正余弦定理在实际生活中的应用
正弦定理和余弦定理的应用举例(解析版)
正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。
正弦定理、余弦定理在生活中的应用
正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--.由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距3km的C 、D 两点高,测得∠ACB=750, ∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB. 解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3.在∆BCD 中,∠CBD==600由正弦定理可得,BC=003sin 75sin 60=26)2+在∆ABC 中,由余弦定理,可得 2222AB AC BC AC BC COS ACB =+-••∠,22202626)(3)()2237522AB COS ++=+-⨯⨯⨯=5 ∴AB=5≈2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
正、余弦定理在实际生活中的应用
正、余弦定理在实际生活中的应用正弦定理和余弦定理是三角学中重要的定理,它们不仅在数学领域有着重要的意义,而且在日常生活中也有着广泛的应用。
本文将通过几个实际生活中的例子,来说明正弦定理和余弦定理的应用。
我们来看一个生活中常见的例子,即测量高楼的高度。
假设有一栋高楼,我们无法通过直接测量得到其高度,但是我们可以通过测量某一点到高楼顶部的距离和测量这一点与高楼底部的夹角,利用正弦定理和余弦定理来计算高楼的高度。
设高楼的高度为h,某一点到高楼顶部的距离为d,某一点与高楼底部的夹角为θ,则根据正弦定理可得:\[ \frac{h}{\sin{\theta}} = \frac{d}{\sin{(90^\circ - \theta)}} \]根据余弦定理可得:\[ h^2 = d^2 + L^2 - 2dL\cos{\theta} \]通过这两个公式,我们可以根据已知的距离和夹角,计算出高楼的高度。
这就是正弦定理和余弦定理在测量高楼高度时的应用。
正弦定理和余弦定理也可以在航海领域中得到应用。
航海员在航海时需要测量两个位置之间的距离和方向角,而这正是正弦定理和余弦定理所擅长的。
假设航海员需要确定A点和B点之间的距离d和方向角θ,可以利用正弦定理和余弦定理来进行计算。
首先利用余弦定理计算A点和B点的距离:\[ d^2 = a^2 + b^2 - 2ab\cos{\theta} \]然后利用正弦定理计算出方向角θ:\[ \frac{\sin{\theta}}{a} = \frac{\sin{B}}{d} \]通过这些计算,航海员可以准确地确定A点和B点之间的距离和方向角,从而确保航行的安全和准确性。
在建筑领域中,正弦定理和余弦定理也有着重要的应用。
在设计桥梁和建筑物结构时,需要计算各种角度和距离,而这些计算中常常需要用到正弦定理和余弦定理。
在地质勘探和地震预测中,也需要利用正弦定理和余弦定理来计算地层的深度和角度,从而进行地质勘探和地震预测工作。
正余弦定理在生活中的运用
正余弦定理在生活中的运用正余弦定理在实际生活中的应用有:航海、地理、物理、建筑工程。
1、航海在航海中,正余弦定理被广泛用于计算方向角。
当航行在广阔的海域或天空时,确定目标的方向是至关重要的。
通过观测两个已知位置相对于自身的角度,利用正弦或余弦定理,航行者可以精确地计算出到达目标的航向角,确保安全、准确地到达目的地。
2、地理在地理中,正余弦定理被用于计算地球上两点之间的精确距离。
由于地球是一个球体,因此需要使用球面三角学来进行计算。
通过观测两个已知位置相对于第三个位置的角度,利用正弦定理或余弦定理,测量人员可以精确地计算出两点之间的实际距离,为地图绘制、导航等提供准确的数据支持。
3、物理在物理学中,正弦定理和余弦定理被广泛应用于波动和振动的研究。
例如,在声学和光学中,这些定理被用来描述波的传播和干涉现象。
通过测量波的振幅、频率和传播方向,可以使用正弦定理或余弦定理来计算波在不同介质中的传播速度、波长和相位差。
4、建筑工程在建筑工程中,正弦定理和余弦定理可用于解决与角度和距离相关的问题。
例如,在设计桥梁、隧道或高楼大厦时,工程师需要计算各种角度和距离以确保结构的稳定性和安全性。
通过使用正弦定理或余弦定理,工程师可以确定结构物的高度、长度、宽度和角度等参数。
正余弦定理介绍和区别一、正余弦定理介绍1、正弦定理在一个三角形中,各边和它所对角的正弦的比值相等。
即,a/sinA=b/sinB=c/sinC,其中a、b、c为三角形的三边,A、B、C为三角形的三个内角。
2、余弦定理在任意三角形中,一边的平方等于其他两边的平方和减去这两边与其夹角的余弦的积的两倍。
即,c²=a²+b²-2abcosC,其中a、b、c为三角形的三边,C为夹角。
正、余弦定理在实际中的应用(41张)
【解析】 方法一:∵∠ADC=∠ADB+∠CDB=60° , 又∵∠ACD=60° ,∴∠DAC=60° , 3 ∴AD=CD=AC= 2 a. 在△BCD 中,∠DBC=180° -30° -105° =45° , DB CD ∵ = , sin∠BCD sin∠DBC 6+ 2 sin∠BCD 3+ 3 4 3 ∴BD=CD· = a· = 4 a. sin∠DBC 2 2 2
4.如图,为了求隧道口 AB 的长,给定下列四组数据,测 量时最合理的一组测量数据是( )
A.a、α、b B.α、β、a C.a、b、γ D.α、β、b
解析:只要测出 a、b、γ,即可由余弦定理求解. 答案:C
5.A,B 两点间有一小山,选定能直接到达点 A,B 的点 C, 测得 AC=60 m,BC=160 m,∠ACB=60° ,则 A,B 两点间的 距离为________m.
|自我尝试| 1.判断正误.(正确的打“√”,错误的打“×”) (1)已知三角形的三个角,能够求其三条边.( × ) (2)两个不可到达的点之间的距离无法求得.( × ) (3)方位角和方向角是一样的.( × )
2.若 P 在 Q 的北偏东 44° ,则 Q 在 P 的( A.东偏北 46° B.东偏北 44° C.南偏西 44° D.西偏南 44°
)
解析:如图,因为 P 在 Q 的北偏东 44° ,则 Q 在 P 的南偏 西 44° . 答案:C
3.学校体育馆的人字形屋架为等腰三角形,如图,
测得 AC 的长度为 4 m,A=30° ,则其跨度 AB 的长为( A.12 m B.8 m C.3 3 m D.4 3 m
)
AB AC 解析:由正弦定理得sinC=sinB, 由题意得 C=120° ,B=30° , AC· sinC 4×sin120° ∴AB= sinB = sin30° =4 3(m). 答案:D
高一数学-正、余弦定理在实际生活中的应用
B
E
D
A
C
探究二
E B
D
C
(2-2)
解:由余弦定理得
AB2 AC2 BC2 2AC BC cos ACB
A 482.802 631.502 2 482.80 631.50 cos 56.3 293557.0525 AB 541.81 DE AB AD BE 421(米)
在BCD中,BCD=120,CBD=20
由正弦定理:BC DC sin120 2.53.
C
sin 20
在ABC中,由余弦定理:
AB2 BC2 AC 2 2AC BC cos 40
即400 9x2 6.4x2 2 3x 2.53x cos 40
x 10.3
SABC
1 2
AC BC sin C
角为 22.81 。问:他能否算出金茂大厦的高度呢?
若能算出,请计算其高度。(精确到1米)
A
h
D
C
B
探究一
A
h
D
C
(2-2)
解:在ABC中, ABC=15.66,ACD=22.81
BAC=22.81 15.66 7.15
由正弦定理: AC BC
B
sin ABC sin BAC
AC 500 sin15.66 1084.3 sin 7.15
260(m2 )
答:绿地面积约为260m2。
练习一
练习二
练习三
练习四
练习一
大楼的顶上有一座电视塔高20米,在地面某处测得塔
顶的仰角为 45.塔底的仰角为 30.求此大楼的高度(结
果保留两位小数,下列各题相同)
练习二
某地某时台风中心在甲地的东偏南 21 方向1171 千米处.经过24小时后,测得台风中心在甲地东偏
正弦余弦定理的应用举例
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为
6 2 0 ' ,AC长为1.40m,计算BC的长(精确到0.01m).
于是可以得到 (2 0 t)2 3 0 0 2 2 2 0 t 3 0 0 54 (1 0 t 6 0 )2 5
解得 12t24
答:12小时后该城市受到台风侵袭,24小时后风过天晴。
O
Q
O
北
东
45
45
P
rP
练习1、一艘船以32.2n mile / hr的速度向正
北航行。在 A 处看灯塔S在船的北偏东20o的
α β
D
δ
γ
a
C
计算出 A C 和 B C 后,再在ABC中,应用余弦定理计
算出 A B 两点间的距离
A B A C 2 B C 2 2 A C B C c o s
在测量上,我们根据测量需要适当确定的线段叫做基线,
如例1中的A C ,例2中的C D .在测量过程中,要根据实际
需要选取合适的基线长度,使测量具有较高的精确度.一 般来说,基线越长,精确度越高.
的测量距离的方法.
A
B
图1.2-3
数学理论
仰角、俯角、视角 如图,当我们进行测量时,在视线与水平 线所成的角中, 视线在水平线上方的角叫仰角,在水平线 下方的角叫做俯角. 由物体两端射出的两条光线在眼球内交叉 而成的角叫做视角.
二、测量高度
1、一个竖直平面内的高度
例3 :AB是底部不可到达的一个建筑物,A为建筑物 的最高点.设计一种测量建筑物高度AB的办法
正余弦定理在日常生活中的应用
每个学生都有自己的心得体会,每个学生都会得到自己、同组成员、组长及老师的评价。
六、资源准备
(一)根据主题,教师提供的资源
1、学校图书馆、电脑室、实验室
2、相关测量仪器
3、国土局、规划局、街道办的联系人及联系电话
4、评价量规
在活动中还有待加强对学生团队的指引,以及对一些较被动学生的鼓励与帮助。评价方面要提高评价的有效性和全面性。
四、研究的目标与内容(课题研究所要解决的主要问题是什么,通过哪些内容的研究来达成这一目标)
要解决的主要问题有:
1.增城市有哪些标志性的搞建筑,其名字、所在位置及其建成时间
2.增城市有哪几条河,几座桥,这些桥的名字、所在位置及其建成时间
3.去哪里借相关的测量仪器,如何使用
通过以下内容的研究来达成这一目标:
二、研究性学习的教学目的和方法(可按新课程标准的三维目标(或布鲁姆目标分类法)进行研究性学习的教学目和方法的阐述)
知识与技能
1.了解和掌握正余弦定理
2.了解并能熟悉使用相关测量仪器
3.掌握测量宽度与高度的步骤与方法
过程与方法
1.采用多种途径收集资料(上网下载,去市图书馆查阅,调查访问等)
2.能对各种资源进行筛选、整理、分析
(二)学生自行准备的资源
1、调查试卷
2、照相机
3、其他资料等
七、研究性学习的阶段设计
研究性学习的阶段
学生活动
教师活动
起止时间
第一阶段:动员和培训(初步认识研究性学习、理解研究性学习的研究方法)
1、接触、讨论问题
2、了解本次活动的学习目的
3、学习了解本次综合实践活动的步骤、方法、要求
正、余弦定理在实际生活中的应用
正、余弦定理在实际生活中的应用正、余弦定理是解决三角形中各种角和边的关系的数学定理,在实际生活中有着广泛的应用。
无论是建筑设计、地理测量、航海航空还是工程建设中,都需要利用正、余弦定理来解决问题。
首先,正、余弦定理在建筑设计中有着重要的应用。
在设计建筑物的过程中,设计师需要考虑到各个角度和边的关系,确保建筑物的结构稳固。
正、余弦定理可以帮助设计师计算出各个角的大小,以及边的长度,从而确保建筑物的各个部分都符合设计要求。
其次,正、余弦定理在地理测量中也有着重要的应用。
地理测量需要测量地表上各种地理现象的位置和距离,这就需要考虑到三角形的各个角和边的关系。
利用正、余弦定理,地理测量员可以计算出地表上各种地理现象之间的距离和方向,从而为地理学研究提供数据支持。
此外,正、余弦定理在航海航空中也有着重要的应用。
航海员和飞行员需要根据地图上的各种地理现象和飞行路径来确定航行方向和
距离。
利用正、余弦定理,航海员和飞行员可以计算出航行方向和距离,确保航行的安全和准确。
最后,正、余弦定理在工程建设中也有着重要的应用。
工程建设需要考虑到各种地形和地貌的情况,从而确定工程设计方案和施工路径。
利用正、余弦定理,工程师可以计算出各种地形和地貌之间的距离和角度,从而确保工程建设的顺利进行。
综上所述,正、余弦定理在实际生活中有着广泛的应用。
无论是建筑设计、地理测量、航海航空还是工程建设中,都需要利用正、余弦定理来解决各种问题。
正、余弦定理的应用不仅帮助我们解决各种实际问题,还为我们的生活和工作提供了便利和支持。
因此,正、余弦定理在实际生活中的应用是非常重要的。
正余弦定理-实际问题应用举例
重点难 点
1.现实生活中,人们是怎样测量底部不可到达的建筑物的 高度呢?(例如:测山高,楼高,塔高)
2.在实际的航海生活中 ,人们也会遇到如下的问题:在浩 瀚无垠的海面上如何确保轮船不迷失方向,保持一定的 航速和航向呢? 今天我们就来共同探讨这些方面的问题.
一、基本概念
解斜三角形中的有关名词、术语:
1.若水平面上点 B 在点 A 南偏东 30° 方向上,则点 A 处测得点 B 的方位角是( ) A.60° B.120° C.150° D.210°
二、应用举例
探究(1):一个不可到达点的距离测量
(一)测量----距离
例.在三角形ABC中,AC=55m,∠BAC=51o, ∠ACB=75o 求:A、B两点间的距离(只要求化简,不计算)
设ab是一个底部不可到达的竖直建筑物a为建筑物的最高点在水平面上取一点c可以测得点a的仰角若计算建筑物ab的高度还需解决什么问题
第一章 解三角形
1.2
学习目 标
应用举例
1.熟记正弦定理、余弦定理、余弦定理的推论、三角形面积公式; 2.会用正弦定理、余弦定理及有关结论求解距离、角度、高度等问 题. 重点:解三角形在实际中的应用; 难点:把实际问题中的条件和所求转化为三角形中的已知和未知的 边角,建立数学模型求解.
A
一、例题
∵在Rt△ACD中,
B
C
CD AC sin CAD BC cos sin sin( ) 27.3cos 54 40' sin 50 1' sin(54 40' 50 1' ) 150(m)
答:山的高度约为150米。 D
A
(三)测量----角度
正、余弦定理在实际中的应用应用题
正、余弦定理在实际中的应用应用题正弦定理和余弦定理是三角形中的重要定理,它们在实际问题中有着广泛的应用。
下面将通过几个例子来说明它们在实际问题中的应用。
例1:一座山的高度是100米,从山顶到山脚的水平距离是500米。
现在我们要在山脚处建造一座高塔,使得从山顶到塔顶的视角恰好等于直角的一半(即45度)。
求塔的高度。
h/sin45° = 500/sin90°因为 sin45° = √2/2, sin90° = 1,例2:一座大桥的桥面宽度为 10米,桥下水流的深度为 2米。
为了使桥下水的流速达到每秒 5米,现要在桥边修建一条人行道,要求人行道的宽度为 3米。
问人行道的长度应该是多少?解:设人行道的长度为 L米。
由余弦定理得:L2 = (10 - 3)2 + (2 + 5)2 - 2 ×(10 - 3)×(2 + 5)× cos30°= 9 + 67 - 2 ×(10 - 3)×(2 + 5)× cos30°= 76 - 2 ×(10 - 3)×(2 + 5)×(√3/2)= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (17 ×√3)×(√3/2)× 2答:人行道的长度为 25米。
本节课是介绍余弦定理和正弦定理的内容。
这两个定理是三角学的基本定理,对于理解三角形的属性和解决三角形的问题有着重要的意义。
余弦定理和正弦定理的发现和证明,也体现了数学中普遍存在的一种方法——归纳法。
通过本节课的学习,学生将更好地理解三角形的属性和解三角形的方法,同时也能提高他们的数学思维能力和推理能力。
正弦、余弦定理与应用
正弦、余弦定理与应用正弦、余弦定理是解决三角形中各边和角关系的重要工具。
在几何学和三角学中,它们被广泛应用于测量和计算问题。
本文将介绍正弦、余弦定理的概念及其应用,并通过实例展示其有效性。
一、正弦定理正弦定理是解决三角形中边和角之间关系的定理。
对于任意三角形ABC,其三边分别为a、b、c,对应的角度为A、B、C,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC正弦定理的应用可以帮助我们求解未知边或未知角。
例如,给定一个三角形的两边长度和它们之间的夹角,我们可以通过正弦定理计算出第三边的长度。
例如,假设三角形ABC,已知边AB的长度为5,边AC的长度为7,夹角BAC的大小为30°。
应用正弦定理,我们可以得到:5/sin30° = 7/sinBAC通过代入数值并解方程,我们可以求得角BAC的大小。
正弦定理使我们能够通过已知边长和夹角大小来计算其他边长和角度。
二、余弦定理余弦定理是另一个用于三角形中边和角之间关系的定理。
对于任意三角形ABC,其三边分别为a、b、c,对应的角度为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2abcosC通过余弦定理,我们可以计算三角形中的边长或角度。
例如,已知三角形ABC的两边长度分别为3和4,夹角C的大小为60°,我们可以通过余弦定理计算第三边的长度。
应用余弦定理,我们可以得到:c² = 3² + 4² - 2*3*4*cos60°通过计算,我们可以求得第三边的长度c。
余弦定理在解决三角形中边和角关系时非常有用,特别是当仅已知两边和它们之间的夹角时。
三、应用案例正弦、余弦定理广泛应用于测量和计算相关问题。
以下是一些实际应用案例:1. 三角测量:正弦、余弦定理可以用于三角形测量中。
例如,在地理测量中,通过测量三角形的边长和角度可以确定地球上两点之间的距离。
正弦定理、余弦定理在生活中的应用
正弦定理、余弦定理在生活中的应用正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考.一、在不可到达物体高度测量中的应用例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距km 的C 、D 两点高,测得∠ACB=750,∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB.解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴在∆BCD 中,∠CBD=1800-450-750=600由正弦定理可得,在∆ABC 中,由余弦定理,可得2222AB AC BC AC BC COS ACB =+-∙∙∠,2220(27522AB COS =+-⨯⨯=5∴ 2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
正弦定理、余弦定理在生活中应用
正弦定理、余弦定理在生活中的应用正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程丈量中的重要应用,使高考考察的热门和要点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参照 .一、在不行抵达物体高度丈量中的应用例 1 如图,在河的对岸有一电线铁塔B 在同一水平面内的两个测量点 CAB ,某人在丈量河对岸的塔高与 D ,现测得AB时,选与塔底BCD,BDC, CD s ,并在点 C 测得塔顶A 的仰角为,求塔高AB .剖析:此题是一个高度丈量问题,在BCD中,先求出CBD ,用正弦定理求出BC,再在Rt△ ABC 中求出塔高 AB.分析:在△ BCD 中,CBD =π.由正弦定理得BC CD=sin.sin BDC CBD因此 BC =CD sinBDC =·s sin.sin CBD sin()在 Rt △ABC中,AB=BC tan ACB·. = s tan sinsin()评论:对不行抵达的物体的高度丈量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出此中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高 .二、在丈量不行抵达的两点间距离中的应用例 2 某工程队在修建公路时,碰到一个小山包,需要打一条地道,设山双侧地道口分别为 A 、B ,为了测得地道的长度,在小山的一侧选用相距3 km的C、D两点高,测得ACB=75 0,BCD=45 0, ADC=30 0,ADC=45 0( A 、B、C、D),试求地道的长度 .剖析:依据题意作出平面表示图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在ACD 和BCD 中,利用正弦定理可求得 AC 与 BC ,而后再在ABC 中,由余弦定理求出AB.分析:在 ACD 中,∵ADC=30 0,∠ACD=120 0,∴∠ CAD=30 0,∴ AC=CD= 3 .在BCD 中,∠ CBD=180 0-450-750=60 0由正弦定理可得,3 sin 75026) BC==sin 602在 ABC 中,由余弦定理,可得AB 2 AC 2 BC 2 2AC BC COSACB ,AB2(3)2(26 )2 2 2 322 6) COS 750 =52∴ AB=5 ≈ 2.236km, 即地道长为 2.236km.评论 :此题波及到解多个三角形问题,注意优化解题过程.如为求 AB 的长,能够在ABD 中,应用余弦定理求解,但一定先求出 AD 与 BD 长,但求 AD 不如求 AC 简单,此外。
解三角形在现实生活中的应用——正,余弦定理
解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦定理在实际生活中的应用
正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题.
求解此类问题的大概步骤为:
(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形;
(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.
1.测量中正、余弦定理的应用
例1 某观测站C 在目标A 南偏西25︒方向,从A 出发有一条南偏东35︒走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ∆,求角B .再解ABC ∆,求出AC ,再求出AB ,从而求出AD (即为所求).
解:由图知,60CAD ∠=︒.
22222231202123
cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯,
sin B =. 在ABC ∆中,sin 24sin BC B AC A ⋅==.
由余弦定理,得222
2cos BC AC AB AC AB A =+-⋅⋅. 即2223124224cos60AB AB =+-⋅⋅⋅︒.
整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米).
答:此人所在D 处距A 还有15千米.
评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理.
2.航海中正、余弦定理的应用
例2 在海岸A 处,发现北偏东45︒方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75︒方向,距A 为2海里的C 处的缉私船奉命以/小时
A C D 31
21
20 35︒
25︒ 东 北
的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间? 分析:注意到最快追上走私船,且两船所用时间
相等,可画出示意图,需求CD 的方位角及由C 到D 所需的航行时间.
解:设缉私船追上走私船所需时间为t 小时,
则有CD =,10BD t =.
在ABC △
中,∵1AB =,2AC =,
4575120BAC ∠=︒+︒=︒,
根据余弦定理可得
BC ==
根据正弦定理可得2sin120sin 2AC ABC BC ︒∠=
==. ∴45ABC ∠=︒,易知CB 方向与正北方向垂直,从而9030120CBD ∠=︒+︒=︒. 在BCD △
中,根据正弦定理可得:
sin 1
sin 2BD CBD BCD CD ∠∠===,
∴30BCD =︒△,30BDC ∠=︒
,∴BD BC ==
则有10t =
0.24510
t =
=小时14.7=分钟. 所以缉私船沿北偏东060方向,需14.7分钟才能追上走私船.
评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.
3.航测中正、余弦定理的应用
例3 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m ,速度为180km/h ,飞行员先看到山顶的俯角为'1830︒,经过120秒后又看到山顶的俯角为81︒,求山顶的海拔高度(精确到1m ).
分析:首先根据题意画出图形,如图,这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.
解:设飞行员的两次观测点依次为A 和
B ,山顶为M ,山顶到直线的距离为MD .
如图,在ABM △中,由已知,得
1830'A ∠=︒,99ABM ∠=︒,6230'AMB ∠=︒.
又120
18066060
AB =⨯
=⨯(km ), A B D
M 45︒
75︒ 30︒ A
C
D
B
根据正弦定理,可得6sin1830'
sin 6230'
BM ︒=
︒,
进而求得6sin1830'sin81sin 6230'
MD ︒︒
=︒,∴2120MD ≈(m ),
可得山顶的海拔高度为20250212018130-=(m ).
评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.
4.炮兵观测中正、余弦定理的应用
例4 我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知6000CD =米,45ACD ∠=︒,75ADC ∠=︒,目标出现于地面点B 处时,测得
30BCD ∠=︒,15BDC ∠=︒(如图),求炮兵阵地到目标的距离(结果保留根号). 分析:根据题意画出图形,如图,题中的四点A 、B 、C 、D 可构成四个三角形.要求AB 的长,由于751590ADB ∠=︒+︒=︒,只需知道AD 和BD 的长,这样可选择在ACD ∆和BCD ∆中应用定理求解.
解:在ACD △中,18060CAD ACD ADC ∠=︒-∠-∠=︒, 6000CD =,45ACD ∠=︒,
根据正弦定理有sin 45sin 60CD AD ︒=
=︒, 同理,在BCD △中,
180135CBD BCD BDC ∠=︒-∠-∠=︒,
6000CD =,30BCD ∠=︒,
根据正弦定理有sin 30sin1352
CD BD CD ︒=
=︒. 又在ABD ∆中,90ADB ADC BDC ∠=∠+∠=︒,
根据勾股定理有:AB ==
==
所以炮兵阵地到目标的距离为米.
评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解.
5.下料中正余弦定理的应用
例5 已知扇形铁板的半径为R ,圆心角为60︒,要从中截取一个面积最大的矩形,应怎样划线?
分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的内接矩形,如图所示.
30︒ 45︒ 75︒
A
C D 15︒
解:在图(1)中,在AB 上取一点P ,过P 作PN OA ⊥于N ,过P 作PQ PN ⊥交OB 于Q ,再过Q 作QM OA ⊥于M .
设AOP x ∠=,sin PN R x =.在POQ △中,由正弦定理,得
sin(18060)sin(60)
OP PQ
x =︒-︒︒-.
∴sin(60)PQ R x =︒-.
于是[]22
sin sin(60)cos(260)cos 60S PN PQ R x x R x =⋅=
⋅︒-=-︒-︒
221(1)2≤-=. 当cos(260)1x -︒=即30x =︒时,S
2
. 在图(2)中,取AB 中点C ,连结OC ,在AB 上取一点P ,过P 作//PQ OC
交OB 于Q ,过P 作PN PQ ⊥交AB 于N ,过Q 作QM PQ ⊥交CA 于M ,连结MN 得矩形MNPQ ,设POC x ∠=,则sin PD R x =.
在POQ △中,由正弦定理得:sin(18030)sin(30)
R R
x =︒-︒︒-,
∴2sin(30)PQ R x =︒-.
∴[]2224sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒
222(1cos30)(2R R ≤-︒=(当15x =︒时取“=”).
∴当15x =︒时,S
取得最大值2(2R .
∵
2
2(26
R R >, ∴作30AOP ∠=︒,按图(1)划线所截得的矩形面积最大.
评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.
综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.
A
B
Q P
O
x
M
N (1)
A
B
Q
P
O
x
M
N
E
D
(2)。