顿第二定律,物体受到的合外力等于 其质量与加速度的乘积。在圆周运动 中,加速度即为向心加速度,其大小 为 v²/r 或 ω²r。因此,合外力(即向 心力)的大小为 mv²/r 或 mrω²。
物体的圆周运动与向心力
物体的圆周运动与向心力物体的圆周运动是指物体在固定中心点周围做匀速或非匀速运动的现象。
而圆周运动背后的关键力量是向心力。
在本文中,我们将探讨物体的圆周运动和向心力之间的关系以及其重要性。
一、物体的圆周运动概述物体的圆周运动是指物体在一定半径的圆轨道上做运动。
圆周运动是一种周期性运动,其中包含两个重要要素:半径和角速度。
半径决定了物体离中心点的距离,而角速度则决定了物体在单位时间内绕中心点旋转的快慢。
二、向心力的定义和作用向心力是物体进行圆周运动时所受到的力量。
它的方向始终指向圆心,垂直于物体的速度方向。
向心力的大小与物体的质量、圆周运动的半径以及物体的速度有关。
向心力的作用是使物体保持在圆轨道上的一种力量。
它不仅仅是保持物体在轨道上运动的力量,还能够改变物体的速度和方向,并控制着物体的圆周运动的特性。
三、向心力的公式和计算方法根据牛顿第二定律,我们可以推导出向心力的公式:向心力 = 物体的质量 ×加速度加速度可以表示为速度的平方除以半径:加速度 = 速度的平方 / 半径将上述两个公式合并,可以得到向心力的计算公式:向心力 = 物体的质量 ×速度的平方 / 半径通过这个公式,我们可以计算出物体在圆周运动中所受到的向心力。
四、向心力的示例和应用1.行星运动:太阳系中的行星绕着太阳做圆周运动,向心力使得它们保持在相对稳定的轨道上。
2.过山车:过山车的设计利用向心力来创造刺激和乐趣。
向心力使得乘客在过山车的转弯和环形轨道上感受到加速和压力。
3.洗衣机:洗衣机内筒的旋转也是由向心力产生的。
通过向心力,洗衣机可以将衣物从中心推向外部,以达到更好的清洁效果。
这些示例都展示了向心力在不同物体和情景下的应用。
向心力在物理学、工程学和日常生活中都起到了重要的作用。
五、圆周运动与向心力的重要性物体的圆周运动和向心力的理解对于我们理解自然界中的许多现象非常重要。
它不仅能帮助我们解释天体运动,还有助于我们设计安全、稳定且效果良好的机械设备。
知识讲解+圆周运动的向心力及其应用
圆周运动的向心力及其应用【要点梳理】要点一、物体做匀速圆周运动的条件物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。
说明:从物体受到的合外力、初速度以及它们的方向关系上探讨物体的运动情况,是理解运动和力关系的基本方法。
要点二、关于向心力及其来源1、向心力(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力.(2)向心力的作用:是改变线速度的方向产生向心加速度的原因。
(3)向心力的大小:22vF ma m mrrω===向向向心力的大小等于物体的质量和向心加速度的乘积;对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方;线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。
如果是匀速圆周运动则有:22222244vF ma m mr mr mr fr Tπωπ=====向向(4)向心力的方向:与速度方向垂直,沿半径指向圆心。
(5)关于向心力的说明:①向心力是按效果命名的,它不是某种性质的力;②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小;③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。
2、向心力的来源(1)向心力不是一种特殊的力。
重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。
(2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):要点三、匀速圆周运动与变速圆周运动的区别 1、从向心力看匀速圆周运动和变速圆周运动(1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。
例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。
圆周运动中的向心力解析
圆周运动中的向心力解析在物理学中,圆周运动是一种常见的运动形式。
无论是地球围绕太阳的运动,还是飞机在空中盘旋的轨迹,都是圆周运动的例子。
而在这种运动中,向心力起着至关重要的作用。
本文将对圆周运动中的向心力进行解析,并探讨其对运动轨迹和速度的影响。
一、向心力的定义和作用向心力是指使物体朝向中心的力。
在圆周运动中,物体沿着圆形轨道运动,其速度和方向不断改变,而向心力正是使物体保持在轨道上的力。
向心力的大小与物体的质量和速度有关,可以用以下公式表示:向心力 F = m * v² / r其中,F表示向心力,m表示物体的质量,v表示物体的速度,r表示物体与中心的距离。
向心力的作用是改变物体的运动方向,使其朝向中心运动。
在圆周运动中,向心力始终指向圆心,与运动方向垂直。
它的作用是使物体不再沿直线运动,而是绕着圆心旋转。
同时,向心力还控制着物体的运动速度,使其保持在一个恒定的数值。
二、向心力与运动轨迹向心力对运动轨迹的影响是显著的。
当物体受到向心力的作用时,它将沿着圆形轨道运动。
轨道的半径决定了向心力的大小,半径越小,向心力越大,物体运动的速度也就越快。
以地球围绕太阳的运动为例,地球的轨道是一个近似圆形的椭圆。
太阳对地球施加的向心力使得地球保持在轨道上运动,同时决定了地球绕太阳的周期。
如果向心力增大,地球将以更快的速度绕太阳运动,轨道半径减小,周期缩短。
反之,如果向心力减小,地球将以较慢的速度运动,轨道半径增大,周期延长。
三、向心力与运动速度向心力还控制着物体的运动速度。
根据向心力的公式,可以看出向心力与速度的平方成正比。
当向心力增大时,物体的速度也会增大,反之亦然。
这意味着向心力可以通过改变速度来影响物体的运动状态。
在飞机盘旋的例子中,向心力使得飞机保持在盘旋轨道上。
当飞机速度增加时,向心力也随之增大,飞机的盘旋半径变小,速度减小时则反之。
这种通过调整速度来控制盘旋半径的方式,使得飞机能够灵活地在空中进行机动。
高中物理圆周运动的向心力及其应用专题讲解
圆周运动的向心力及其应用【要点梳理】要点一、物体做匀速圆周运动的条件 要点诠释:物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。
说明:从物体受到的合外力、初速度以及它们的方向关系上探讨物体的运动情况,是理解运动和力关系的基本方法。
【典型例题】类型一、水平面上的圆周运动例1(多选)、 (2015 哈尔滨校级期末)如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO’的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g ,若圆盘从静止开始绕转轴缓慢地加速运动,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .b 一定比a 先开始滑动 B .a 、b 所受的摩擦力始终相等 C .当2kglω=时,b 开始滑动的临界角速度 D .当23kglω=时,a 所受的摩擦力大小为kmg 【解析】两个木块的最大静摩擦力相等,木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力2f m r ω=,m 、ω相等,f r ∝,所以b 所受的静摩擦力大于a 的静摩擦力,当圆盘的角速度增大时b 的静摩擦力先达到最大值,所以b 一定比a 先开始滑动,故A 正确,B 错误;当b 刚要滑动时,有22kmg m l ω=,解得:2kglω=,故C 正确;以a 为研究对象,当23kgl ω=时,由牛顿第二定律知:2f m l ω=,可解得:23f kmg =,故D 错误。
【变式】原长为L 的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO ′上,小铁块放在水平圆盘上,若圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为5L/4,现将弹簧长度拉长到6L/5后,把小铁块放在圆盘上,在这种情况下,圆盘绕中心轴OO ′以一定角速度匀速转动,如图所示.已知小铁块的质量为m ,为使小铁块不在圆盘上滑动,圆盘转动的角速度ω最大不得超过多少? 【答案】max 3/(8)k m ω=【解析】以小铁块为研究对象,圆盘静止时:设铁块受到的最大静摩擦力为max f ,由平衡条件得max /4f kL =.二定律得2max max (6/5)kx f m L ω+=.又因为x =L/5.解以上三式得角速度的最大值max ω=要点二、关于向心力及其来源 1、向心力 要点诠释(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力. (2)向心力的作用:是改变线速度的方向产生向心加速度的原因。
圆周运动的向心力公式
圆周运动的向心力公式
圆周运动是指物体沿着圆形轨迹做匀速运动的现象。
在圆周运动中,物体会受到向心力的作用,使得它沿着圆形轨迹做匀速运动。
向心力的大小与物体的质量、转速和转动半径有关。
具体来说,向心力的大小可以用以下公式来计算:
F = m * v^2 / r
其中,F表示向心力的大小,m表示物体的质量,v表示物体的
线速度,r表示物体的转动半径。
这个公式说明,向心力的大小与物体的质量和线速度成正比,与转动半径成反比。
向心力的方向始终指向圆心,因为只有这样,物体才能沿着圆形轨迹做匀速运动。
如果向心力不足或超过一定范围,物体就会脱离圆形轨迹。
总之,圆周运动的向心力公式是一个重要的物理公式,可以帮助我们理解圆周运动的规律和特点,也可以应用于很多实际问题的解决。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名: __________ 打卡时间: __________
1.知道线速度、角速度、加速度、转速与周期等概念。
2.掌握线速度和角速度、角速度与转速、周期的关系, 3.知道变速圆周运动的向心加速的方向和加速度的公式。
对基本概念和公式的理解,并熟练运用。
1.匀速圆周运动
(1)定义:
做圆周运动的物体,若在相等的时间内通过的圆弧长 ,就是匀速圆周运动。
匀速圆周运动是线速度大小 的圆周运动。
(2)性质:加速度大小 ,方向始终指向 ,是变加速运动。
(3)条件:合外力大小 、方向始终与 方向垂直且指向圆心。
2.描述圆周运动的物理量
线速度:(1)描述做圆周运动的物体运动 的物理量(v =2πr
T
)。
(2)是矢量,方向和半径垂直,和圆周相切。
角速度:(1)描述物体绕圆心 的物理量(ω=2πT
)。
(2)中学不研究其方向。
周期和转速:(1)周期是物体沿圆周运动 所用的时间(T )。
(2)转速是物体在单位时间内转过的 (n ),也叫频率(f )。
专题四:圆周运动及其向心力公式的应用
描述圆周运动的物理量
向心加速:(1
)描述速度 变化快慢的物理量(a n =2v r
=2
r )。
(2)方向指向圆心 相互关系:(1)v =ωr =
2πr
T
=2πfr 。
(2)a n =2v r =ω2r =ωv =2
24πr T
=4π2f 2r 。
3.向心力F
(1)作用效果:产生向心加速度,只改变线速度的 ,不改变线速的 ,因此向心力不做功。
(2)大小:F =ma =m 2v r =m ω2r =m 2
24π
T
r 。
(3)方向:总是沿半径指向圆心,向心力是个变力。
1.定义:做匀速圆周运动的物体,在所受的合外力突然消失或不足以提供圆周运动 的情况下,就做逐渐远离圆心的运动,即离心运动。
2.本质:做圆周运动的物体,由于本身的惯性,总是沿 飞出去的倾向。
3.受力特点
当F = 时,物体做匀速圆周运动; 当F =0时,物体沿 飞出; 当F < 时,物体逐渐远离圆心,F 为实际所提供的向心力,如图所示。
在分析传动装置的各物理量时,要抓住不等量和相等量的关系,表现为:
1.同转动轴的各点角速度ω相等,而线速度v =ωr 与半径r 成正比,向心加速度a =ωr 与半径r 成正比。
离心现象
运动学分析
A 点和
B 点在同轴的一个圆盘上,如图甲,圆盘转动时,它们的角速度、线速度、周期存在以下定量关系:ωA =ωB , A B
v r
v R
=
,T A =T B ,并且转动方向相同。
2.当皮带不打滑时,传动皮带与和皮带连接的两轮边缘的各点线速度大小相等,而两
轮的角速度ω=v
r
与半径r 成反比,向心加速度a =2v r 与半径r 成反比。
A 点和
B 点分别是两个轮子边缘上的点,两个轮子用皮带连起来,并且皮带不打滑。
如图乙所示,轮子转动时,它们的线速度、角速度、周期存在以下定量关系:v A =v B ,A B r R ωω=,A B T R
T r
=,并且转动方向相同。
3.齿轮传动
A 点和
B 点分别是两个齿轮边缘上的点,两个齿轮轮齿啮合。
如图所
示,
齿
轮
转动时
,它们
的
线
速度、角速
式中n 1、n 2分别表示两齿轮的齿数。
两点转动方向相反。
例1 科技馆的科普器材中常有如图所示的匀速率的传动装置:在大齿轮盘内嵌有三个等大的小齿轮。
若齿轮的齿很小,大齿轮的半径(内径)是小齿轮半径的3倍,则当大齿轮顺
时针匀速转动时,下列说法正确的是( ) A.小齿轮逆时针转动
B.小齿轮每个齿的线速度均相同
C.小齿轮的角速度是大齿轮角速度的3倍
D.大齿轮每个齿的向心加速度大小是小齿轮的3倍
【解析】大齿轮、小齿轮在转动过程中,两者的齿的线速度大小相等,当大齿轮顺时针
转动时,小齿轮也顺时针转动,选项A 错误;速度是矢量,具有方向,所以小齿轮每个齿的线速度不同,选项B 错误;根据v =ωr ,且线速度大小相等,角速度与半径成反比,选项C 正确;根据向心加速度a =v 2
r ,线速度大小相等,向心加速度与半径成反比,选项D 错误。
本题的正确答案为C 。
1.光盘驱动器读取数据的某种方式可简化为以下模式,在读取内环数据时,以恒定角速度方式读取,而在读取外环数据时,以恒定线速度的方式读取.如图所示,设内环内边缘半径为R 1,内环外边缘半径为R 2,外环外边缘半径为R 3。
A 、B 、C 分别为各边缘线上的点.则读 取内环上A 点时A 点的向心加速度大小和读取外环上C 点时C 点的向心加速度大小之比为 ( )
A.R 21R 2
R 3 B.R 22R 1R 3 C.R 2R 3R 21 D.R 1R 3R 22
1.对向心力的进一步理解
(1)定义:做圆周运动的物体所受的指向圆心的合力。
(2)作用效果:产生向心加速度并不断改变物体的线速度方向,维持物体做圆周运动。
(3)方向:总是沿半径指向圆心,是一个变力。
(4)大小:F =ma =m 2v r
=m ω2r 。
(5)向心力来源:
向心力可以是重力、弹力、摩擦力等各种力,也可以是各力的合力或某力的分力,总之,只要能达到维持物体做圆周运动效果的力,就是向心力。
向心力是按力的作用效果来命名的。
对各种情况下向心力的来源应明确,如水平圆盘上跟随圆盘一起匀速转动的物体(图甲)和水平地面上匀速转弯的汽车,所受摩擦力提供向心力;圆锥摆(图乙)和以规定速率转弯的火车,向心力是重力与弹力的合力。
2.圆周运动中向心力的分析
(1)匀速圆周运动:物体做匀速圆周运动时受到的外力的合力就是向心力,向心力大小不变,方向始终与速度方向垂直且指向圆心,这是物体做匀速圆周运动的条件。
(2)变速圆周运动:在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。
合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力
动力学分析
,使物体产生向心加速度,改变速度的方向。
合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。
例2 如图所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半,内壁上有一质量为m 的小物块,求:
(1)当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小;
(2)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度。
解析 (1)物块静止时,对物块进行受力分析如图所示,设筒壁与水平面的夹角为θ,由平衡条件有:F f =mg sin θ,F N =mg cos θ
由几何关系有:2
2
cos R H
θ=
+
,2
2
sin R H
θ=
+
F f =mg sin θ=
2
2
R H
+,F N =mg cos θ=
2
2
R H
+
(2)分析此时物块受力如图所示,由牛顿第二定律有: mg tan θ=mrω2,其中tan θ=
R H ,r =2
R 解得:ω=
R
gH
2。
2.如图所示,在半径为R 的半圆形碗的光滑表面上,一质量为m 的小球以转数为n 转每秒在水平面内做匀速圆周运动,该平面离碗底的距离h 为 ( )
A .R -g
4π2n 2
B .g 4π2n 2 C.g 4π2n 2-R D.g 4π2n 2+R 2
一、描述圆周运动的物理量
专题四:参考答案
1.(1)相等 不变 (2)不变 圆心 (3)不变 速度 2.线速度:(1)快慢 角速度:(1)转动快慢
周期和转速:(1)一周 (2)圈数 向心加速度:(1)方向 3.(1)方向 大小 二、离心现象
1.所需的向心力 2.圆周切线方向 3.mω2r 切线方向 mω2r 配点训练1 答案 D
解析 A 、B 两点的角速度大小相等,根据a =rω2知,A 、B 两点的向心加速度之比a A :a B =R 1:R 2;B 、C 两点的线速度相等,根据a =v 2
r 知,B 、C 两点的向心加速度之比为a B :
a C =R 3:R 2,可得a A a C =R 1R 3
R 22。
配点训练2 答案 A
解析 小球靠重力和支持力的合力提供向心力,如图所示: 小球做圆周运动的半径为r =R sin θ,根据受力分析图可知 tan θ=
F 向
mg 而向心力F 向=mω2R sin θ;解得cos θ=g
Rω2 ;所以h =R -R cos θ=R -
R ·g Rω2=R -g
4π2n
2。