潮流计算的计算机算法资料

合集下载

33复杂电力网潮流计算的计算机解法

33复杂电力网潮流计算的计算机解法

3.3复杂电力网潮流计算的计算机解法3.3.1 导纳矩阵的形成1.自导纳ﻫ节点i的自导纳,亦称输入导纳,在数值上等于在节点i施加单位电压,其他节点全部接地时,经节点i注入网络的电流。

主对角线元素,更具体地说,就等于与节点连接的所有支路导纳的和。

ﻫ 2.互导纳ﻫ节点i、j间的互导纳,在数值上等于在节点i施加单位电压,其他节点全部接地时,经节点j注入网络的电流。

非对角线元素。

更具体地说,是连接节点j和节点i支路的导纳之和再加上负号而得。

ﻫ 3.导钠矩阵的特点:ﻫ(1)因为,导纳矩阵Y是对称矩阵;(2)导纳矩阵是稀疏矩阵,每一非对角元素是节点i和j间支路导纳的负值,当i和j间没有直接相连的支路时,即为零,根据一般电力系统的特点,每一节点平均与3-5个相邻节点有直接联系,所以导纳矩阵是一高度稀疏的矩阵;(3)导纳矩阵能从系统网络接线图直观地求出。

ﻫ4.节点导纳矩阵的修改ﻫ(1)从原有网络引出一支路,同时增加一节点,设i为原有网络结点,j为新增节点,新增支路ij的导纳为yij。

如图3-17(a)所示。

ﻫ因新增一节点,新的节点导纳阵需增加一阶。

且新增对角元Yjj=y ij,新增非对角元Y ij=Y ji=-y ij,同时对原阵中的对角元Y ii进行修改,增加ΔY ii=y ij。

ﻫ(2)在原有网络节点i、j间增加一支路。

如图3-17(b)所示。

ﻫ设在节点i增加一条支路,由于没有增加节点数,节点导纳矩阵Y阶次不变,节点的自导纳Yii、Yjj和互导纳Yij分别变化量为(3-57)图3-17 网络接线的变化图(a)网络引出一支路,(b)节点间增加一支路,(c)节点间切除一支路,(d)节点间导纳改变ﻫ(3)在原有网络节点i、j间切除一支路。

如图3-17(c)所示。

ﻫ设在节点i切除一条支路,由于没有增加节点数,节点导纳矩阵Y阶次不变,节点的自导纳Y ii、Y jj和互导纳Y ij分别发生变化,其变化量为(3-58)(4)原有网络节点i、j间的导纳改变为。

电力系统潮流计算机算法

电力系统潮流计算机算法

电力系统潮流计算机算法电力系统潮流计算是电力系统分析中最基本的一项计算,其目的是确定电力系统中各母线电压的幅值和相角、各元件中的功率以及整个系统的功率损耗等。

随着计算机技术的发展,电力系统潮流计算算法也在不断更新和完善。

以下是电力系统潮流计算的一些常用算法:1. 牛顿-拉夫逊法(Newton-Raphson Method):这是一种求解非线性方程组的方法,应用于电力系统潮流计算中。

该方法在多数情况下没有发散的危险,且收敛性较强,可以大大节约计算时间,因此得到了广泛的应用。

2. 快速迪科法(Fast Decoupled Method):这是一种高效的电力系统潮流计算方法,将电力系统分为几个子系统进行计算,从而提高了计算速度。

3. 最小二乘法(Least Squares Method):这是一种用于求解线性方程组的方法,通过最小化误差平方和来获得最优解。

在电力系统潮流计算中,可用于优化电压幅值和相角。

4. 遗传算法(Genetic Algorithm):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以解决一些复杂和非线性问题。

5. 粒子群优化算法(Particle Swarm Optimization):这是一种启发式优化算法,通过模拟鸟群觅食行为来寻找最优解。

在电力系统潮流计算中,可用于优化网络参数和运行条件。

6. 模拟退火算法(Simulated Annealing):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以在较大范围内寻找最优解。

7. 人工神经网络(Artificial Neural Network):这是一种模拟人脑神经网络的计算模型,可用于电力系统潮流计算。

通过训练神经网络,可以实现对电力系统中复杂非线性关系的建模和预测。

以上所述算法在电力系统潮流计算中起着重要作用,为电力系统运行、设计和优化提供了有力支持。

同时,随着计算机技术的不断发展,未来还将出现更多高效、精确的电力系统潮流计算算法。

潮流计算方法

潮流计算方法

计算电流及功率
for n=1:nbus Sc = conj(conj(V(n))*(Y(n,n)*V(n))); DP(n) = P(n) - real(Sc); DQ(n) = Q(n) - imag(Sc); end

返回
Qi Lii Vi Vi V j (Gij sin ij Bij cos ij ) 2Vi 2 Bii Vi 2 Bii Qi ji i j i
直流潮流与牛拉法的结合
1.通过直流潮流计算各节点的相角。 2.将结果作为牛拉法初值进行计算。
J ij
Qi Vi V j (Gij cos ij Bij sin ij ) j
Qi Lij V j Vi V j (Gij sin ij Bij cos ij ) Vj
雅克比矩阵的形成
当j=i 时
H ii
Pi Vi V j (Gij sin ij Bij cos ij ) Vi 2 Bii Qi ji i j i

数据输入:
将各节点的初始值及线路数据输入excel文 件中,并通过xlsread这一函数输入到MATLAB 中。
形成导纳矩阵
1.形成一个零矩阵Y 2.检测线路参数前两列,将Y对应元素加上相应 参数。
形成导纳矩阵


1.非对角线元素:
for n=1:nbr Y(n1(n),n2(n))= Y(n1(n),n2(n))-Y1(n)/(a(k)^2); Y(n2(n),n1(n))= Y(n1(n),n2(n)); end
总体思路:
1.直接使用“牛顿——拉夫逊”法,通过图像 显示每次迭代后的误差并记录程序运行时间。 2.直接使用“PQ分解法”,通过图像显示每次 迭代后的误差并记录程序运行时间。 3.首先使用直流潮流计算,计算各节点电压的 相角,并将计算结果作为 “牛顿——拉夫逊” 法的初值,通过图像显示每次迭代后的误差并 记录程序运行时间。

第四章 潮流的计算机算法new-教材

第四章 潮流的计算机算法new-教材

y34 4 y440
7
将接在同一节点上的接 地导纳进行并联,得
I1
y12 y10 y13 y23 y20
I2
y10 = y120 + y130
⎫ ⎪ y20 = y210 + y230 ⎪ ⎬ y30 = y310 + y320 + y340 ⎪ ⎪ y40 = y440 + y430 ⎭
3 y30 y34 4 y40 I4
& ⎤ L Y1i L Y1 j L Y1n ⎤ ⎡U 1 ⎢ ⎥ ⎥ O M O M O M ⎥⎢ M ⎥ & ⎥ L Yii L Yij L Yin ⎥ ⎢U i ⎥⎢ ⎥ O M O M O M ⎥⎢ M ⎥ & ⎥ L Y ji L Y jj L Y jn ⎥ ⎢U ⎥⎢ j⎥ O M O M O M ⎥⎢ M ⎥ ⎢U ⎥ & L Yni L Ynj L Ynn ⎥ ⎥ ⎦⎢ ⎣ n⎥ ⎦
&⎤ L Z1i L Z1 j L Z1n ⎤ ⎡ I 1 ⎢ ⎥ O M O M O M ⎥ ⎥⎢ M ⎥ &⎥ L Z ii L Z ij L Z in ⎥ ⎢ I i ⎥⎢ ⎥ O M O M O M ⎥⎢ M ⎥ &⎥ L Z ji L Z jj L Z jn ⎥ ⎢ I ⎥⎢ j⎥ O M O M O M ⎥⎢ M ⎥ ⎢I &⎥ L Z ni L Z nj L Z nn ⎥ ⎥ ⎢ ⎦⎣ n⎥ ⎦
22
节点阻抗矩阵
Z =Y
−1
节点阻抗矩阵
Z ii
Z ij
对角元素,称为节点i的自阻抗 非对角元素称为节点i和节点j之间的互阻抗
⎡ Z11 ⎢ M ⎢ ⎢ Z i1 ⎢ ⎢ M ⎢ Z j1 ⎢ ⎢ M ⎢Z ⎣ n1

潮流计算的计算机方法

潮流计算的计算机方法

一、潮流计算的计算机方法对于复杂网络的潮流计算,一般必须借助电子计算机进行。

其计算步骤是:建立电力网络的数学模型,确定计算方法、制定框图和编制程序。

本章重点介绍前两部分,并着重阐述在电力系统潮流实际计算中常用的、基本的方法。

1,电力网络的数学模型电力网络的数学模型指的是将网络有关参数相变量及其相互关系归纳起来所组成的.可以反映网络性能的数学方程式组。

也就是对电力系统的运行状态、变量和网络参数之间相互关系的—种数学描述。

电力网络的数学模型有节点电压方程和回路电流方程等,前者在电力系统潮流计算中广泛采用。

节点电压方程又分为以节点导纳矩阵表示的节点电压方程和以节点阻抗矩阵表示的节点电压方程。

(1)节点导纳矩阵在电路理论课中。

已讲过了用节点导纳矩阵表示的节点电压方程:对于n个节点的网络其展开为:上式中,I是节点注入电流的列向量。

在电力系统计算中,节点注入电流可理解为节点电源电流与负荷电流之和,并规定电源向网络节点的注人电流为正。

那么,只有负荷节点的注入电流为负,而仅起联络作用的联络节点的注入电流为零。

U是节点电压的列向量。

网络中有接地支路时,通常以大地作参考点,节点电压就是各节点的对地电压。

并规定地节点的编号为0。

y是一个n×n阶节点导纳矩阵,其阶数n就等于网络中除参考节点外的节点数。

物理意义:节点i单位电压,其余节点接地,此时各节点向网络注入的电流就是节点i 的自导纳和其余节点的与节点i之间的互导纳。

特点:对称矩阵,稀疏矩阵,对角占优(2) 节点阻抗矩阵对导纳阵求逆,得:其中称为节点阻抗矩阵,是节点导纳矩阵的逆阵。

物理意义:节点i注入单位电流,其余节点不注入电流,此时各节点的电压就是节点i 的自阻抗和其余节点的与节点i之间的互阻抗。

特点:满阵,对称,对角占优2,功率方程、变量和节点分类(1)功率方程已知的是节点的注入功率,因此,需要重新列写方程: **==B B B B B U S I U Y其展开式为: i i i nj j ij U jQ P U Y ~1-=∑= 所以:∑=**=+nj jij i i i U Y U jQ P 1 展开写成极坐标方程的形式:)cos sin ()sin cos (11ij ij ij ij n j j i i ij ij ij ij n j j i i B G U U Q B G U U P δδδδ-=+=∑∑==所以节点的功率方程为:)cos sin ()sin cos (11ij ij ij ij n j j i di Gi i ij ij ij ij nj j i di Gi i B G U U Q Q Q B G U U P P P δδδδ---=∆+--=∆∑∑==(2) 变量分类负荷消耗的有功、无功功率取决于用户,因而是无法控制的,故称为不可控变量或扰动变量。

潮流计算的计算机算法资料

潮流计算的计算机算法资料

第四章潮流计算的计算机算法第一节概述潮流计算是电力系统最基本、最常用的计算。

根据系统给定的运行条件、网络接线及元件参数,通过潮流计算可以确定各母线的电压(幅值及相角),各元件中流过的功率、整个系统的功率损耗等。

潮流计算是实现电力系统安全经济发供电的必要手段和重要工作环节。

因此潮流计算在电力系统的规划设计、生产运行、调度管理及科学研究中都有着广泛的应用。

电力系统潮流计算分为离线潮流计算和在线潮流计算。

前者主要用于系统规划设计和安排系统的运行方式,后者则用于正在运行系统的经常监视及实时控制。

本章主要讨论离线潮流计算问题,它的基本算法同样适用于在线潮流计算。

潮流计算在数学上是多元非线性方程组的求解问题,求解的方法有很多种。

自从五十年代计算机应用于电力系统以来,当时求解潮流的方法是以节点导纳矩阵为基础的逐次代入法(导纳法),后来为解决导纳法的收敛性较差的问题,出现了以阻抗矩阵为基础的逐次代入法(阻抗法)。

到六十年代,针对阻抗法占用计算机内存大的问题又出现了分块阻抗法及牛顿-拉夫逊(Newton-Raphson)法。

Newton —Raphson法是数学上解非线形方程式的有效方法,有较好的收敛性。

将N-R法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性、稀疏性及节点编号顺序优化等技巧,使N-R法在收敛性、占用内存、计算速度方面的优点都超过了阻抗法,成为六十年代末期以后普遍采用的方法。

同时国内外广泛研究了诸如非线形规划法、直流法、交流法等各种不同的潮流计算方法。

七十年代以来,又涌现出了更新的潮流计算方法。

其中有1974年由B、Stott、O、Alsac 提出的快速分解法以及1978年由岩本伸一等提出的保留非线性的高129速潮流计算法。

其中快速分解法(Fast decoupled load flow)从1975年开始已在国内使用,并习惯称之为PQ分解法。

由于PQ分解法在计算速度上大大超过N-R法,不但能应用于离线潮流计算,而且也能应用于在线潮流计算。

复杂电力系统潮流的计算机算法资料

复杂电力系统潮流的计算机算法资料

~ SG1
PG1
jQG1
~ SG2
PG2
jQG2
G
1
U 1
U 2
2
S~L1 PL1 jQL1
等值负荷功率 (a)简单系统
~ SL2
PL2
jQL2
第26页/共92页
4-2 功率方程及其迭代解法
一、功率方程和变量、节点的分类
1、功率方程
G
~ SG1
PG1
jQG1
~ SG2
PG2
jQG2
G
1
U 1
y12
4-2 功率方程及其迭代解法
一、功率方程和变量、节点的分类
2、变量的分类
设置平衡节点的目的
➢在结果未出来之前,网损是未知的, 至少需要一个节点的功率不能给定,用 来平衡全网功率。 ➢电压计算需要参考节点。
第33页/共92页
4-2 功率方程及其迭代解法
一、功率方程和变量、节点的分类
3、约束条件 实际电力系统运行要求:
第16页/共92页
三、节点导纳矩阵的修改
不同的运行状态,(如不同结线方式下的运行状况、变压器的
投切或变比的调整等)
改变一个支路的参数或它的投切只影响该 支路两端节点的自导纳和它们之间的互导纳,因 此仅需对原有的矩阵作某些修改。
第17页/共92页
三、节点导纳矩阵的修改
Y 矩阵的修改
不同的运行状态,(如不同结
y30
y20
以零电位作为 参考,根据基 尔霍夫电流定 律
I2
.
.
.
.
.
.
I 1 U 1 y10 (U 1 U 2) y12 (U 1 U 3) y13
.

潮流计算的主要方法

潮流计算的主要方法

潮流计算的主要方法
最近几年,随着计算机仿真技术和复杂系统全面发展,潮流计算也受到越来越多的重视。

潮流计算是研究不同电力网络的物理特性和操作规律的一项重要工作。

针对潮流计算的主要方法,总结如下:
一、基于动力学的方法
1. 碰撞模型:根据动力学方法,计算电力系统的运行稳定性。

基于动力学的碰撞模型能够快速而精确地预测两个潮流的变化情况。

2. 时变快速收敛:在碰撞模型的基础上,为快速求解电力系统潮流,提出了时变快速收敛算法。

可以更快地获得潮流解。

二、基于牛顿迭代法的方法
1.牛顿迭代潮流计算方法:根据牛顿迭代法,采用迭代算法,求解电力系统潮流运行状态。

2. 功率流计算方法:计算机基于牛顿迭代法,快速求解节点电能的功率流公式。

可以有效的缩短潮流计算的时间,提高计算效率。

三、基于模糊聚类算法的方法
1. 基于模糊聚类的潮流计算方法:采用模糊聚类算法,对潮流计算进行多维度分析,可以得出最优的潮流结果。

2. 基于模糊划分的多目标模糊控制:根据模糊聚类理论,对潮流算法进行最佳控制,以满足电力网不同优化目标。

四、基于期望最大化的方法
1、基于粒子群优化的潮流计算方法:采用粒子群优化算法,将电力网潮流计算定义为多目标最优化问题,以期望最大化来求解潮流值,提高计算效率。

2、基于遗传算法的潮流计算方法:遗传算法利用进化过程来搜索全局最优解,使用遗传变异原则来改变候选解,以期望最大化来求解潮流计算问题。

潮流计算的计算机算法

潮流计算的计算机算法

高等电力系统分析(潮流计算的计算机算法)PQ分解法潮流计算(IEEE14)目录一、MATLAB源程序二、对支路参数(B1)、节点参数(B2)的说明三、带入数据,运行结果非对角元 对角元MATLAB 源程序 clearclose alln=in put(' 请输入节点数:n=');n 仁in put(' 请输入支路数:n 1=') )isb=in put(' 请输入平衡节点号 :isb=')pr=i nput(' 请输入误差精度:pr=');B1=i nput(' 请输入支路参数:B1 =');B2=i nput(' 请输入节点参数:B2=');n2=in put(' 请输入PQ 节点个数: :n2=');Y=zeros (n); for i=1: n1P=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/(B1(i,3)+B1(i,4)*1j); % Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/(B1(i,3)+B1(i,4)*1j)+B1(i,6)*1j; %Y(q,q)=Y(q,q)+1/(B1(i,3)+B1(i,4)*1j)+B1(i,6)*1j; enddisp(' 导纳矩阵Y=');disp(Y)% --------------------------------------------% -------------- 下面是求P,Q,V,0矩阵 -----------------------V=zeros(1, n);O=zeros(1, n);P=zeros(1, n);Q=zeros(1, n); G=real(Y);B=imag(Y); for i=1: nP(i)=B2(i,3);Q(i)=B2(i,4);V(i)=B2(i,5);O(i)=B2(i,6);endB3=B(1: n-1,1: n-1); % 不含平衡节点,由节点导纳虚部构成B4=B(1:n2,1:n2); % 所有 PQ 节点% --------------------------------------------% -------------- 下面是求△ P, △ Q 矩阵 ---------------------DX=0;ICT=1;Mp=1;Mq=1;while ICT~=0m1=1;m2=1;for i=1:n所有节点数 节点数 求 DP,DQ 对V 矩阵求逆 △ P/V △ P/V/B3 △角=-△ P/V/V/B3△ V=- △ Q/V/Bif i~=isbC(i)=O;D(i)=O;for j1=1:n C(i)=C(i)+V(i)*V(j1)*(G(i,j1)*cos(O(i)-O(j1))+B(i,j1)*si n( O(i)-O(j1)));D(i)=D(i)+V(i)*V(j1)*(G(i,j1)*si n(O(i)-O(j1))-B(i,j1)*cos(O(i)-O( j1)));endDP(m1)=P(i)-C(i); m1=m1+1;if B2(i,2)==1 DQ(m2)=Q(i)-D(i); m2=m2+1;endendendm1=m1-1;% m2=m2-1; %PQ DPQ=[DP';DQ']; % V 仁 V(:,1:m1);V2=diag(V1);V3=i nv(V2);% H=V3*DP'; %K=-i nv(B3)*H; %- deltO=V3*K;% max1=max(abs(DP));for i=1:m1if max1<prMp=0;elseO(i)=O(i)+deltO(i)'; Mq=1;endendV4=V(:,1:m2);V5=diag(V4);V6=i nv(V5);L=V6*DQ';N=-i nv(B4)*L; deltV=N; %max2=max(abs(DQ));for i=1:m2if max2<prMq=0;elseif B2(i,2)==1;V(i)=V(i)+deltV(i):Mp=1;endendendif Mp==0&&Mq==0ICT=0;elseICT=1;endDX=DX+1;end% ------------------------------------------% --------------- 迭代结束,开始输出结果disp(' --------------------------------------------');disp(' 迭代次数为:');disp(DX);for i=1: nE(i)=V(i)*cos(O(i))+1j*V(i)*si n(O(i));o(i)= 180*a ngle(E(i))/pi;enddisp(' --------------------------------------------');disp(' 修正后各节点电压标么值为(节点号从小到大排列) :');disp(V);disp(' --------------------------------------------');disp(' 修正后各节点电压相角为(节点号从小到大排列) :');disp(o);% ----------- 计算各个节点的功率disp(' --------------------------------------------');disp(' 各节点的功率为:');for p=1: nC(p)=0;for q=1: nC(p)=C(p)+conj(Y(p,q)*conj(E(q)));endS(p)=E(p)*C(p);enddisp(S);% ----------- 计算各支路的功率 -------------------------for i=1: n1 p=B1(i,1);q=B1(i,2);Si(p,q)=E(p)*(conj(E(p))*conj(Y(p,p)-Y(p,q))+(conj(E(p))-conj(E(q )))*conj(Y(p,q))); disp(' -------------------------------------------- ');disp(' 各条支路的首端功率为:');disp(Si(p,q));Si(q,p)=E(q)*(conj(E(q))*conj(Y(q,q)-Y(p,q))+(conj(E(q))-conj(E(p )))*conj(Y(p,q))); disp(' -------------------------------------------- ');disp(' 各条支路的末端功率为:');disp(Si(q,p));DS(i)=Si(p,q)+Si(q,p);disp(' -------------------------------------------- ');disp(' 各条支路的功率损耗为:');disp(DS(i));end% --------------- 计算平衡节点功率-----------------------Sp=0;for i=1: nSp=Sp+V( n)*conj(Y( n, i))*conj(V(i));enddisp(' -------------------------------------------- ');disp(' 平衡节点功率为:');disp(Sp);二、对支路参数(B1)、节点参数(B2)的说明1•节点数:142•支路数:203•支路矩阵B1的各支路参数:起点编号,终点编号,电阻,电抗,电导,电纳[1 2 0.01335 0.04211 0 0 ;1 3 0 0.20912 0 0 J1 4 0 0.55618 0 0 J1 10 0.05811 0.17632 0 0.0341 11 0.06701 0.17103 0 0.01282 10 0.05695 0.17388 0 0.0346 2 12 0 0.25202 0 0 J2 14 0.05403 0.22304 0 0.04923 4 0 0.11001 0 0 J3 13 0 0.17615 0 0 J4 5 0.03181 0.0845 0 0 ;4 9 0.12711 0.27038 0 0 ;5 6 0.08205 0.19207 0 0 ;;6 12 0.09498 0.1989 0 07 8 0.22092 0.19988 0 0 ;[1 1 -0.4782 1 -0.0763 10 04 1 -0.2955 1 -0.096 1 -0.0357 1 -0.0618 1 -0.1359 1 -0.14910 2 0.18311 2 -0.94212 2 -0.11213 214 00.039 1 0;-0.016 1 0;1 0;-0.166 1 0;-0.058 1 0;-0.018 1 0;-0.016 1 0;-0.058 1 0;-0.05 1 0;0 1.045 0;0 1.01 0;0.047 1.70;0 0.174 1.9 0;0 0 1.06 0;]7 12 0.12291 0.25581 0 08 9 0.17093 0.34802 0 0 ;8 12 0.06615 0.13027 0 0 ;10 11 0.04699 0.19797 0 0.043810 14 0.01938 0.05917 0 0.05284.节点参数矩阵B2的各节点参数:(对应的每一列为)节点编号,类型,注入有功,注入无功,电压幅值,电压相位其中节点类型:仁PQ节点,2=PV节点,0二平衡节点三、带入数据,运行结果>> clearclose alln=input('请输入节点数:n=');n1=input('请输入支路数:n仁');isb=i nput('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr=');B1= input('请输入支路参数:B仁');B2=input('请输入节点参数:B2=');n2=input('请输入PQ节点个数:n2=');Y=zeros (n);for i=1: n1p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/(B1(i,3)+B1(i,4)*1j); %非对角元Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/(B1(i,3)+B1(i,4)*1j)+B1(i,6)*1j; % 对角元Y(q,q)=Y(q,q)+1/(B1(i,3)+B1(i,4)*1j)+B1(i,6)*1j;enddisp('导纳矩阵Y=');disp(Y)% --------------------------------------------% -------------- 下面是求PQ,V,0矩阵-------------V=zeros(1, n);O=zeros(1, n);P=zeros(1, n);Q=zeros(1, n); G=real(Y);B=imag(Y); for i=1: nP(i)=B2(i,3);Q(i)=B2(i,4);V(i)=B2(i,5);O(i)=B2(i,6);endB3=B(1: n-1,1: n-1); %不含平衡节点,由节点导纳虚部构成B4=B(1:n2,1:n2); %所有PQ 节点% --------------------------------------------endendend m1=m1-1;m2=m2-1; DPQ=[DP';DQ']; V1=V(:,1:m1); V2=diag(V1);V3=i nv(V2);H=V3*DP';K=-i nv(B3)*H; deltO=V3*K;% 所有节点数%PQ节点数%求DPQQ%对V矩阵求逆%A P/V%-A P/V/B3%A 角=-A% -------------- 下面是求△ P,A Q矩阵------------DX=0;ICT=1;Mp=1;Mq=1;while ICT~=0m1=1;m2=1;for i=1: nif i~=isbC(i)=0;D(i)=0;for j1=1: nC(i)=C(i)+V(i)*V(j1)*(G(i,j1)*cos(O(i)-O(j1))+B(i,j1)*si n(O(i)-O(j1)));D(i)=D(i)+V(i)*V(j1)*(G(i,j1)*si n(O(i)-O(j1))-B(i,j1)*cos(O(i)-O(j1)));endDP(m1)=P(i)-C(i); m1=m1+1;if B2(i,2)==1DQ(m2)=Q(i)-D(i); m2=m2+1;max1=max(abs(DP));for i=1:m1if max1<prMp=0;elseO(i)=O(i)+deltO(i)';Mq=1;endendV4=V(:,1:m2);V5=diag(V4); V6=i nv(V5);L=V6*DQ';N=-i nv(B4)*L;deltV=N; %△V=-A Q/V/Bmax2=max(abs(DQ));for i=1:m2if max2<prMq=0;elseif B2(i,2)==1;V(i)=V(i)+deltV(i): Mp=1;endendendif Mp==0&&M q==0ICT=0;elseICT=1;endDX=DX+1;end% ------------------------------------------% --------------- 迭代结束,开始输出结果disp(' --------------------------------------------');disp('迭代次数为:');disp(DX);for i=1: nE(i)=V(i)*cos(O(i))+1j*V(i)*si n(0 (i));o(i)= 180*a ngle(E(i))/pi;enddisp(' --------------------------------------------');disp('修正后各节点电压标么值为(节点号从小到大排列) :');disp(V);disp(' --------------------------------------------');disp('修正后各节点电压相角为(节点号从小到大排列) :');disp(o);% ----------- 计算各个节点的功率-----------------disp(' --------------------------------------------');disp('各节点的功率为:');for p=1: nC(p)=0;for q=1: nC(p)=C(p)+conj(Y(p,q)*conj(E(q)));endS(p)=E(p)*C(p);end disp(S);% ----------- 计算各支路的功率------------------for i=1: n1 p=B1(i,1);q=B1(i,2);Si(p,q)=E(p)*(conj(E(p))*conj(Y(p,p)-Y(p,q))+(conj(E(p))-conj(E(q)))*conj(Y(p,q)));disp(' -------------------------------------------- ');disp('各条支路的首端功率为:');disp(Si(p,q));Si(q,p)=E(q)*(conj(E(q))*conj(Y(q,q)-Y(p,q))+(conj(E(q))-conj(E(p)))*conj(Y(p,q))); disp(' -------------------------------------------- ');disp('各条支路的末端功率为:');disp(Si(q,p));DS(i)=Si(p,q)+Si(q,p);disp(' -------------------------------------------- ');disp('各条支路的功率损耗为:');disp(DS(i));end% --------------- 计算平衡节点功率------------Sp=0;for i=1: nSp=Sp+V( n)*conj(Y( n,i))*conj(V(i));enddisp(' -------------------------------------------- ');disp('平衡节点功率为:');disp(Sp);请输入节点数:n=14请输入支路数:n 1=20请输入平衡节点号:isb=14请输入误差精度:pr=0.00001请输入支路参数:B1=[1 2 0.01335 0.04211 0 0 ;1 3 0 0.20912 0 0 J1 4 0 0.55618 0 0 J1 10 0.05811 0.17632 0 0.0341 11 0.06701 0.17103 0 0.01282 10 0.05695 0.17388 0 0.03462 12 0 0.25202 0 0 J2 14 0.05403 0.22304 0 0.049210.5130 -38.2963i -6.8410 +21.5786i 0.0000 + 4.7819i0.0000 + 1.7980i0.0000 +0.0000i-6.8410 +21.5786i 9.5680 -34.8916i0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 +0.0000i0.0000 + 4.7819i 0.0000 + 0.0000i0.0000 -19.5490i 0.0000 + 9.0901i0.0000 +0.0000i0.0000 + 1.7980i0.0000 + 0.0000i0.0000 + 9.0901i5.3261 -24.2825i-3.9020 +10.3654i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i-3.9020 +10.3654i 5.7829-14.7683i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i-1.8809 +4.4029i0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +O.OOOOi3 4 0 0.11001 00 ; 3 13 0 0.17615 00 J 4 5 0.03181 0.08450 ; 4 9 0.12711 0.27038 0 0 ; 5 60.08205 0.19207 00 ; 6 12 0.09498 0.1989 0 0 ; 7 8 0.22092 0.19988 0 0 ; 7 12 0.12291 0.25581 00 ; 8 9 0.17093 0.34802 0 0 ; 8 12 0.06615 0.13027 0 0 ;10 11 0.04699 0.19797 00.0438 ; 10 14 0.01938 0.05917 0 0.0528;请输入节点参数:B2=[1 1 -0.478 0.039 2 1 -0.076 -0.016 10;3 1 0 0 1 0;4 1 -0.295 -0.166 1 0; 5 1 -0.09 -0.058 1 0; 6 1 -0.035 -0.018 1 0;7 1 -0.061 -0.016 1 0;8 1 -0.135 -0.058 1 0;9 1 -0.149 -0.05 10; 10 2 0.183 01.0450;11 2 -0.9420 1.01 0;12 2 -0.112 0.047 1.7 0;13 20 0.1741.9 0;14 0 0 0 1.06 0;]请输入PQ 节点个数:n2=9导纳矩阵 Y=1Columns 1 through 5;0.0000 +O.OOOOiO.OOOOi0.0000 + 0.0000i 0.0000i-1.6860 + 5.1158i 0.0000i-1.9860 + 5.0688i 0.0000i0.0000 + 0.0000i 0.0000i0.0000 + 0.0000i 0.0000i0.0000 + 0.0000i 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i-1.7011 + 5.1939i0.0000 + 0.0000i0.0000 + 3.9679i0.0000 + 0.0000i-1.0259 + 4.2350i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 5.6770i0.0000 + 0.0000i0.0000 + 0.0000i-1.4240 + 3.0291i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000iColu mns 6 through 100.0000 + 0.0000i 5.115 8i0.0000 + 0.0000i 5.1939i0.0000 + 0.0000i 0.0000i0.0000 + 0.0000i 0.0000i-1.8809 + 4.4029i 0.0000i3.8359 - 8.4970i 0.0000i0.0000 + 0.0000i 0.0000i0.0000 + 0.0000i 0.0000i0.0000 + 0.0000i 0.0000i0.0000 + 0.0000i -30.1895i0.0000 + 0.0000i 4.7819i-1.9550 + 4.0941i 0.0000i0.0000 + 0.0000i 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i4.0150 -5.4279i-2.4890 + 2.2520i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i-1.5260 + 3.1760i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i-2.4890 + 2.2520i6.7249 -10.6697i-1.1370 + 2.3150i0.0000 + 0.0000i0.0000 + 0.0000i-3.0989 + 6.1028i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i-1.4240 + 3.0291i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i-1.1370 + 2.3150i2.5610 - 5.3440i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +-1.6860 +-1.7011 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +9.5213-1.1350 +0.0000 +0.0000 +0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -4.9991-1.9860 + 5.0688i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -1.1350 + 4.7819i 3.1210 - 9.7941i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 3.9679i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i-1.9550 + 4.0941i-1.5260 + 3.1760i-3.0989 + 6.1028i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i6.5799 -17.3407i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 5.6770i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 - 5.6770i0.0000 + 0.0000i0.0000 + 0.0000i-1.0259 + 4.2350i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i-4.9991 +15.2631i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i6.0250 -19.3961i+15.2631iColu mns 11 through 14迭代次数为:42修正后各节点电压标么值为Colu mns 1 through 10(节点号从小到大排列)1.2128 1.21481.5809 1.04501.5627 1.5364 1.5602 1.6264 1.6792 1.6654Colu mns 11 through 141.0100 1.7000 1.90001.0600修正后各节点电压相角为(节点号从小到大排列)Colu mns 1 through 10-13.1377 -11.9998 -14.4540 -15.0006 -15.3011 -15.7590 -16.4954 -16.3362 -16.0220 -5.2081Colu mns 11 through 14-12.1568 -16.1918 -14.4540-0.0475 --1.5950 -各节点的功率为:Columns 1 through 5 1.4718 - 1.8800i 0.9041 - 1.1423i0.0000 - O.OOOOi -0.1314 + 0.1399i0.0646iColu mns 6 through 10 -0.0300 + 0.0035i 0.0039 - 0.1228i -0.0656 - 0.0724i-0.0352 - 0.1437i1.3905iColu mns 11 through 14 -0.4870 - 1.2396i3.2005 + 3.0414i1.7586 + 3.1847i -2.7057 + 0.3992i各条支路的首端功率为26.1711 +87.9128i各条支路的末端功率为23.5667 +83.4812i各条支路的功率损耗为:4.9738e+01 + 1.7139e+02i各条支路的首端功率为15.2545 +65.3872i各条支路的末端功率为0.2082 +56.8008i各条支路的功率损耗为:1.5463e+01 + 1.2219e+02i各条支路的首端功率为15.3538 +59.6752i各条支路的末端功率为12.6813 +60.6685i各条支路的功率损耗为:2.8035e+01 + 1.2034e+02i各条支路的首端功率为18.4735 +62.4536i各条支路的末端功率为11.6194 +39.6840i各条支路的功率损耗为:3.0093e+01 + 1.0214e+02i各条支路的首端功率为18.0012 +62.4930i各条支路的末端功率为5.5097 +16.2405i各条支路的功率损耗为23.5109 +78.7335i各条支路的首端功率为17.0452 +57.7870i各条支路的末端功率为11.7622 +39.7706i各条支路的功率损耗为28.8075 +97.5576i各条支路的首端功率为13.5220 +59.6677i19.6150 +58.2875i各条支路的功率损耗为:3.3137e+01 + 1.1796e+02i各条支路的首端功率为16.5471 +56.5546i各条支路的末端功率为6.9281 +27.4025i各条支路的功率损耗为23.4752 +83.9571i各条支路的首端功率为-0.2082 +69.5644i各条支路的末端功率为12.7806 +79.1441i各条支路的功率损耗为:1.2572e+01 + 1.4871e+02i各条支路的首端功率为0.0000 +64.5962i各条支路的末端功率为-0.0000 +37.3498i各条支路的功率损耗为:-1.7764e-15 + 1.0195e+02i21.7957 +82.2160i各条支路的末端功率为23.5612 +60.7482i各条支路的功率损耗为:4.5357e+01 + 1.4296e+02i各条支路的首端功率为15.8994 +64.7377i各条支路的末端功率为9.9896 +20.6498i各条支路的功率损耗为25.8891 +85.3875i各条支路的首端功率为18.7607 +47.1609i各条支路的末端功率为15.0088 +33.6107i各条支路的功率损耗为33.7695 +80.7716i各条支路的首端功率为15.4666 +33.8366i各条支路的末端功率为24.5068 +61.3933i39.9734 +95.2299i各条支路的首端功率为18.2997 +21.5842i各条支路的末端功率为25.5956 +35.9107i各条支路的功率损耗为43.8954 +57.4949i各条支路的首端功率为15.7256 +24.3488i各条支路的末端功率为23.3240 +59.2040i各条支路的功率损耗为39.0496 +83.5528i各条支路的首端功率为21.6792 +35.6719i各条支路的末端功率为9.3603 +19.4667i各条支路的功率损耗为31.0395 +55.1385i各条支路的首端功率为27.4696 +46.8495i各条支路的末端功率为27.7461 +67.4149i各条支路的功率损耗为:5.5216e+01 + 1.1426e+02i各条支路的首端功率为10.9761 +38.1226i各条支路的末端功率为4.9835 +14.8560i各条支路的功率损耗为15.9596 +52.9785i各条支路的首端功率为17.4469 +49.3022i各条支路的末端功率为10.7497 +39.1332i各条支路的功率损耗为28.1966 +88.4354i平衡节点功率为:-0.0889 - 0.5670i。

15-17潮流计算的计算机算法

15-17潮流计算的计算机算法

(0) xn xn ) 0
在初值处按泰勒级数展开,并略去高阶项,得到:
(0) f1 (x1 x1 , x (0) 2 x 2 , (0) (0) , x (0) n x n ) f1 (x 1 , x 2 ,
, x (0) n )
f1 f x1 1 x 2 x1 0 x 2 0
2 2 20 2 1 12 2 3
23
U y (U U ) y (U U )y I 3 3 30 3 2 23 3 1 13
电力系统分析
根据KCL定律 U y (U U ) y (U U )y I 1 1 10 1 2 12 1 3 13 U y (U U ) y (U U )y I
2 2 20 2 1 12 2 3
23
U y (U U ) y (U U )y I 3 3 30 3 2 23 3 1 13
I 1 Y11 U 1 Y12 U 2 Y13 U 3 I 2 Y21 U 1 Y22 U 2 Y23 U 3 I 3 Y31 U 1 Y32 U 2 Y33 U 3
已 知
相量形式
f1 f1 f1 ... x1 0 x2 0 xn f 2 f 2 ... f 2 x1 0 x2 0 xn . . . f n f n ...f n x1 x2 xn 0 0
电力系统分析
牛顿—拉夫逊法计算非线性方程
一、N-R原理
1. 非线性方程的求解:
f(x)=0
设:x(0)为的初始近似解,x(0)为与真实解的偏差 则:x= x(0) +x(0) f(x(0) +x(0))=0

课程设计潮流计算的计算机算法

课程设计潮流计算的计算机算法

潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。

对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。

潮流计算是电力系统分析最基本的计算。

除它自身的重要作用之外,在《电力系统分析综合程序》(PSASP)中,潮流计算还是网损计算、静态安全分析、暂态稳定计算、小干扰静态稳定计算、短路计算、静态和动态等值计算的基础。

传统的潮流计算程序缺乏图形用户界面,结果显示不直接难与其他分析功能集成。

网络原始数据输入工作大量且易于出错。

本文采用MATLAB语言运行WINDOWS操作系统的潮流计算软件。

而采用MATLAB界面直观,运行稳定,计算准确。

关键词:电力系统潮流计算;牛顿—拉夫逊法潮流计算;MATLAB一、概述1.1设计目的与要求.................................................1.1.1 设计目的......................................................1.1.2 设计要求.....................................................1.2 设计题目......................................................1.3 设计内容.....................................................二、电力系统潮流计算概述.....................2.1 电力系统简介..........................................2.2 潮流计算简介..........................................2.3 潮流计算的意义及其发展..................... ..............三、潮流计算设计题目..........................3.1 潮流计算题目........................................3.2 对课题的分析及求解思路........................四、潮流计算算法及手工计算...........................4.1 变压器的∏型等值电路..............................4.2 节点电压方程..............................4.3节点导纳矩阵.............................4.4 导纳矩阵在潮流计算中的应用.......................4.5 潮流计算的手工计算..........................五、Matlab概述....................................5.1 Matlab简介............................................5.2 Matlab的应用............................................5.3 矩阵的运算...........................................5.3.1 与常数的运算.............................................5.3.2 基本数学运算..................................5.3.3 逻辑关系运算....................................5.4 Matlab中的一些命令.................................六、潮流计算流程图及源程序................................6.1 潮流计算流程图..............................6.2 潮流计算源程序图...............................6.3 运行计算结果.......................................总结参考文献1.1 设计目的与要求1.1.1设计目的1.掌握电力系统潮流计算的基本原理;2.掌握并能熟练运用一门计算机语言(MATLAB语言或C语言或C++语言);3.采用计算机语言对潮流计算进行计算机编程。

潮流计算机算法熊飞

潮流计算机算法熊飞

潮流计算机算法熊飞
1、运用计算机计算时,一般要完成一下几个步骤:
(1)建立数学模型。

(2)确定解算方法。

(3)制定程序框图。

(4)编制程序。

(5)上机调试及运算。

2、潮流计算的数学模型
数学模型是指反映电力系统中运行状态参数【如电压、电力、功率等】与网络参数之前的关系,反映网络性能的数学方程式。

3、牛顿-拉夫逊法
(1)牛顿-拉夫逊法不仅在多数情况下没有发散的危险,而且收敛性较强,可以大大节约计算时间,因而得到了广泛的应用。

它最大的特点是初始值的选择要求严格,必须选好恰当的初始值,否则不收敛。

(2)该方法的要点就是把对非线性方程的求解过程转化为反复对相应的线性方程求解的过程,通常称为逐次线性化过程,这是牛顿-拉夫逊法的核心。

(3)牛顿-拉夫逊法潮流计算的求解过程
1、输入原始数据和信息。

2、形成节点导纳矩阵Y。

3、送电压初始值e, f。

4、求不平衡量。

5、计算雅可比矩阵的各个元素。

6、解修正方程。

7、求节点电压新值。

8、判断是否收敛。

9、反复迭代4~7,直至满足第8步的条件。

10、求平衡节点的功率和PV节点的无功功率e及各支路的功率。

潮流计算方法

潮流计算方法

Pi N ii Vi Vi V j (Gij cos ij Bij sin ij ) 2Vi 2 Gii Vi 2 Gii Pi ji Vi j i
J ii
Qi Vi V j (Gij cos ij Bij sin ij ) Vi 2 Gii初始值及线路数据输入excel文 件中,并通过xlsread这一函数输入到MATLAB 中。
形成导纳矩阵
1.形成一个零矩阵Y 2.检测线路参数前两列,将Y对应元素加上相应 参数。
形成导纳矩阵


1.非对角线元素:
for n=1:nbr Y(n1(n),n2(n))= Y(n1(n),n2(n))-Y1(n)/(a(k)^2); Y(n2(n),n1(n))= Y(n1(n),n2(n)); end
潮流计算方法 —计算机算法
————
需求分析:
使用MATLAB软件计算美国电气服务公司 IEEE30节点系统(图见课本P136页图6.16) 各节点的电压幅值和相角的潮流分布,并比较 各种算法的优劣。
总体思路:
1.直接使用“牛顿——拉夫逊”法,通过图像 显示每次迭代后的误差并记录程序运行时间。 2.直接使用“PQ分解法”,通过图像显示每次 迭代后的误差并记录程序运行时间。 3.首先使用直流潮流计算,计算各节点电压的 相角,并将计算结果作为 “牛顿——拉夫逊” 法的初值,通过图像显示每次迭代后的误差并 记录程序运行时间。
迭代步骤:
1.根据各节点电压幅值及相角初值,计算电压 相量。 2.计算各PQ节点的复功率。 3.计算各节点流出的电流初值。 4.根据S=VI*计算出各节点复功率,并与已知复 程序 功率相减得到误差。 5.当误差小于设定值时,迭代结束。

电力系统潮流计算的计算机算法概述

电力系统潮流计算的计算机算法概述
j 1 n
Qi fi j1 Gij e j Bij f j
ei Gij f j Bij e j
j 1
电力系统分析
(19.14)
19.3.2牛顿-拉夫逊法潮流计算
PQ节点的有功功率和无功功率是给定的,第i个节点的给定功率设 为Pis和Qis。假定系统中的第1,2,……,m号节点为PQ节点, 对其中每一个节点可列方程
为PQ机(或PQ给定型发电机)。在潮流计算中,系统大部分 节点属于PQ节点。
电力系统分析
2.PU节点 给出的参数是节点的有功功率P及电压幅值U,待求量为该节 点的无功功率Q及电压向量的相角θ。通常选择有一定无功功率 贮备的发电机母线或者有无功补偿设备的变电所母线作PU节点。 PU节点上的发电机称之为PU机(或PU给定型发电机)。 3.平衡节点
电力系统分析
3.2牛顿-拉夫逊法潮流计算
1.采用直角坐标 结点电压和导纳可表示为:
Yij G ij jBij
Ui
e i
jf i
将上述表示式代入
Pi
jQi
Ui
n
Y ij U
j
的右端,
j 1
展开并分出实部和虚部,便得:
Pi
ei
n
j 1 n
Gij e j
Bij
fj
n
fi Gij f j Bij e j
电力系统潮流计算的计算机算法
重点提示 1概 述 2 潮流计算的基本方程 3 牛顿-拉夫逊法潮流计算 4 PQ分解法潮流计算 小结
电力系统分析
本章提示
节点分类的概念; 潮流计算的基本方程式; 牛顿—拉夫逊法潮流计算的计算机算法; P—Q分解法潮流计算的计算机算法。
电力系统分析

牛顿拉夫逊潮流计算程序

牛顿拉夫逊潮流计算程序



f1 x 2 xn f 2 f 2 x 2 xn f n f n x 2 xn
f i
f1
Δ X 1 Δ X 2 Δ X n
(13)
' ' 式(13)等号右边矩阵的 x 等都是对于 X1 ,X 2 的值,这一矩阵称为雅可比(Jacobi)矩阵。
P—Q分解法潮流计算的计算机算法。
电力系统分析
1概 述
类型:
导纳法
阻抗法
牛顿-拉夫逊法(N—R法) 快速分解法( PQ分解法)
电力系统分析
2 潮流计算的基本方程
2.1节点的分类 2.2基本方程式
电力系统分析
2.1节点(bus)的分类
根据电力系统中各节点性质的不同,可把节点分成三种类型。 1.PQ节点 事先给定的是节点功率(P、Q),待求的是节点电压向量 (U、θ)。通常变电所母线都是PQ节点,当某些发电机的 出力P、Q给定时,也可作为PQ节点。PQ节点上的发电机称 之为PQ机(或PQ给定型发电机)。在潮流计算中,系统大 部分节点属于PQ节点。
2
m 1
Δ P1 e m 1 Δ Q 1 e m 1 Δ Pm e m -1 Δ Q m e m -1 Δ Pm 1 e m -1 Δ U
2
m 1
Δ P1 f m 1 Δ Q 1 f m 1 Δ Pm f m -1 Δ Q m f m -1 Δ Pm 1 f m -1 Δ U
电力系统分析
3.2牛顿-拉夫逊法潮流计算
方程式(15)和(16)具备方程组(12)的形式:
Δ W -J Δ U
(17)
Δe 1 Δf 1 Δe m Δf m ΔU Δe m 1 Δf m 1 Δe n - 1 Δf n - 1

计算机潮流计算

计算机潮流计算

在节点 k 单独注入电流,所 有其它节点的注入电流都等 于 0 时,在节点 k 产生的电 压同注入电流之比
从节点 k 向整个网络看进去 的对地总阻抗
11
一、节点电压方程
2、节点阻抗矩阵
Z 矩阵元素的物理意义互阻抗
if k i
在节点 k 单独注入电流,所
Z ik

U i Ik
有其它节点的注入电流都等 于 0 时,在节点 i 产生的电 I j 0, jk 压同注入电流之比
求PGs、QGs。
23
3-2 潮流方程及其迭代解法
二、高斯-赛德尔迭代法(既可解线性,
设有方程组
也可解非线性方程)
a11x1 a12 x2 a13x3 b1 a21x1 a22 x2 a23x3 b2 a31x1 a32 x2 a33x3 b3
24
3-2 潮流方程及其迭代解法
电力网
的投切或变比的调整等)
Y Y (0) Y
Yij Yij(0) Yij
14
三、节点导纳矩阵
Y 矩阵的修改
Y11 Y12 Y1i Y1 j Y1n
Y21
Y22

Y2i
Y2 j

Y2n


电力网
Y
(0)

Yi1
(2) PV节点: PLi、 PGi ,从而Pi给定; ULi 、UGi给定。 即相应的Pi、Ui给定,待求QGi、δi。如有一定无功储备 电源变电所母线(很少,甚至没有)。
(3) 平衡节点(Vδ节点): 一般只有一个。设s节点
为平衡节点,则: Us 、 δs 给定, Us =1.0, δs =0。待
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
132 必须指出,如果仅研究稳态情况下的潮流而不涉及暂态过程的计算则不需要发电机和负荷的阻抗参数,只需要给出发电机和负荷的注入功率或电流,并且规定发电机和负荷的注入功率或电流取正,而负荷取负。 将图4—1(a)中的发电机和负荷节点用无阻抗线从网络中抽出(为不失一般性,将既非发电机又非负荷的浮动节点当作零注入功率的母线抽出网络之外),剩下的部分即由接地和不接地支路组成一个无源线性网络(图4-1(b)) 对于这个无源线性网络可用相应的导纳矩阵(或阻抗矩阵)来描述,采用导纳矩阵焊时,节点注入电流和节点电压构成以下线性方程组 YVI Pg1+jQg1 IPg2+jQg2 2I 0+j0 3I 4I -PR4-jQR4 5I -PR5-jQR5 6I -PR6-jQR6 无源线性网络 (可用导纳 矩阵或阻抗 矩阵表示) 图4-1(b)潮流计算等值网络 ③ ④ ⑤ ① ⑥ ② 图4-1(a)潮流计算用的电网结构图
130 速潮流计算法。其中快速分解法(Fast decoupled load flow)从1975年开始已在国内使用,并习惯称之为PQ分解法。但能应用于离线潮流计算,而且也能应用于在线潮流计算。 本章主要介绍最常用的N—R法和PQ分解两种潮流计算的计算机算法的原理框图及程序。 第二节 潮流计算的基本方程 一、 节点的分类 用一般的电路理论求解网络方程,目的是给出电压源(或电流源)研究网络内的电流(或电压)分布:作为基础的方程式,一般用线性代数方程式表示。然而在电力系统中,给出发电机或负荷连接母线上电压或电流(都是向量)的情况是很少的,一般是给出发电机母线上发电机的有功功率(P)和母线电压的幅值(V),给出负荷母线上负荷消耗的有功功率(P)和无功功率(Q)。我们的目的是由这此已知量去求电力系统内的各种电气量。所以,根据电力系统中各节点性质的不同,很自然地把节点分成三种类型。 1、PQ节点 这一类节点,我们事先给定的是节点功率(P、Q),待求的未知量是节点电压向量(V、θ)。所以叫“PQ节点”。通常变电所母线都是PQ节点。当某些发电机的出力P、Q给定时,也作为PQ节点。PQ节点上的发电机称之为PQ机(或PQ给定型发电机。在潮流计算中,系统大部分节点属于PQ节点)。 2、PV节点 这类节点给出的参数是该节点的有功功率P及电压幅值V,待求量为该节点的无功功率Q及电压向量的相角θ。 这种节点在运行中往往要有一定可调节的无功电源,用以维持给定的电压值。通常选择有一定无功功率贮备的发电机母线或者变电所有无功补偿设备的母
129 第四章 潮流计算的计算机算法 第一节 概述 潮流计算是电力系统最基本、最常用的计算。根据系统给定的运行条件、网络接线及元件参数,通过潮流计算可以确定各母线的电压(幅值及相角),各元件中流过的功率、整个系统的功率损耗等。潮流计算是实现电力系统安全经济发供电的必要手段和重要工作环节。因此潮流计算在电力系统的规划设计、生产运行、调度管理及科学研究中都有着广泛的应用。 电力系统潮流计算分为离线潮流计算和在线潮流计算。前者主要用于系统规划设计和安排系统的运行方式,后者则用于正在运行系统的经常监视及实时控制。本章主要讨论离线潮流计算问题,它的基本算法同样适用于在线潮流计算。 潮流计算在数学上是多元非线性方程组的求解问题,求解的方法有很多种。自从五十年代计算机应用于电力系统以来,当时求解潮流的方法是以节点导纳矩阵为基础的逐次代入法(导纳法),后来为解决导纳法的收敛性较差的问题,出现了以阻抗矩阵为基础的逐次代入法(阻抗法)。到六十年代,针对阻抗法占用计算机内存大的问题又出现了分块阻抗法及牛顿-拉夫逊(Newton-Raphson)法。Newton—Raphson法是数学上解非线形方程式的有效方法,有较好的收敛性。将N-R法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性、稀疏性及节点编号顺序优化等技巧,使N-R法在收敛性、占用内存、计算速度方面的优点都超过了阻抗法,成为六十年代末期以后普遍采用的方法。同时国内外广泛研究了诸如非线形规划法、直流法、交流法等各种不同的潮流计算方法。七十年代以来,又涌现出了更新的潮流计算方法。其中有1974年由B、Stott、O、Alsac提出的快速分解法以及1978年由岩本伸一等提出的保留非线性的高
133 其中 321IIII 321VVVV 可展开为如下形式: n , , 2 , 1iY1jnjijiVI (4-1) 若 ZIV 可展开如下形式: n , , 2 , 1iZ1njjijiIV (4-2) 式中n为网络节点数 由于实际电网中测量的节点注入量一般不是电流而功率,因此必须将式(4-1)中的注入电流I用节点注入功率来表示。 根据电工理论,节点功率与节点电流之间的关系为: iiiiiIVjQPS (4-3) 式中 LDiGiiPPP LDiGiiQQQ 因此用导纳矩阵(4-1)式时,PQ节点可以表示为 iiiiiiVVSIjQ-P (4-4) 把帝个关系式代入式(4-1)中,得 n, , ,2 1ijQP1njjijiiiVYV (4-5) 比较式(4-1)和(4-5),由于功率代替电流的结果,使式(4-1)电流电压的线性方程组变量为功率和电压的非线性方程组,这
131 线作PV节点处理。PV节点上的发电机称之为PV机(或PV给定型发电机)。 3、平衡节点 在潮流计算中,这类节点一般只设一个。对该节点,给定其电压值,并在计算中取该节点电压向量的方向作为参考轴,相当于给定该点电压向量的角度为零。也就是说,对平衡节点给定的运行参数是V和θ,因此又称为Vθ节点,而待求量是该节点的P、Q,整个系统的功率平衡由这一节点承担。 关于平衡节点的选择,一般选择系统中担任调频调压的某一发电厂(或发电机)。有时也可能按其它原则选择,例如,为提高计算的收敛性,可以选择出线数多或者靠近电网中心的发电厂母线作平衡节点。 以上三种节点四个运行参数P、Q、V、θ中已知量都是两个,待求量也是两个,只是类型不同而已。 二、 基本方程式 在潮流问题中,任何复杂的电力系统都可以归结为以下元件(参数)组成: (1)发电机(住入电流或功率) (2)负荷(负的注入电流或功率) (3)输电线支路(电阻、电抗) (4)变压器支路(电阻、电抗、变比) (5)母线上的对地支路(阻抗和导纳) (6)线路上的对地支路(一般为线路充电电容导纳) 集中了以上各种类型的元件的简单网络如图4-1(a)所示。
136 n21nn2n1nn22212n12111'n'2'1'n'2'12'n'2'11XXX xf xfxfxf xfxfxf xfxf X , X, XfnX , X, XfX , X, Xf (4-13) 式(4-13)的右边的矩阵的jixf等都是对于'n'2'1X , , X, X的值。这一矩阵称为雅可比(Jacobi)矩阵。 按上述得到的修正量n 21X , ,X , X后,得到如下关系: n'n''n2'2''21'1''1XXX , , XX ,XXΔXX 这比'n'2'1X , , X, X进一步接近于真值。这一步骤在收敛到希望的值以前重复进行。一般要反复计算到满足 ε , X , max121n2111nnnnnnnXXXXX 时为止。ε为预先规定的小正数,此处niX是第n次迭代Xi的近似值。 一、 牛顿-拉夫逊法潮流计算 把牛顿法用于潮流计算,要求将潮流方程改写成形如方程式(4-12)所示的形式。为此,首先应将潮流方程(4-5)的变形式jnjijiVYV1iijQPi的右端展开,并且分开实部和虚部。采用直角坐标时,节点电压可表示为: iijfeVi 节点导纳矩阵元素则表示为: ijijijjBGY 将上述表示式代入jnjijiVYV1iijQPi的右端,展开并分出实部和虚部,便得:
135 差,即)(nX的误差为时,则 0)()(nXf (4—8) 把)()(nXf在)(nX附近对用泰勒级数展开 0)(!2)()()()(''2)(')()(nnnnXfXfXfXf (4—9) 上式略去2以下的项 0)()()(')(nnXfXf (4—10) )(nX的误差可近似由上式计算出来 图4-2 )()()(')(nnXfXf (4—11) 比较式(4—7)和(4—11),可以看出牛顿—拉夫逊法的修正量和)(nx的误差的一次项相等。 用同样的方法考虑,给出对n个变量n21X, ,X ,X的n个方程式0X , X, Xf 0X , X, Xf0X , X, Xfn 21nn 212n 211 (4-12) 对其近似解'n'2'1X , , X, X的修正量n 21X , ,X , X,可以解下面的方程式来确定 x o y y=f(x) X(t+1) X(t) x o y )(tx f(x(t)) )1(nx y=f(x) )()1(nxf
137 n1jn1jjijjijijijjijiin1jn1jjijjijijijjijiieBfGefBeGfQeBfGffBeGeP (4-14) 按照上节的分类,PQ节点的有功功率和无功功率给定的,第I个节点的给这功率设为Pis和Qis。假定系统中的第1,2,………m号节点为PQ节点,对其中每一个节点可列n1jn1jjijjijiiijjijiisIisin1jn1jjijjijiiijjijiisiisi0eBfGefBeGf-QQQQ0eBfGffBeGe-PP-PP (i=1,2,…………,m) (4-15) PV节点的有功功率和节点电压幅值是给定的。假定系统中的第m+1,m+2,………n-1号节点为PV节点,则对其中每一节点可以列写方程: 0feVVVV0eBfGffBeGe-PP-PP2i2i2is2i2is2in1jn1jijjijijijjijiisiisij(4-16) 1-n , , 2m , 1mi 第n号节点为平衡节点,其电压nnjfenV是给定的,故不参加迭代。 式(4-15)和(4-16)总共包含了2(n-1)个方程,待求的变量有1-n1-n2 211f , c , , f , e , f ,e也是2(n-1)个。我们还可以看到,方程式(4-15)和(4-16)已经具备方程组(4-12)的形式: V-JW (4-16)’ 式中
相关文档
最新文档