(完整版)2017年武汉市中考数学试卷(含答案解析版)

合集下载

2017武汉中考数学试卷及答案(Word精校版)

2017武汉中考数学试卷及答案(Word精校版)

第1页 / 共10页2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( ) A .6 B .-6 C .18 D .-182.若代数式14a -在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a >4C .a <4D .a ≠4 3.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)3 4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别为( ) A .1.65、1.70 B .1.65、1.75 C .1.70、1.75 D .1.70、1.70 5.计算(x +1)(x +2)的结果为( ) A .x 2+2 B .x 2+3x +2 C .x 2+3x +3 D .x 2+2x +2 6.点A (-3,2)关于y 轴对称的点的坐标为( ) A .(3,-2) B .(3,2) C .(-3,-2) D .(2,-3) 7.某物体的主视图如图所示,则该物体可能为( )A. B. C. D.8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( ) A .9 B .10 C .11 D .12 9.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .32B .32C .3D .2310.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( ) A .4 B .5 C .6 D .7二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算2×3+(-4)的结果为___________12.计算2111-++x x x 的结果为___________ 13.如图,在 ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =23,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为___________16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x-3=2(x-1)18.(本题8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB 之间的关系,并证明你的结论19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表各部门人数分布扇形图部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为___________②在统计表中,b=___________,c=___________(2)求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种第2页 / 共10页第3页 / 共10页奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D (1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =35,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数ky x的图象相交于A (-3,a )和B 两点(1)求k的值(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值(3)直接写出不等式65xx>-的解集第4页 / 共10页23.(本题10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E (1)如图1,若∠ABC=∠ADC=90°,求证:ED·EA=EC·EB(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=35,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)第5页 / 共10页24.(本题12分)已知点A(-1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值第6页 / 共10页2017年武汉中考数学参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10A D C CB B A BC D提示:9.利用面积法做题,先作高求出一般三角形的面积,再求内切圆半径.过B作BD⊥AC于D,设AD=x,2222 57(8)x x-=--,解得52x=,532BD=,583223578Sra b c⨯===++++10. 共7种情况,如图所示二、填空题11.212.1x-13.30︒14.2515.333-16. 32a-<<-或1132a<<提示:15.方法一,向左边旋转,令EC =x,BD=2x ,22233)()(63)2x x x+=-(33(630,),63333x x DE x=±->=-=-舍正方法二,向右边旋转∠HCE=60°,令EC=x,HC=2x,所以∠CEH=90°,EH=3x=DE,所以3x+3x=6,x=3-3,DE=6-3x=33-3HHD E CD E CBA AB16.方法一:由题意可知,x=m时y=022(1)0am a m a+--=(1)()0am m a-+=121,m m aa==-①123m<<得1132a<<②223m<<得32a-<<-DBAC第7页 / 共10页第8页 / 共10页方法二:由题意可知,x =2对应的函数值与x =3对应的函数值异号(此时必有0∆≥)当x =2时,2242(1)232y a a a a a =+--=+-当x =3时,2293(1)383y a a a a a =+--=+- 22(232)(383)0a a a a +-+-< (21)(2)(31)(3)0a a a a -+-+<由图示可知蓝色区域为所求,故32a -<<-或1132a <<三、解答题17. 12x =18. CD =AB 且CD ∥AB (提示:线段的关系包括数量关系和位置关系)19. (1)①108°;②b =9,c =6(2)510+98+65=7.620⨯⨯⨯万元20. 解:(1)设甲产品购买x 件,乙产品购买y 件,由题意可得:204030650x y x y +=⎧⎨+=⎩ 515x y =⎧⎨=⎩解得所以,甲产品购买5件,乙产品购买15件(2)设甲奖品购买a 件,乙奖品购买()20a -件,由题意可得()202403020650a a a a -≤⎧⎨+-≤⎩ 解得2083a ≤≤a 为正整数 ∴78a =或,共有2种方案方案一:甲奖品购买7件,乙奖品购买13件; 方案二:甲奖品购买8件,乙奖品购买12件.21.解:(1)如图1,连接AO . 在△ABO 和△ACO 中,AB AC AO AO BO CO =⎧⎪=⎨⎪=⎩△ABO ≌△ACO (SSS )∴∠BAO =∠CAO ∴AO 平分∠BAC(2)如图2,延长AO 交BC 于点H . AB =AC ,∠BAO =∠CAO ∴AH ⊥BC ∴BH =CH =12BC =3∠BOH =2∠BAO =∠BAC ∴sin ∠BOH = sin ∠BAC =35∴BH =3,BO =5,OH =4+_++_-31/2-21/3图1DBCAOPDAO第9页 / 共10页在Rt △ABH 中, AB =222293310AH BH +=+=∴AC =AB =310延长CD 交O 于点P ,连接PB ,PC 为直径, ∴∠PBC =90° ∴PB ∥OH ∴PB =2OH =8∴△AOD ∽△BPD , 58DO AO PD PB ==∴DO =5251313PO =, CD =CO +DO =901322. 解:(1)将点()3,A a -代入24y x =+中得64a =-+∴2a =-将点()3,2A --代入y =k x 中得6k =∴k 的值为6(2) 将y m =代入24y x =+中 得42m x -=将y m =代入 y =k x 中得6x m = ∴M (42m -,m ) N (6m,m )①当点M 在点N 右侧时4642m m--= 解得1643m =+,1643m =-(舍)②当点M 在点N 左侧时6442m m --= 解得32m =,41m =-(舍)综上所述,m 的值为643+或2 (3)1x <-或56x <<23. 解:(1) ∠E =∠E ,∠EDC =∠B =90° ∴△EDC ∽△EBAED EC EB EAEA ED EB EC ∴=∴⋅=⋅ (2)过点C 作CH ⊥AE 于点H在Rt △CDH 中,cos ∠ADC =35,CD =5∴CH =4162CDE S ED CH ∆=⋅= ∴ED =3过点A 作AG ⊥EB 交EB 的延长线于点G ∠ABC =120°,∴∠ABG =60°,AB =12∴在Rt △ABG 中,BG =6,AG =63 ∠AGE =∠CHE =90°,∠E =∠E∴△EHC ∽△EGA469363936CH EH EG AG EG EGEB EG BG ∴=∴=∴=∴=-=- DBE ACGHCD AB E xy M 2M 1N 1N 2BAO第10页 / 共10页75183ABE ECD ABCD S S S =-=-△△四边形(3)2556+nAD n+=24. 解:(1)将点()1,1A -和点()4,6B 代入2y ax bx =+中 得16164a b a b =-=+⎧⎨⎩ 解得:1212a b ⎧⎪⎪⎨==-⎪⎪⎩∴该抛物线的解析式为21122y x x =-(2) 过点A 作AN x ⊥轴于点N设AF 的解析式为y kx m =+()0k ≠ ∴1k m =-+ ∴1k m =-∴AF 的解析式为()1y m x m =-+联立()211221y x xy m x m =-=-+⎧⎪⎨⎪⎩解得11x =-,22x m = ∴2G H x x m ==∴在Rt FOH △中OF m =,2OH m = 在Rt ANE △中1AN =,2NE =∴12OF AN OH NE ==∴Rt FOH Rt ANE △∽△ ∴FHO AEN ∠=∠ ∴FH AE ∥(3)t 的值为13892+或13892-或151136+或151136-xyQ H KMPCB A D O xy QMP C BA DOxy MPQG FAEOxyM PQ GFA EOxyNHGF A EO。

2017年武汉市中考数学试卷及答案(纯WORD)

2017年武汉市中考数学试卷及答案(纯WORD)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算)A.6 B.﹣6 C.18 D.﹣182.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A. B.C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为()A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算﹣的结果为.13.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC 的度数为.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.已知关于x的二次函数y=ax2+(a2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m,).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D (1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年武汉市中考数学试卷答案一、1.A.2.D.3.C.4.C.5.B6.B.7.A.8.B.9.C10.D.二、11. 2 12.x-1.13.30°.14.15.3﹣3.16.-3<a<-2,<a<.三、17.解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).20.解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.22.解:(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴><或<>,结合抛物线y=x2﹣5x﹣6的图象可知,由><得<或><,∴<<或><,∴此时x<﹣1,由<>得,<<>,∴<<>,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.解:(1)如图1中,。

2017年湖北省武汉市中考数学试卷(解析版)

2017年湖北省武汉市中考数学试卷(解析版)

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6B.﹣6C.18D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4B.a>4C.a<4D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75C.1.70、1.75D.1.70、1.70 5.(3分)计算(x+1)(x+2)的结果为()A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:=6.故选:A.2.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选:C.4.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.5.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选:B.6.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.【解答】解:A、球的主视图为圆,符合题意;B、圆柱的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数.故选:B.9.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选:C.10.【解答】解:如图:故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:原式=6﹣4=2,故答案为:212.【解答】解:原式=,故答案为:.13.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:15.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠F AE=∠F AC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠F AE=∠F AC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.16.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.三、解答题(共8题,共72分)17.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).20.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sin E=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.22.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x M=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或5<x<6,方法1:x﹣5=m,则x=m+5,<m+5,反比例函数y=与一次函数y=m+5的交点是(﹣6,﹣1),(1,6),函数y=与函数y=x的交点是(﹣1,﹣1),(6,6),综上,原不等式的解集是:x<﹣1或5<x<6.方法:2:由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.24.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:(方法一)设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(方法二)设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).过点A作AA′⊥x轴,垂足为点A′,如图1所示.∵点A(﹣1,1),∴A′(﹣1,0),∴AE=2,AA′=1.∵∠AA′E=∠FOH,==,∴△AA′E∽△FOH,∴∠AEA′=∠FHO,∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM =2PM.。

2017武汉中考数学真题试卷及答案

2017武汉中考数学真题试卷及答案

一、选择题(共10小题,每小题3分,共30分)1.(3分)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()2017年湖北省武汉市中考数学试卷(官方)A .9B .10C .11D .129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 10.(3分)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为 .12.(3分)计算x x+1﹣1x+1的结果为 . 13.(3分)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.(3分)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:√36=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【考点】A:48:同底数幂的除法;B:35:合并同类项;C:46:同底数幂的乘法;D:47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【考点】4B:多项式乘多项式.【专题】11 :计算题;512:整式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【考点】U3:由三视图判断几何体.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C 、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D 、五棱柱的主视图为矩形,不符合题意,故选:A .【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A .9B .10C .11D .12【考点】37:规律型:数字的变化类.【分析】观察得出第n 个数为(﹣2)n ,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n 个数为(﹣2)n ,那么(﹣2)n ﹣2+(﹣2)n ﹣1+(﹣2)n =768,当n 为偶数:整理得出:3×2n ﹣2=768,解得:n=10;当n 为奇数:整理得出:﹣3×2n ﹣2=768,则求不出整数,故选B .【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n 个数为(﹣2)n 是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 【考点】MI :三角形的内切圆与内心.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由AD 2=AB 2﹣BD 2=AC 2﹣CD 2,可得72﹣x 2=82﹣(5﹣x )2,解得x=1,推出AD=4√3,由12•BC•AD=12(AB +BC +AC )•r ,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7【考点】KJ :等腰三角形的判定与性质.【分析】①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为 x−1x+1 . 【考点】6B :分式的加减法. 【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=x−1x+1, 故答案为:x−1x+1. 【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB ∥CD ,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:25【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;PB :翻折变换(折叠问题);R2:旋转的性质.【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,由AB=AC=2√3、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE (SAS ),进而可得出DE=FE ,设CE=2x ,则CM=x ,EM=√3x 、FM=4x ﹣x=3x 、EF=ED=6﹣6x ,在Rt △EFM 中利用勾股定理可得出关于x 的一元二次方程,解之可得出x 的值,再将其代入DE=6﹣6x 中即可求出DE 的长.【解答】解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3. 故答案为:3√3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x 的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .【考点】HA :抛物线与x 轴的交点.【分析】先用a 表示出抛物线与x 轴的交点,再分a >0与a <0两种情况进行讨论即可.【解答】解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 【点评】本题考查的是抛物线与x 轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1)【考点】86:解一元一次方程.【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x ﹣3=2(x ﹣1)4x ﹣3=2x ﹣24x ﹣2x=﹣2+32x=1x=12【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【考点】KD:全等三角形的判定与性质.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为 108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【考点】VB :扇形统计图;W2:加权平均数.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B ,C 部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元). 【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【专题】12 :应用题.【分析】(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买甲、乙两种奖品共花费了650元列方程40x +30(20﹣x )=650,然后解方程求出x ,再计算20﹣x 即可;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组{20−x ≤2x 40x +30(20−x)≤680,然后解不等式组后确定x 的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=53BC=10,由勾股定理求出BE=8,证出BE∥OA,得出OABE=ODDE,求出OD=2513,得出CD═9013,而BE∥OA,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC ⊥BE ,∵∠E=∠BAC ,∴sinE=sin ∠BAC ,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=kx即可得到结论;(2)根据已知条件得到M(m+42,m),N(6m,m),根据MN=4列方程即可得到结论;(3)根据6x−5>x得到6−x2+5xx−5>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=kx的图象上,∴2×(﹣3)+4=a ,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M 在直线AB 上,∴M (m+42,m ),N 在反比例函数y=6x上, ∴N (6m,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m =4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得 {x <−1或x >6x <5, ∴{x <−1x <5或{x >6x <5, ∴此时x <﹣1,由{x 2−5x −6<0x −5>0得,{−1<x <6x >5, ∴{−1<x <6x >5, 解得:5<x <6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【考点】SO :相似形综合题.【分析】(1)只要证明△EDC ∽△EBA ,可得ED EB =EC EA,即可证明ED•EA=EC•EB ; (2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .想办法求出EB ,AG 即可求出△ABE 的面积,即可解决问题;(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,只要证明△AFG ∽△CEH ,可得AG CH =FG EH,即4a 5+n−3a =4n+3,求出a 即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA ,∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35,∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG, ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴AG CH =FG EH, ∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.【考点】HF :二次函数综合题.【分析】(1)根据点A 、B 的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A 、F 的坐标利用待定系数法,可求出直线AF 的解析式,联立直线AF 和抛物线的解析式成方程组,通过解方程组可求出点G 的坐标,进而可得出点H 的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A 、E (F 、H )的坐标利用待定系数法,可求出直线AE (FH )的解析式,由此可证出FH ∥AE ;(3)根据点A 、B 的坐标利用待定系数法,可求出直线AB 的解析式,进而可找出点P 、Q 的坐标,分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况考虑,借助相似三角形的性质可得出点M 的坐标,再利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之即可得出结论.【解答】解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A 、B 的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A 、E (F 、H )的坐标利用待定系数法,求出直线AE (FH )的解析式:(3)分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况,借助相似三角形的性质找出点M 的坐标.。

(含参考答案) 2017年湖北省武汉市中考数学试卷

(含参考答案) 2017年湖北省武汉市中考数学试卷

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为( ) A .6 B .﹣6 C .18 D .﹣182.(3分)若代数式在实数范围内有意义,则实数a 的取值范围为( )A .a=4B .a >4C .a <4D .a ≠4 3.(3分)下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.(3分)计算(x +1)(x+2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.(3分)点A (﹣3,2)关于y 轴对称的点的坐标为( )A .(3,﹣2)B .(3,2)C .(﹣3,﹣2)D .(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为( )A .B .C .D .8.(3分)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD ⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.【分析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF 为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6﹣3x=x可求出x以及FE的值,此题得解.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB 和△CFD 中,,∴△AEB ≌△CFD (SAS ),∴CD=AB ,∠C=∠B ,∴CD ∥AB .【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为 108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S=6,△CDE∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.∴S四边形ABCD(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.第31页(共31页)。

2017年湖北省武汉市中考数学试卷(解析版)

2017年湖北省武汉市中考数学试卷(解析版)

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C. D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.√32B.32C.√3D.2√310.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算xx+1﹣1x+1的结果为.13.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2√3,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A 5 10B b 8C c 5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D (1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx 的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值; (3)直接写出不等式6x−5>x 的解集.23.(10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E . (1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB ;(2)如图2,若∠ABC=120°,cos ∠ADC=35,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC=cos ∠ADC=35,CD=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示)24.(12分)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上 (1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18【解析】√36=6.故选:A.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【解析】依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)3【解析】A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【解析】共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【解析】原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)【解析】A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A. B. C.D.【解析】A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【解析】由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.√32B.32C.√3D.2√3【解析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB+BC+AC)•r,12×5×4√3=12×20×r,∴r=√3,故选C10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A .4B .5C .6D .7【解析】如图:故选D .二、填空题(本大题共6个小题,每小题3分,共18分) 11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 . 【解析】原式=6﹣4=2, 故答案为:212.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为x−1x+1.【解析】 原式=x−1x+1,故答案为:x−1x+1.13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .【解析】∵四边形ABCD 是平行四边形, ∴∠ABC=∠D=100°,AB ∥CD , ∴∠BAD=180°﹣∠D=80°, ∵AE 平分∠DAB , ∴∠BAE=80°÷2=40°, ∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°, ∴∠EBC=∠ABC ﹣∠ABE=30°; 故答案为:30°. 14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25 . 【解析】画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果, ∴两次取出的小球颜色相同的概率为820=25,故答案为:2515.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .【解析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°, ∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3, ∴AN=12AB=√3,BN=√AB 2−AN 2=3,∴BC=6.∵∠BAC=120°,∠DAE=60°, ∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°. 在△ADE 和△AFE 中,{AD =AF∠DAE =∠FAE =60°AE =AE ,∴△ADE ≌△AFE (SAS ), ∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x . 在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2, 解得:x 1=3−√32,x 2=3+√32(不合题意,舍去),∴DE=6﹣6x=3√3﹣3. 故答案为:3√3﹣3.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .【解析】∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x+a ), ∴当y=0时,x 1=1a ,x 2=﹣a ,∴抛物线与x 轴的交点为(1a ,0)和(﹣a ,0).∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3, ∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2. 故答案为:13<a <12或﹣3<a <﹣2.三、解答题(共8题,共72分) 17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1) 【解析】4x ﹣3=2(x ﹣1) 4x ﹣3=2x ﹣2 4x ﹣2x=﹣2+3 2x=1 x=1218.(8分)(2017•武汉)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.【解析】CD ∥AB ,CD=AB ,理由是:∵CE=BF , ∴CE ﹣EF=BF ﹣EF ,∴CF=BE ,在△AEB 和△CFD 中, {CF =BE∠CFD =∠BEA DF =AE, ∴△AEB ≌△CFD (SAS ), ∴CD=AB ,∠C=∠B , ∴CD ∥AB . 19.(8分)(2017•武汉)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表 部门 员工人数 每人所创的年利润/万元A 5 10B b 8C c 5(1)①在扇形图中,C 部门所对应的圆心角的度数为 108° ②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【解析】(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%, 各部门的员工总人数为:5÷25%=20(人), ∴b=20×45%=9,c=20×30%=6, 故答案为:108°,9,6; (2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元).20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案? 【解析】(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得40x+30(20﹣x )=650,解得x=5, 则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x≤8,∵x 为整数, ∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件. 21.(8分)(2017•武汉)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长.(1)证明:延长AO 交BC 于H ,连接BO ,如图1所示: ∵AB=AC ,OB=OC ,∴A 、O 在线段BC 的垂直平分线上, ∴AO ⊥BC , 又∵AB=AC ,∴AO 平分∠BAC ; (2)【解析】延长CD 交⊙O 于E ,连接BE ,如图2所示: 则CE 是⊙O 的直径, ∴∠EBC=90°,BC ⊥BE , ∵∠E=∠BAC , ∴sinE=sin ∠BAC , ∴BC CE =35, ∴CE=53BC=10,∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OABE =ODDE ,即58=OD5−OD , 解得:OD=2513,∴CD=5+2513=9013,∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线, ∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=kx 的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值; (3)直接写出不等式6x−5>x 的解集.(1)∵点A (﹣3,a )在y=2x+4与y=kx 的图象上,∴2×(﹣3)+4=a , ∴a=﹣2, ∴k=(﹣3)×(﹣2)=6; (2)∵M 在直线AB 上, ∴M (m+42,m ),N 在反比例函数y=6x上,∴N (6m ,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m =4,解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6, 由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0,∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5,∴{x <−1x <5或{x >6x <5, ∴此时x <﹣1,由{x 2−5x −6<0x −5>0得,{−1<x <6x >5, ∴{−1<x <6x >5, 解得:5<x <6,综上,原不等式的解集是:x <﹣1或5<x <6.23.(10分)(2017•武汉)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E . (1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB ;(2)如图2,若∠ABC=120°,cos ∠ADC=35,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的面积; (3)如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC=cos ∠ADC=35,CD=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示)【解析】(1)如图1中, ∵∠ADC=90°,∠EDC+∠ADC=180°, ∴∠EDC=90°, ∵∠ABC=90°, ∴∠EDC=∠ABC , ∵∠E=∠E ,∴△EDC ∽△EBA , ∴ED EB =ECEA ,∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35,∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4, ∵S △CDE =6, ∴12•ED•CF=6,∴ED=12CF =3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC , ∴∠BAG=30°, ∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB , ∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA , ∴EF EG =CFAG , ∴6EG =6√3,∴EG=9√3,∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3,作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a , ∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F , 易证△AFG ∽△CEH ,∴AG CH =FGEH , ∴4a5+n−3a =4n+3,∴a=n+5n+6,∴AD=5a=5(n+5)n+6.24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式; (2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t秒时,QM=2PM ,直接写出t 的值.第11页(共12页)【解析】(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中, {a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx+m , 将点A (﹣1,1)代入y=kx+m 中,即﹣k+m=1, ∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x+m . 联立直线AF 和抛物线解析式成方程组, {y =(m −1)x +m y =12x 2−12x ,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x+b 1, 将A (﹣1,1)、E (1,0)代入y=k 1x+b 1中, {−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x+12.设直线FH 的解析式为y=k 2x+b 2,将F (0,m )、H (2m ,0)代入y=k 2x+b 2中, {b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m, ∴直线FH 的解析式为y=﹣12x+m .∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x+b 0, 将A (﹣1,1)、B (4,6)代入y=k 0x+b 0中, {−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x+2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM , ∴QM′QP′=MM′PP′=23,∴QM′=43,MM′=23t ,∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t ﹣4,2t ), ∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .第12页(共12页)。

2017年武汉市中考数学试卷(含答案

2017年武汉市中考数学试卷(含答案

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A .9B .10C .11D .129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 10.(3分)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为 .12.(3分)计算x x+1﹣1x+1的结果为 . 13.(3分)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.(3分)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16.(3分)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数 每人所创的年利润/万元 A5 10 Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:√36=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【考点】4B:多项式乘多项式.【专题】11 :计算题;512:整式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【考点】U3:由三视图判断几何体.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A .【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A .9B .10C .11D .12【考点】37:规律型:数字的变化类.【分析】观察得出第n 个数为(﹣2)n ,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n 个数为(﹣2)n ,那么(﹣2)n ﹣2+(﹣2)n ﹣1+(﹣2)n =768,当n 为偶数:整理得出:3×2n ﹣2=768,解得:n=10;当n 为奇数:整理得出:﹣3×2n ﹣2=768,则求不出整数,故选B .【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n 个数为(﹣2)n 是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 【考点】MI :三角形的内切圆与内心.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由AD 2=AB 2﹣BD 2=AC 2﹣CD 2,可得72﹣x 2=82﹣(5﹣x )2,解得x=1,推出AD=4√3,由12•BC•AD=12(AB +BC +AC )•r ,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7【考点】KJ :等腰三角形的判定与性质.【分析】①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E ,△ACE 就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算xx+1﹣1x+1的结果为x−1x+1.【考点】6B :分式的加减法.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=x−1x+1, 故答案为:x−1x+1. 【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB ∥CD ,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:25【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;PB :翻折变换(折叠问题);R2:旋转的性质.【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,由AB=AC=2√3、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE ≌△AFE (SAS ),进而可得出DE=FE ,设CE=2x ,则CM=x ,EM=√3x 、FM=4x ﹣x=3x 、EF=ED=6﹣6x ,在Rt △EFM 中利用勾股定理可得出关于x 的一元二次方程,解之可得出x 的值,再将其代入DE=6﹣6x 中即可求出DE 的长.【解答】解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3.故答案为:3√3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x 的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是13<a <12或﹣3<a <﹣2 .【考点】HA :抛物线与x 轴的交点.【分析】先用a 表示出抛物线与x 轴的交点,再分a >0与a <0两种情况进行讨论即可.【解答】解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 【点评】本题考查的是抛物线与x 轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1)【考点】86:解一元一次方程.【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x ﹣3=2(x ﹣1)4x ﹣3=2x ﹣24x ﹣2x=﹣2+32x=1x=12【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【考点】KD:全等三角形的判定与性质.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b=9,c=6(2)求这个公司平均每人所创年利润.【考点】VB:扇形统计图;W2:加权平均数.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【专题】12 :应用题.【分析】(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买甲、乙两种奖品共花费了650元列方程40x +30(20﹣x )=650,然后解方程求出x ,再计算20﹣x 即可;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组{20−x ≤2x 40x +30(20−x)≤680,然后解不等式组后确定x 的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=53BC=10,由勾股定理求出BE=8,证出BE∥OA,得出OABE=ODDE,求出OD=2513,得出CD═9013,而BE∥OA,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin ∠BAC ,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=kx即可得到结论;(2)根据已知条件得到M(m+42,m),N(6m,m),根据MN=4列方程即可得到结论;(3)根据6x−5>x得到6−x2+5xx−5>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=kx的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(m+42,m),N在反比例函数y=6x上,∴N(6m,m),∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m=4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5, ∴{x <−1x <5或{x >6x <5, ∴此时x <﹣1,由{x 2−5x −6<0x −5>0得,{−1<x <6x >5, ∴{−1<x <6x >5, 解得:5<x <6,综上,原不等式的解集是:x <﹣1或5<x <6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【考点】SO:相似形综合题.【分析】(1)只要证明△EDC ∽△EBA ,可得ED EB =EC EA,即可证明ED•EA=EC•EB ; (2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .想办法求出EB ,AG 即可求出△ABE 的面积,即可解决问题;(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,只要证明△AFG ∽△CEH ,可得AG CH =FG EH ,即4a 5+n−3a =4n+3,求出a 即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA, ∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35, ∴DF CD =35,∵CD=5,∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG , ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴AG CH =FG EH, ∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.【考点】HF :二次函数综合题.【分析】(1)根据点A 、B 的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A 、F 的坐标利用待定系数法,可求出直线AF 的解析式,联立直线AF 和抛物线的解析式成方程组,通过解方程组可求出点G 的坐标,进而可得出点H 的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A 、E (F 、H )的坐标利用待定系数法,可求出直线AE (FH )的解析式,由此可证出FH ∥AE ;(3)根据点A 、B 的坐标利用待定系数法,可求出直线AB 的解析式,进而可找出点P 、Q 的坐标,分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况考虑,借助相似三角形的性质可得出点M 的坐标,再利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之即可得出结论.【解答】解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A 、B 的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A 、E (F 、H )的坐标利用待定系数法,求出直线AE (FH )的解析式:(3)分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况,借助相似三角形的性质找出点M 的坐标.。

2017年湖北省武汉市中考数学试卷和解析答案

2017年湖北省武汉市中考数学试卷和解析答案

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A .x2+2 B.x 2+3x+2 C.x 2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)3【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3 .【分析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6﹣3x=x可求出x以及FE的值,此题得解.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF 于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2 .【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B 两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.31。

2017年武汉市中考数学试卷(含答案解析版)

2017年武汉市中考数学试卷(含答案解析版)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A .9B .10C .11D .129. 已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 10. 如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11. 计算2×3+(﹣4)的结果为 .12. 计算x x+1﹣1x+1的结果为 . 13. 如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14. 一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15. 如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16. 已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数 每人所创的年利润/万元 A5 10 Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18解:√36=6.故选:A.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7解:如图:故选D .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .解:原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为 x−1x+1 . 解:原式=x−1x+1, 故答案为:x−1x+1. 13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:2515.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3.故答案为:3√3﹣3.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1)解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=1 218.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元). 20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长. (1)证明:延长AO 交BC 于H ,连接BO ,如图1所示:∵AB=AC ,OB=OC ,∴A 、O 在线段BC 的垂直平分线上,∴AO ⊥BC ,又∵AB=AC ,∴AO 平分∠BAC ;(2)解:延长CD 交⊙O 于E ,连接BE ,如图2所示:则CE 是⊙O 的直径,∴∠EBC=90°,BC ⊥BE ,∵∠E=∠BAC ,∴sinE=sin ∠BAC ,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.22.(10分)(2017•武汉)如图,直线y=2x +4与反比例函数y=k x的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值;(3)直接写出不等式6x−5>x 的解集.(1)∵点A (﹣3,a )在y=2x +4与y=k x的图象上, ∴2×(﹣3)+4=a ,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M 在直线AB 上,∴M (m+42,m ),N 在反比例函数y=6x上, ∴N (6m,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m=4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5,∴{x<−1x<5或{x>6x<5,∴此时x<﹣1,由{x2−5x−6<0x−5>0得,{−1<x<6x>5,∴{−1<x<6 x>5,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA, ∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35, ∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG , ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴AG CH =FG EH,∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .。

2017武汉中考数学试题(附含答案解析版)

2017武汉中考数学试题(附含答案解析版)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A. B. C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算﹣的结果为.13.如图,在▱ABCD中,∠D= 00°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2,∠BAC= 0°,点D、E都在边BC上,∠DAE= 0°.若BD=2CE,则DE的长为.16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B 两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC= 0°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18解:=6.故选:A.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B.C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC 于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7解:如图:故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .解:原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算﹣的结果为.解:原式=,故答案为:.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D= 00°,∠DAB的平分线AE 交DC于点E,连接BE.若AE=AB,则∠EBC的度数为 0°.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D= 00°,AB∥CD,∴∠BAD= 80°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷ = 0°,∵AE=AB,∴∠ABE=( 80°﹣ 0°)÷ =70°,∴∠EBC=∠ABC﹣∠ABE= 0°;故答案为: 0°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为80 =,故答案为:15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC= 0°,点D、E都在边BC上,∠DAE= 0°.若BD=2CE,则DE的长为3﹣3 .解:将△ABD绕点A逆时针旋转 0°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC= 0°,∴BN=CN,∠B=∠ACB= 0°.在Rt△BAN中,∠B= 0°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC= 0°,∠DAE= 0°,∴∠BAD+∠CAE= 0°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE= 0°.在△ADE和△AFE中,∠ ∠ 0°,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B= 0°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2 .解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,∠ ∠ ,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为 08°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.解:(1)①在扇形图中,C部门所对应的圆心角的度数为: 0°× 0%= 08°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为: 08°,9,6;(2)这个公司平均每人所创年利润为: 098=7.6(万元).20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得 00 0 0 80,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即8=,解得:OD=,∴CD=5+=90,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC==9=3 0.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=xN ﹣xm=﹣=4或xM﹣xN=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴>0<0或<0>0,结合抛物线y=x2﹣5x﹣6的图象可知,由>0 <0得<或 ><,∴<<或><,∴此时x<﹣1,由<0>0得,< <>,∴< <>,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC= 0°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC= 80°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC= 0°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG= 0°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD =S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx 上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,0,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,0,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB 的解析式为y=k 0x+b 0,将A (﹣1,1)、B (4,6)代入y=k 0x+b 0中,0 0 0 0 ,解得: 0 0, ∴直线AB 的解析式为y=x+2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴ ′ ′= ′ ′=, ∴QM′= ,MM′=t , ∴点M 的坐标为(t ﹣ ,t ). 又∵点M 在抛物线y= x 2﹣x 上, ∴ t= ×(t ﹣ )2﹣ (t ﹣), 解得:t=; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y= x 2﹣x 上, ∴2t= ×(t ﹣4)2﹣(t ﹣4), 解得:t= 89. 综上所述:当运动时间为 秒、 秒、 89 秒或 89秒时,QM=2PM .。

2017年武汉市初中毕业生考试数学试卷解析版

2017年武汉市初中毕业生考试数学试卷解析版

2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.(2017年武汉,1,3分) 计算36的结果为( ) A .6B .-6C .18D .-18答案:A ,解析:36表示36的算术平方根,36的算术平方根为6,故选A .2. (2017年武汉,2,3分)若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4B .a >4C .a <4D .a ≠4答案:D ,解析:要使41-a 有意义,只需a -4≠0,即a ≠4.故选D .3. (2017年武汉,3,3分)下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)3答案:A ,解析:A 选项x 10÷x 2=x 10-2=x 8,B 选项x 6-x 没有同类项,不能合并,C 选项x 2·x 3= x 2+3= x 5,D 选项(x 2)3= x 2×3= x 6.故选C .4. (2017年武汉,4,3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数232341则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.70答案:C ,解析:中位数是排序后处于中间位置的数,即第八个数,1.70;众数是出现次数最多的数,为1.75,故选C .5. (2017年武汉,5,3分)计算(x +1)(x +2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +2答案:B ,解析:根据多项式乘法法则,(x +1)(x +2)= x 2+2x +x +2 = x 2+3x +2.故选B . 6. (2017年武汉,6,3分)点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)答案:B ,解析:关于Y 轴对称点坐标,横坐标互为相反数,纵坐标不变即为(3,2).故选B . 7. (2017年武汉,7,3分)某物体的主视图如图所示,则该物体可能为( )A .B .C .D .答案:A ,解析:由主视图可知,从正面看是一个圆,选项中B 、D 选项正面看为矩形,C 选项正面看为多边形,A 选项正面看为圆.故选A .8. (2017年武汉,8,3分)按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .12答案:B ,解析:根据数的规律,第n 个数为(-2)n ,故有最后三个数的和为(-2)n -2+(-2)n -1+(-2)n =(-2)n -2×(1-2+4)= (-2)n -2×3=768, ∴(-2)n -2=256=(-2)8.∴n =10.故选B .9. (2017年武汉,9,3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23 B .23C .3D .32答案:C ,解析:作三角形一边上的高,不妨作最长边BC 的高AD ,设BD =x ,则CD =8-x ,则有h 2=52-x 2=72-(8-x )2.解得x =52,从而h =532,∴三角形面积=12h ×8=12r ×(5+7+8), ∴r =3,故选C .10.(2017年武汉,10,3分)如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D . 7 答案:D ,解析:如图,满足要求的不同三角形一共有7个.故选D . 二、填空题(本大题共6个小题,每小题3分,共18分)11.(2017年武汉,11,3分)计算2×3+(-4)的结果为___________. 答案:2,解析:2×3+(-4)=6-4=2.故选2. 12.(2017年武汉,12,3分)计算2111xx x -++的结果为___________.答案:x -1,解析:2111xx x -++=211xx -+=()()111x x x -++=x -1.13.(2017年武汉,13,3分)如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________.D CBA h8-xx 875第10题图CBA答案:70°,解析:∵四边形ABCD 为平行四边形,∠D =100°,∴∠DAB =80°,又AE 平分∠DAB ,∴∠EAB =40°,∵AE =AB ,∴∠AEB =∠ABE ,设∠AEB =∠ABE =x .有x +x +40°=180°, ∴x =70°. 14.(2017年武汉,14,3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________. 答案:25,解析:列表得红 红 黄 黄 黄 红 -- 红红 黄红 黄红 黄红 红 红红 -- 黄红 黄红 黄红 黄 红黄 红黄 -- 黄黄 黄黄 黄 红黄 红黄 黄黄 -- 黄黄 黄红黄红黄黄黄黄黄--有列表可知,摸出小球一共有20种不同结果,其中两个小球颜色相同的结果有8种,其概率为P =820=25.15.(2017年武汉,15,3分)如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC上,∠DAE =60°.若BD =2CE ,则DE 的长为___________.答案:333-,解析:将△ABD 绕点 A 逆时针旋转 120°得△ACF ; 可证△ADE ≌△AFE ,DE =EF CF =BD 则 EH =x ,CF =4x ,FH =3x ,EH = x 3∠ACD =∠B =30°,∠FCE =60°作 EH ⊥CF 于 H ,设 BD =2CE =4x ,222EH FHFE+= 222)3()3()66(x x x +=-解得舍去)(233,23321+=-=x x ∴DE =333-16.(2017年武汉,16,3分)已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是___________. 答案:113232a a --<<或<<,解析:y =ax 2+(a 2-1)x -a =a (x -1)( x + a ), 当 y =0 时 a x ax -==21,1,第13题图ABCDExx 4040100EDCBA 第15题图CE DBA∴抛物线与 x 轴的交点为)0,0,1a a -)和((∵抛物线与 x 轴的一个交点为(m ,0) 且 2<m <3,当 a >0 时,2131312<<,解得<<a a;当 a <0 时,2-3-32<<,解得<<a a -三、解答题(共8题,共72分)17.(2017年武汉,17,8分)(本题8分)解方程:4x -3=2(x -1)思路分析:一元一次方程的求解,根据去括号、移项、合并、化系数为1的步骤即可求解. 解:去括号,得 4x -3=2x -2 移项,得 4x -2x =3-2 合并,得 2x =1 化系数为1,得 x =1218.(2017年武汉,18,8分)(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE=BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.思路分析:判断两条线段的关系,一般包括数量关系与位置关系,这里根据已知条件,证明两个三角形全等即可,需要注意的是CE =BF 不是对应边相等,需转化. 解:CD 与AB 之间的关系为:CD =AB ,且CD ∥AB . 证明:∵CE =BF ,∴CF =BE .在△CDF 和△BAE 中 C F B E C F D B E AD F A E=⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BAE . ∴CD =BA , ∠C =∠B . ∴CD ∥BA19.(2017年武汉,19,8分)(本题8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表 各部门人数分布扇形图 部门 员工人数 每人所创的年利润/万元A 5 10B b 8 Cc5(1) ① 在扇形图中,C 部门所对应的圆心角的度数为___________; ② 在统计表中,b =___________,c =___________; (2) 求这个公司平均每人所创年利润. 思路分析:(1)①C 部门占30 %,故所对应圆心角度数为360°×30%=108°;②由B 、C 部门所占百分第18题图EBD F AC比,可求出A 部门所占百分比为25%,故总共有5÷25%=20人,故b =20×45%=9,c =20×30%=6; (2)根据加权平均数公式计算即可. 答案:(1)9,6(2)解:10×25%+8×45%+5×30%=7.6.答:这个公司平均每人所创年利润是7.6万元.20.(2017年武汉,20,8分)(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?思路分析:(1)设甲、乙两种奖品分别购买x 件、y 件,根据题意,寻找等量关系,①购买甲、乙两种奖品共20件,②购买甲、乙两种奖品共花费了650元;列出方程组求解即可;(2)根据题目中的两个“不超过”可知,这里是利用不相等关系,也就是不等式求解,故设未知数时一般设一个未知数,通过一元一次不等式组即可求解.解:(1)设甲、乙两种奖品分别购买x 件、y 件. 依题意,得 204030650x y x y +=⎧⎨+=⎩;解得515x y =⎧⎨=⎩答:甲、乙两种奖品分别购买5件、15件.(2)设甲种奖品购买m 件,则乙种奖品购买(20-m )件, 依题意,得()202403020680m mm m -⎧⎪⎨+-⎪⎩≤≤,解得2083m ≤≤,∵m 为整数,∴m =7或8.当m =7时,20-m =13;当m =8时,20-m =12.答:该公司有两种不同的购买方案,方案一:购买甲种商品7件,乙种商品13件,方案二:购买甲种商品8件,乙种商品12件.21.(2017年武汉,21,8分)(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D .(1) 求证:AO 平分∠BAC ;(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长.第21题图O BCD A 备用图D CBO A思路分析:(1)根据等腰三角形和圆的对称性,这里证明手段比较多,比如连接OB ,构造三角形全等;(2)由sin ∠BAC =sin ∠COH =53,可考虑延长AO 构造直角三角形,结合三角函数及勾股定理OC 、AC 的长,进而过D 作AO 垂线利用三角形相似或三角函数值求出OD 的长即可.(1)证明:连接OB ,∵AO =AO ,BO =CO ,AB =AC∴△AOB ≌△AOC , ∴∠BAO =∠CAO ,即AO 平分∠BAC . (2):如图,过点 D 作 DK ⊥AO 于 K .∵由(1)知 AO ⊥BC ,OB =OC ,BC =6∴ BH =CH = 21 BC =3,∠COH =21 ∠BOC ,∵∠BAC =21∠BOC ,∴∠COH =∠BAC在 Rt △COH 中,∠OHC =90°,sin ∠COH = OCHC =53,∵CH =3,∴CO =AO =5∴CH =3,OH 4 ,∴AH =AO +OH =4+5=9, tan ∠COH =tan ∠DOK =43 在 Rt △ACH 中,∠AHC =90°,AH =9,CH =3∴tan ∠CAH =AHCH 31,A C310①由(1)知∠COH =∠BOH ,tan ∠BAH =tan ∠CAH = 31设 DK =3a , 在 Rt △ADK 中 tan ∠BAH =31 ,在 Rt △DOK 中 tan ∠DOK =43∴OK =4a ,DO =5a ,AK =9a ∴AO =OK +AK =13a =5 ∴a =135,DO =5a =1325,CD =OC +OD =5+1325 =1390 ②∴AC = 310,CD =139022.(2017年武汉,22,10分)(本题10分)如图,直线y =2x +4与反比例函数xk y =的图象相交于A (-3,a )和B 两点.(1) 求k 的值;(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m的值; (3) 直接写出不等式xx >-56.思路分析:(1)将A 点坐标代入直线解析式求出a 的值,然后代入反比例函数解析式即可求出k 值; (2)讲y =m 分别代入直线和反比例函数解析式,分别求出M 、N 两点横坐标,利用两点距离公式列出关于M 的方程,求解即可; (3) 不等式xx >-56可转化为xx >-56-5+5,令x -5=a ,有6aa>,利用函数图象求出a <﹣6 或 0<a<1,进而求得x <﹣1 或 5<x <6.解:(1)∵点 A 在直线 y 2x 4 上,∴a =﹣6+4=﹣2点 A (﹣3,﹣2)在 y xk 的图象上∴k =﹣6(2)∵M 在直线 AB 上,∴ M ),24(m m +)N 在反比例函数 y x6的图象上,N ),6(m mMNMN x x -6442m m+-=∵m >0,∴m =2或346+=m (3)x <﹣1 或 5<x <623.(2017年武汉,23,10分)(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E .(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB ;(2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD的面积;(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF=ED =n ,直接写出AD 的长(用含n 的式子表示).思路分析:(1) 由∠E 为公共角,∠ABC =∠ADC =90°=∠EDC ,故有∠EDC =∠ABC 根据相似比转化即可;(2)由于∠ABC 、∠ADC 均为特殊角,可考虑作垂线构造直角三角形,利用特殊角三角函数找到三角形边的数量关系,利用已知面积构造方程求解;(3) 过点C 作CH ⊥AD 于H ,则CH =4,DH =3,∴tan ∠E =43n +,过点A 作AG ⊥DF 于点G ,设AD=5a ,则DG =3a ,AG =4a , ∴FG =AD -DG =5+n -3a , 由CH ⊥AD ,AG ⊥DF , ∠E =∠F ,知△AFG ∽△CEH , ∴A G F G C HE H=,∴A G C H F GE H=,∴44533a n an =+-+,∴a =56n n ++,AD =()556n n ++.CDABE第23题图1CD AEB第23题图2FE BCD A 第23题图3解:(1)∵∠ADC =90°,∠EDC +∠ADC =180°,∴∠EDC =90°,又∠ABC =90°, ∴∠EDC =∠ABC ,∠E 为公共角, ∴△EDC ∽∠EBA ,∴EAEC EBED =∴ED ·EA =EC ·EB .(2)过 C 作 CF ⊥AD 于 F ,过 A 作 AG ⊥EB 交 EB 延长线于 G . 在 Rt △CDF 中,cos ∠ADC =CDDF =53,又 CD =5,∴DF =3,∴CF =22C DD F-=4,又 S △EFC =6,∴21ED ·CF =6,∴ED =3,EF=ED +DF =6. ∵∠ABC =120°,∠G =90°,∠G +∠BAG =∠ABC ,∴∠BAG =30°, ∴在 Rt △ABG 中,BG =21AB =6,AG =22A BB G-=63,∵CF ⊥AD ,AG ⊥EB ,∴∠EFC =∠G =90°,又∠E 为公共角∴△EFC ∽△EGA , ∴EGEF =AGCF ,∴EG =93,∴BE =EG -BG =93-6,∴S 四边形ABCD =S △ABE -S △CED =21BE ·AG -6=21(93-6)×63-6=75-183.(3)AD =()556n n ++.24.(2017年武汉,24,12分)(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上.(1) 求抛物线的解析式;(2) 如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3) 如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值.GFEDCBAGFEDC BAH思路分析:(1)利用待定系数法,将A 、B 两点坐标代入即可;(2)由于A 、E 为定点,F 、G 、H 为动点,可以引进适当的参数,分别表示F 、H 点的坐标,进而利用直线解析式或者三角形相似证明平行,由于A 、F 、G 共线,可以直线AF 斜率k 为参数;(3) 设点Q (t ,0),P (t -2,t ),由题意,点M 只能在线段QP 上火其延长线上.①若M 在线段QP 上,则利用QM =2PM ,构造“8字形”相似,可计算得M (t -43,23t ),代入抛物线y =12x 2-12x ,可得12(t -43)(t -73)=23t ,解得t =151136±②若M 在线段QP延长线上,则由QM =2PM 知P 为MQ 中点,构造“8字形”全等,可计算得M (t -4,2t ),代入抛物线y =12x 2-12x ,可得12(t -4)(t -5)=2t ,解得t =13892±.解:(1)将点 A (-1,1)、B (4,6)代入 y =ax 2+bx 有11646a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为y =21122x x-.(2)设直线 AF 的解析式为 y =kx +b .将点 A (-1,1)代入上面解析式有-k +b =1,∴b =k +1 ∴直线 AF 的解析式为 y =kx +k +1,F (0,k +1)联立211122y k x k y x x =++⎧⎪⎨=-⎪⎩,消 y 有 x 2-21x =kx +k +1,解得 x 1=1,x 2=2k +2,∴点 G 的横坐标为 2k +2,又 GH ⊥x 轴,∴点 H 的坐标为(2k +2,0),又 F (0,k +1)设直线 FH 的解析式为 y =k 0x +b 0,则()0002201k k b b k ⎧++=⎪⎨=+⎪⎩, 解得00121k b k ⎧=-⎪⎨⎪=+⎩,∴直线 FH 的解析式为 y =-12x +k +1,设直线 AE 的解析式为 y =k 1x +b 1,则111110k b k b -+=⎧⎨+=⎩,解得111212k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AE 的解析式为y =-12x +12,∴AH ∥AE . (3)t =151136+、151136-、13892+或13892-.xy24题图1H GF E A Oxy24题图2BD AO。

湖北省武汉市2017年中考数学真题试题(含扫描答案)[真题卷]

湖北省武汉市2017年中考数学真题试题(含扫描答案)[真题卷]
2017 年武汉市初中毕业生考试数学试卷
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.计算 36 的结果为( )
A.6
B.-6
C.18
D.-18
2.若代数式 1 在实数范围内有意义,则实数 a 的取值范围为( )
a−4
A.a=4
B.a>4
C.a<4
D.a≠4
3.下列计算的结果是 x5 的为( )
13.如图,在□ABCD 中,∠D=100°,∠DAB 的平分线 AE 交 DC 于点 E,连接 BE.若 AE= AB,则∠EBC 的度数为___________ 14.一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它们除颜色外完全相同.随 机摸出两个小球, 摸出两个颜色相同的小球的概率为___________ 15.如图,在△ABC 中,AB=AC= 2 3 ,∠BAC=120°,点 D、E 都在边 BC 上,∠DAE=60°.若 BD=2CE,则 DE 的长为___________
② 在统计表中,b=___________,c=___________
(2) 求这个公 司平均每人所创年利润
20.(本题 8 分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖 品共 20 件.其中甲种奖品每件 40 元,乙种奖品每件 30 元 (1) 如果购买甲、乙两种奖品共花费了 650 元,求甲、乙两种奖品各购买了多少件? (2) 如果购买乙种奖品的件数不超过甲种奖品件 数的 2 倍,总花费不超过 680 元,求该公 司有哪几种不同的购买方案?
8.按照一定规律排列的 n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和
为 768,则 n 为( )

2017年湖北省武汉市中考数学试卷(含答案解析版)

2017年湖北省武汉市中考数学试卷(含答案解析版)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)3A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A. B. C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算﹣的结果为.13.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【解析】=6.故选:A.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【解析】依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)3【解析】A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【解析】共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【解析】原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)【解析】A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【解析】A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【解析】由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【解析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【解析】如图:故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .【解析】原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算﹣的结果为.【解析】原式=,故答案为:.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【解析】∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【解析】画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3 .【解析】将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,∠∠°,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2 .【解析】∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【解析】4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【解析】CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,∠∠,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【解析】(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【解析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)【解析】延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴><或<>,结合抛物线y=x2﹣5x﹣6的图象可知,由><得<或><,∴<<或><,∴此时x<﹣1,由<>得,<<>,∴<<>,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【解析】(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【解析】(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF 的解析式为y=kx+m ,将点A (﹣1,1)代入y=kx+m 中,即﹣k+m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x+m .联立直线AF 和抛物线解析式成方程组,,解得: , , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y= x 2﹣ x= x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x+b 1,将A (﹣1,1)、E (1,0)代入y=k 1x+b 1中,,解得: , ∴直线AE 的解析式为y=﹣ x+ . 设直线FH 的解析式为y=k 2x+b 2,将F (0,m )、H (2m ,0)代入y=k 2x+b 2中,,解得: , ∴直线FH 的解析式为y=﹣ x+m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x+b 0,将A (﹣1,1)、B (4,6)代入y=k 0x+b 0中,,解得:, ∴直线AB 的解析式为y=x+2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP ′⊥x 轴于点P ′,过点M 作MM ′⊥x 轴于点M ′,则△PQP ′∽△MQM ′,如图2所示.∵QM=2PM ,∴ ′ ′= ′ ′=, ∴QM ′= ,MM ′= t ,∴点M 的坐标为(t ﹣ , t ).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.。

2017年武汉市中考数学试卷及答案

2017年武汉市中考数学试卷及答案

2017年武汉市初中毕业生考试数学试卷考试时间:2017年6月20日14:30~16:30 一、选择题(共 10小题,每小题3分,共30分)1 •计算■■ 36的结果为()D . - 184 •在一次中学生田径运动会上,参加男子跳高的 15名运动员的成绩如下表所示: 成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数232341则这些运动员成绩的中位数、众数分别为( )A 1.65、1.7C) B • 1.65、1.75 C • 1.70、1.75D •1.70、1.70 5计算(x + 1)(x +2)的结果为( )A x 2+ 2B • X 2+ 3x + 2C • X 2+ 3x + 3D •X 2+ 2x + 26点 A (— 3, 2)关于y 轴对称的点的坐标为()A (3,— 2)B • (3,2)C • (— 3,— 2)D •(2,— 3)7某物体的主视图如图所示,则该物体可能为()□ u n8•按照一定规律排列的 n 个数:—2、4、— 8、16、— 32、64、……,若最后三个数的和为 则n 为( )10 •如图,在 Rt A ABC 中,/ C = 90 °以厶ABC 的一边为边画等腰三角形,使得它的第三个顶 点在△ ABC 的其他边上,则可以画岀的不同的等腰三角形的个数最多为( A • 4 B • 5 C • 6 D • 7二、填空题(本大题共6个小题,每小题 3分,共18分)11 •计算2 X 3+ (— 4)的结果为 ________ 12 •计算 ------ —的结果为 ______________x x 十1C . 182 •若代数式在实数范围内有意义,则实数a 的取值范围为( a —4A . a = 43•下列计算的结果是 A • X 10* x 2B • a > 4 x 5的为( )B • x 6- xC • a v 4C • x 2 • x 3)D • a ^ 42 3D • (x )768,B •10 9•已知一个三角形的三边长分别为■■3C • 115、7、8,则其内切圆的半径为(C • 3D • 12 ) D • 2.313 •如图,在口ABCD中,/ D = 100 ° / DAB的平分线AE交DC于点E,连接BE.若AE = AB,则/ EBC的度数为______________14 • 一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同•机摸岀两个小球,•摸岀两个颜色相同的小球的概率为 _______________ 15.如图,在厶ABC 中,AB = AC =2: 3,/ BAC = 120 ° 点 D 、E 都在边 BC 上, / DAE = 60 ° 若 16 •已知关于x 的二次函数 v m v 3,则a 的取值范围是三、解答题仃.(本题18.(本题 8 分)如图,点 C 、F 、E 、B 在一条直线上,/ CFD =/ BEA ,CE = BF ,DF = AE , 写岀CD 与AB 之间的关系,并证明你的结论y ----------- 刊佃.(本题8分)某公司共有 A 、B 、C 三个部门, 根据每个部门的员工人数和相应每人所创的 年利润绘制成如下的统计表和扇形图(共 8题,共72分)8分)解方程: 4x — 3= 2(x — 1)部门 员工人数每人所创的年利润/万元A 5 10 Bb 8 2y = ax(m ,0).若 2各部门人数及每人所创年利润统计表 各部门人数分布扇形图(1)① 在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= _____________ ,c = __________ (2)求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件•其中甲种奖品每件40元,乙种奖品每件30元⑴如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?⑵如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21 .(本题8分)如图,△ ABC内接于O O, AB = AC, CO的延长线交AB于点D ⑴求证:AO平分/ BAC(2)若BC = 6,sin/ BAC =-,求AC 和CD 的长5k22. (本题10分)如图,直线y= 2x+ 4与反比例函数y 的图象相交于A(-3,a)和B两点x(1)求k的值⑵直线y= m (m> 0)与直线AB相交于点M,与反比例函数的图象相交于点N •若MN = 4,求m的值23. (本题10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E(1) 如图1,若/ ABC = Z ADC = 90 ° 求证:ED • EA = EC • EB3(2) 如图2,若/ ABC = 120 ° cos/ ADC = - , CD = 5 , AB = 12 , △ CDE 的面积为6,求四边形5ABCD的面积3⑶如图3,另一组对边AB、DC的延长线相交于点 F •若cos/ ABC = cos/ ADC = - , CD = 5,5CF = ED = n,直接写岀AD的长(用含n的式子表示)24. (本题12分)已知点A(- 1 , 1)、B(4, 6)在抛物线y = ax2+ bx上(1) 求抛物线的解析式(2) 如图1,点F的坐标为(0, m) (m>2),直线AF交抛物线于另一点G ,过点G作x轴的垂线,垂足为H •设抛物线与x轴的正半轴交于点E ,连接FH、AE,求证:FH // AE⑶如图2,直线AB分别交x轴、y轴于C、D两点•点P从点C岀发,沿射线CD方向匀速运动,速度为每秒,2个单位长度;同时点Q从原点0岀发,沿x轴正方向匀速运动,速度为每秒1个单位长度•点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM = 2PM,直接写出t的值2017年武汉市初中毕业生考试数学试卷参考答案一,宅宾埜:迅号234 5 6■9910A D C CB B A日CD 第9趨:辱匚亏莎工一・BC=S, AB=~. AC=^J£ K哺匸壬世为的过/作AD-BC于D+ i^BD-JC,)ld CD-5—J,I:;勾股库更袒!ccr, r—(5—x}\ 惬袒/■],:' AD= S: "D】-4 J7 tFlSJ 覩法:丄0匚* AD=• ft 5X4 Ja -20XJI, Jt= JJ .故透匚.2 2另5_任=弘p-砒P-醴P Y) -P T;半嗝处a. b, t丸4iBC筑三立盒h毎得5丄疋-【0若-由面和密Jaxsc- -J-(^3+3C+^Q • It. mV5=IOX 乩Jf= J3 f 左匚•* Lofl-臥短直角过为口量案具丈互空订弱辺乜屋牛*萇霍爱为權I;-牛・拥一牛婆藝吏.纯三角MW DA・DC 】斗:■ 15, J^/T —3 ■16-h H 5二,頑空輕1II* 2. 12:壬二| ■ L氛30E 第t5£*s^r苗法一! k :#-电ajRDJGNQ 餾护岸宀尸乩 可■证心亡也心腔,:、RD ・M C£~EF Z^fD=ZJ=30* . ZJF^ZC^O 1 ■+\ZDF£^O r 柞础丄DF 于乩 fi 5D=2C£=4x. 刖 EF<Lr* £1F-41. FHw EH-^X(6-6xr--Jjf-[V^r 鹘眄 i •:+ DE » 6 - 6J ■- 3舗法二黑也估D 経占/迄时针聲挣:剜 ^A.4CF! 可证diDE 笆diFE DE-EF CF=BD 也彳CD=£ 片* ZFC£=W ;低础丄 CF 于* S 3£)=2C£=4J H n ,MT* Frf=lr, 屈 Fh =F 屮+曲I.H-6x)‘・{触)‘*(磁icjf解無:州■孑"f ・AD£-6-6J . 3^-3y ■ oi : *(o : -l)i-o ■(ox -l}(x*o)当 时.(fflx Q' A 2<ffl<3!(£当c>0时, 2V 丄V3・a£ 当 2<-a <3三、**S :17. xai i IS.证BCDHfl 色BAH 积l?T (I) (DlOB* I ②b=9・ c=«: 2〉U 万元: 20. W : <1)復购买呷科奖聒x 杵*闢购买乙沖奖品C20-x) fh 4ftc+30 (20-x) =i=0毎得匕 i=5 20-x=15警:劇买囚科■奖日」ft Z ■秤奖丹Ufr:■2)设購买平戸奖曲m 杵・則共熹乙种叢砧C20-X )Ft [2 0-J S 1 20- 、 置恢 —・・'为Sfe. ;.1=7或](嗚[4Or* 3p >0t|£ ti 3当弊7料・2D-x=]3;当xN 财・X —x=r 2答:该公司专两种不同下;进匿严実;甲种奖E e 杵・乙畤奖晶13件或巾种奖話S 件.己斑奖H 12件:2L 〔门込归IlT 埠.廷± AD X HC 于H+连亲RO.T,AB=AC O0=OC /.A. O&ttKBC 的中塞罐上 AAO-B 匚匚D=AB-疋匚二NR.昇匚D AB H 人匸口平f?且爭于AB二订多或司X 紬的交点为F :i-a.O )x : ■ -^v 足吃宾与x 粘范一个交点丸X V AE=rAC丄 AO 平 J+ZBAC订)君年::过点DftDK 丄AO 干K. ■/ if ; £ E) SI AO-LE3C. OBW5C. BM・・.BH=CH=-BC=3. ZCOH=- ZBOC*2 2■: Z :BAC= i ^fiDC, .=匸2IffRiiCOH 中.NOH 匚=90,・ iinZCOH= —COVCH=-JH ?*iinZCDH--^ = - - ?XO=AO=5 CO 5:、CH-JH OK- J O C= ■曲 乂 仔二"F = 4 -.l .AH=AC>-OH=4^5=9, tanZ COH=»n Z DOK= 14R T ^I ACH Z AHC=9C I = * AH=9,CH-Jitj <I> JaiZCOH=ZBOH. canZBAH=taflZCAH=l?,OK=41. DO51, AK=91/. AO=OK-AK» [31=5枝 DK=J]C R J&J AK=4a_ A K=^a_C D=・冲匚=】3>=3^1090 .■.CD=^芳肚乳 #A$ib AO=OE=5. BE=a. BE^OA< 亂竺=竺ME DEror事甲二”HD 上A\3E3E4 OH=4x 咨斟求「AB=AC=S^C , (1) 丫迦 >1 走盲越丿■加 ±4r Ao= - 6-4= - 2铁 DK-JA ,在 R T AAOK ;| tanZEAH= 左 RiZkDOK 't : tanZDOK- □0=5 J ="9G £D=OC*OD=5+二=_B IJ匚工 yjio . CD - RtAADK ;:. ZAKD^O r .芒他ETDK F :. ZCKD^I^ ,J点A{-3. -2庖”£的图誓上:.k=6⑵ 叮协左越M B 上…:"(兰£\wn 二沁取」的m 象上.盘集上.嵐F 垂式世整锲吕*-1或手Ot<6 骑注匕康退法,电圧工幌遶匙,・一I 勺右平拶戈牛革空.2J, t [} '.' Z^OC —90' H ZfDC-ZJDC= 1 RO 1 * AZ£DC=90f 又Z.<SC=90; ” :.^£DC- ^ABC. 乂 貝.沁 E 匸 5££8A ,A :〒=誓* A ED * f.1=£C * EB(2> S Cft CF±AD 于 F.过/昨 AG^EB 交 £8 il 氐裟于 GRtACDF J'. CDS ZADC=^ A |^=|. Z CD = 5H ADF=3- A CF^^CF^D? =4,又鬼近=&Z +r£D - CF=fi. .\£0=7^=3> EF=ED7F=&叮 匚・ ZG = K' ・ ZG-Z5/IG=Z^3C- ,\Z5^G=30B整引 TQ€…;册=2謝=召+ 3? (3) X< - I 或 5<Jf<& :| ------ Ajf 篙・ x-5 i-56 • j » 5JJC 丄■ 5 j ■ 6 :、 一—X) A-一<0 i-5 jc 亠—5JC —6^0 或,,工亠 ~ 啟\卡>0 维合蛊氏裟仟工:■业" 爲菊載町却 jrCTiXiA^ . :JT <T x<5 JT-5 5JT -6<0 jt-5<0 ; 得 i-5<0 几此壬:*T x'*Sx-6<0^( J -SX) 帘 jx<5XfX ■工” —x u・■•直罐刖轉軽折式孙=-今*上+1. &g^ .l£的H 析式為円小_. W1:,FRJfAEM-JH3 15-J7I3 L3-JS9 打=嗣⑶ /=― f —、'一> ―/-或一2思弗如下: 二左 Rt 厶胡G 屮.AG=\pS■.'CFXXD. AG_EB^ .; Z£FU= ^d=90E -又为腔花角;.HEFaZGA 、EF 亡卞 各 4■''£G =7G * ,,£G =i^> 二m=邮* /.BE=EG~BG=9^3 —fi, C 91/1-6; Xfr^S-6=_5- 18T /I恳“ +町 43: .<D=-_ 一 坦需! il A Cft CH±AD 于乩 則 CW=4x £W=J* ?.W1Z£=—4^ H T CSH T J 过占」陀才G 丄 QF 于点 G.住 *D=勿.Jfl DG-3a. AG=^s. :.FG-AD-DG^5~^n~3a.由匸H 丄AD. 4G1DF ,Z£=ZF5]i^FG^iC£//t:悭=先二竿=蛊・ A, , =~7^> CW EH FG EH 用 7 口 ff+3“75彷+」) w 三…* —^-- 24.毎! CO 璘点乂 ;-K JJ, B 14, 6}代心r i(2)恢直经川尸的解斷式为卜=抵一且将点溥(-1.]) ft 入上面解护克有■ ^―fr=l- /T ^=Jt —1 化直61肿■窮詹軒盍为》=Az4t+】.F COi &#】)卜二far 七+ I ,x 1—=f=fa+lf+1■ If 得Jti = l ・ x ;=2jt —2.2t+2-GH 丄JC 剎.二点H 莎;坐标为:2t+2- 0). XF CO- ^-]>住去丙刖的辑 剧.二直践乂£豹解析式A >=—?r —|-广二IS體些姑最/.点G 的嘴燮标为 析式为h ^2A-2)-A n -0 L I - + JlL + ftl —0支典£?M 0>, Pi-2. t,lies. .-^ W只可能在盘股朗上或其廷隹域上Si:①着H恵些段聊上*测利CW-2RW・构造叮字唯”相锦可计算袒 IL扌.代入新狗线尸可瘦心)U-j)=J-②着划左按段EFU丟上・PWtlE ff.W=2PV fil点尸%I塩花屮点”恂造料字锤”金冬£劃冃平雅九可计篁得If Cf-4* U). flMMWI尸护■$・可闿寺(J-4) (r~S) =2r.筋闿/= 卑应.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A .9B .10C .11D .129. 已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 10. 如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11. 计算2×3+(﹣4)的结果为 .12. 计算x x+1﹣1x+1的结果为 . 13. 如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14. 一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15. 如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16. 已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数 每人所创的年利润/万元 A5 10 Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18解:√36=6.故选:A.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7解:如图:故选D .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .解:原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为 x−1x+1 . 解:原式=x−1x+1, 故答案为:x−1x+1. 13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:2515.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3.故答案为:3√3﹣3.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1)解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=1 218.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元). 20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长. (1)证明:延长AO 交BC 于H ,连接BO ,如图1所示:∵AB=AC ,OB=OC ,∴A 、O 在线段BC 的垂直平分线上,∴AO ⊥BC ,又∵AB=AC ,∴AO 平分∠BAC ;(2)解:延长CD 交⊙O 于E ,连接BE ,如图2所示:则CE 是⊙O 的直径,∴∠EBC=90°,BC ⊥BE ,∵∠E=∠BAC ,∴sinE=sin ∠BAC ,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.22.(10分)(2017•武汉)如图,直线y=2x +4与反比例函数y=k x的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值;(3)直接写出不等式6x−5>x 的解集.(1)∵点A (﹣3,a )在y=2x +4与y=k x的图象上, ∴2×(﹣3)+4=a ,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M 在直线AB 上,∴M (m+42,m ),N 在反比例函数y=6x上, ∴N (6m,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m=4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5,∴{x<−1x<5或{x>6x<5,∴此时x<﹣1,由{x2−5x−6<0x−5>0得,{−1<x<6x>5,∴{−1<x<6 x>5,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA, ∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35, ∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG , ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴AG CH =FG EH,∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .。

相关文档
最新文档