各种煤气化工艺的优缺点
煤气化技术对比
B. 水煤浆气化对煤质要求 a)GE 水煤浆气化对煤质适应性较广。除褐煤、泥煤及热值低于 22940kJ/kg,灰熔点高于 1350℃的煤不太适用外,其他粘结性煤,含灰量较 高的煤,石油焦,烟煤均可作原料。 b)煤中灰含量对消耗指标的影响,煤中的灰含量增加会增加氧气的消 耗,同时也增加每 m3(标)(CO+H2)气体的煤消耗量,一般煤中灰含量从 20%(wt)降到 6%(wt),可节省 5%无灰干基煤消耗,节省氧气消耗 10% 左右。 c)煤的灰熔点,由于气化炉内操作温度一般在煤的灰熔点 T3 以上通常 要高 50~100℃,鉴于炉内耐火材料承受耐高温的限制,要求煤的灰熔点 T3 不要超过 1350℃,如果煤的性质较好,而灰熔点较高一些,可采取加助熔剂 如石灰石,石灰粉等把灰熔点降下来,以保护炉内耐火材料使用寿命。 d)煤的可磨性,煤的可磨性是指煤可磨碎的难易程度,通常用哈氏指 数(Hardgrove Index)来表示。 一般希望哈氏指数大,这样的煤磨煤所消耗的功就小,可节省能量。 e)煤的成浆性,水煤浆气化炉是将煤制成煤浆送入气化炉,故对煤的 成浆性很重要,例如褐煤成浆性很差就不宜选作原料,在选用原料煤时除正 常工业分析,一定要进行成浆试验,制成煤浆浓度最好在 60%(wt)以上。 浓度越高,耗氧量越少。 C. GE 水煤浆气化的三种不同流程 根据气化后工序加工不同产品的要求,加压水煤浆气化有三种工艺流 程,激冷流程,废锅流程和废锅激冷联合流程。对于合成氨生产多采用激冷 流程,这样气化炉出来的粗煤气,直接用水激冷,被激冷后的粗煤气含有较 多水蒸气,可直接送入变换系统而不需再补加蒸汽,因无废锅投资较少。如 对产品气用作燃气透平循环联合发电工程则多采用废锅流程,副产高压蒸汽 用于蒸汽透平发电机组。对产品气用作羟基合成气并生产甲醇仅需要对粗煤 气进行部分变换,通常采用废锅和激冷联合流程。亦称半废锅流程即从气化 炉出来粗煤气经辐射废锅冷却到 700℃左右,然后用水激冷到所需要的温度, 使粗煤气显热产生的蒸汽能满足后工序部分变换的要求。
七种煤气化工艺介绍
七种煤气化工艺介绍煤气化是一种将固体煤转化为气体燃料的工艺,通常通过加热煤,使其在缺氧或氧气含量有限的条件下发生化学反应,生成焦炭、煤油和煤气等产物。
以下是七种常见的煤气化工艺的介绍。
1.固定床煤气化工艺:该工艺中,煤通过加热填充在固定的反应器中,在缺氧条件下进行气化。
在高温下,煤发生热解反应,生成固体残渣和一氧化碳、氢气等气体。
这些气体通常用于制造合成气或其他化学品。
2.流化床煤气化工艺:流化床煤气化工艺中,煤通过气化剂和促进剂的喷射,在气化炉内形成流体化床。
在床内,煤被高速的气流悬浮并在其表面上发生化学反应。
这种工艺适用于不同种类的煤,并能高效地产生合成气。
3.乌煤煤气化工艺:乌煤煤气化工艺是在低温和低压下对乌煤进行气化的一种方法。
乌煤是一种硬煤的变种,其含煤量高且易于破碎。
这种工艺能够产生较高浓度的一氧化碳和氢气,适用于燃料气和合成气的生产。
4. Lurgi煤气化工艺:Lurgi煤气化工艺采用干煤粉在喷射炉内与氧气和蒸汽进行气化。
这种工艺具有高效和灵活的特点,适用于各种煤种和煤粉尺寸。
其产气效率高,并且可以在高温下对产生的煤气进行分离和净化。
5. Koppers-Totzek煤气化工艺:Koppers-Totzek煤气化工艺是一种由德国公司开发的工艺。
该工艺利用煤在高温下与氧气和水蒸气进行反应,生成一氧化碳和氢气等气体。
这种工艺有助于减少硫化物和氨等有害物质的生成,并通过循环冷却来提高能源利用率。
6. Shell煤气化工艺:Shell煤气化工艺是一种高效的二代气化工艺,采用了先进的氧气冷喷射技术。
它将煤分解为焦炭和煤气,并将煤气用于合成气和其他化学品的生产。
该工艺具有高效能和较低的二氧化碳排放量。
7. Entrained Flow煤气化工艺:Entrained Flow煤气化工艺中,煤和氧气以高速混合,并通过特殊设计的喷射式燃烧器进行燃烧和气化。
这种工艺能够在高温下快速气化煤并生成高浓度的合成气。
具有自主知识产权的三种煤气化技术对比_王洪营
·29·
表 2 不同气化工艺的优缺点对比
项目 进料方式
优点
缺点
水煤浆进料
进料方便,对泵要求低气化炉压力可以提高至 6. 5 MPa 或 8. 7MPa,降低后工段压缩功; 合成气中水汽 比较高,后序变换工段可以不加蒸汽
由于物料中含水,需要消耗气化热使水变成高温蒸 汽,增加各种消耗
干粉进料 喷嘴个数
气化效率高,反应温度高; 残炭量低; 合成气有效气 成分高
1 技术及业绩简介
1. 1 多喷嘴对置式水煤浆气化技术 多喷嘴对置式水煤浆气化技术是由华东理工大
学和兖矿集团共同开发的新型水煤浆气化技术。其 特点为: 采用水煤浆进料方式,四个对置式喷嘴进 料,气化炉采用耐火砖隔热形式,出气化室合成气体
与渣采用冷激流程与渣水处理工艺[1]。 自山东华鲁恒升多喷嘴气化炉于 2005 年投运
三种气化技术各有其优点,用户及使用业绩也 气化技术。在企业选择气化技术时,一定要根据自
在不断增加。单从气化炉反应反面考虑,粉煤气化 身情况,从产品及规模、原料煤种,自身资源,环境保
具有其优势,但如果考虑原料介质输送所消耗的功, 护,投资等综合多方面情况考虑,选择出适合自己的
第 9 期( 上)
王洪营等: 具有自主知识产权的三种煤气化技术对比
WANG Hong - ying ,YANG Yue - jing ,YANG Guo - dong ,GU Zhao - hui
( Henan XLX Fertilizer Co. Ltd ,Xinxiang 453731 ,China)
Abstract: The coal gasification technology that possess independent intellectual property mainly includes
几种常用煤气化技术的优缺点
几种煤气化技术介绍煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。
一 Texaco水煤浆加压气化技术德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。
Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石(助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。
其优点如下:(1)适用于加压下(中、高压)气化,成功的工业化气化压力一般在4.0MPa 和6.5Mpa。
在较高气化压力下,可以降低合成气压缩能耗。
(2)气化炉进料稳定,由于气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。
便于气化炉的负荷调节,使装置具有较大的操作弹性。
(3)工艺技术成熟可靠,设备国产化率高。
同等生产规模,装置投资少。
该技术的缺点是:(1)由于气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。
对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。
而且,煤种的选择面也受到了限制,不能实现原料采购本地化。
(2)烧嘴的使用寿命短,停车更换烧嘴频繁(一般45~60天更换一次),为稳定后工序生产必须设置备用炉。
无形中就增加了建设投资。
煤气化工艺
煤气化工艺煤气化是一种可以将煤作为原料,利用高温化学反应把煤转化成液体燃料或气体燃料的一种工艺。
煤气化技术的出现,使得汽车、船舶和工业火力发电厂的燃料使用更加经济和节能。
煤气化工艺技术在煤资源利用、清洁能源利用等领域发挥着重要作用,并开辟了一条更加绿色、更加可持续的可再生能源生产道路。
一、煤气化反应原理煤气化反应是指在一定温度和气压下,将煤转变为气体或液体燃料等生物燃料的反应过程。
它是一种快速化学反应,是在大量的水分和气体中,碳向氧和氢的过程。
煤气化反应的一般化学方程式如下: C + H2O=> CO2 + H2在此反应过程中,释放的气体是由以碳氧化物和氢气构成的复合气体,其中,氢气是最为重要的成分,可以被利用为能源。
二、煤气化工艺的特点1、煤气化的燃烧温度相对较低。
由于反应温度较低,煤气化产生的气体成分比较清洁,减少了大量污染物的排放,使之成为具有较高环保意义的可再生能源技术。
2、煤气化为非稳定反应。
煤气化过程是一种复杂的反应,反应温度和气压的变化可以影响产物的化学组成,从而影响燃料的性能和热值。
3、煤气化反应时间较短。
煤气化反应的速度较快,只需要几十秒到几十分钟,就可以完成整个反应过程,这也是煤气化技术在实用方面的优点。
三、煤气化工艺的应用1、汽车燃料:煤气化可以生产出含有大量烷烃和烯烃等有机物质的气体混合物,可以用作汽车的燃料。
煤气化技术比传统的石油燃料技术具有更高的热值,更少的污染物,可以大大减少污染物的排放,从而提高空气的质量。
2、工业火力发电:煤气可以用作一种清洁燃料,可以用于工业火力发电。
煤气化燃料可以大大减少污染物的排放,从而有效地保护环境。
3、船舶燃料:煤气可以作为船舶燃料使用,比传统的柴油燃料更加经济和节能。
四、煤气化工艺的发展前景由于煤气化技术具有节能环保、经济实用等特点,未来煤气化工艺将进一步发展,在煤资源利用、清洁能源利用等领域发挥重要作用,开辟出一条更加可持续的可再生能源生产道路。
几种常用煤气化技术的优缺点
几种煤气化技术介绍煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。
一Texaco水煤浆加压气化技术德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。
Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。
其优点如下:<1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。
在较高气化压力下,可以降低合成气压缩能耗。
<2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。
便于气化炉的负荷调节,使装置具有较大的操作弹性。
<3)工艺技术成熟可靠,设备国产化率高。
同等生产规模,装置投资少。
该技术的缺点是:<1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。
对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。
而且,煤种的选择面也受到了限制,不能实现原料采购本地化。
<2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。
【技术】煤制天然气四种气化技术选型探讨
【技术】煤制天然气四种气化技术选型探讨以煤为原料生产化工产品的煤气化技术很多,按照气固相之间相接触的方式不同,可将煤气化工艺分为三类,分别有固定床气化、气流床气化和流化床气化工艺。
自20世纪50年代加压煤气化技术实现工业化以来,随着科技的发展,煤气化技术也日趋先进和成熟。
目前已成功开发了煤种适应性广、气化压力高、生产能力大、气化效率高、污染少的多种新一代煤气化工艺。
煤气化技术的选择,必须根据项目所在地的原料特性、技术风险、投资、能耗进行综合比较,通过企业自己的实力与产品定位,通盘考虑、审慎决策。
总之,没有最好的气化方案,只有最适合的气化方案。
选择成熟、合理的气化方案必将产生更大的经济、环保与节能减排效益。
本文选取具有代表性的、工艺成熟、应用广泛的气流床和固定床气化技术:Shell方案、提质+E-gas方案、碎煤加压气化方案以及碎煤熔渣加压气化(BGL)方案,重点从原料适应性、气化规模、技术可靠性、投资及能耗方面进行分析论证,选择合适的煤气化技术方案,以提高项目的技术可靠性、经济性,降低投资风险。
1原料煤适应性比较不同的煤气化工艺要求有不同煤种特性。
项目拟使用的煤种性质见下表。
不同煤种有不同的适应工艺。
从上表可以看出,原料煤全水和内水含量较高,煤种特性为灰分适中(空气干燥基灰含量为15.36%,质量分数)、灰熔点较低(流动温度1220℃)。
①Shell气化方案对煤质的适应性较广,本项目的灰含量为15.36%,对采用膜式水冷壁的气化炉来说较为有利。
②E-gas水煤浆气化要求原煤成浆性指标D≤10,根据煤炭成浆性计算得到其收到基原煤成浆性指标,属于较难成浆的煤种。
如采用水煤浆气化,可先对原料煤进行提质干燥,得到的半焦产品制得水煤浆的浓度为63%。
③碎煤加压气化供煤条件较苛刻,要求块煤以5~50mm的粒度进料,一般要求热稳定性≥70%,黏结指数≤4。
综上所述,从各气化工艺的要求的煤质来看,除了E-GAS水煤浆气化须采用褐煤提质满足成浆性要求,其他气化工艺均适应该煤种。
国内典型煤气化优缺点.
一、各种煤气化工艺的优缺点我国已经工业化的、已建立示范装置的和已经中试装置考验的、从国外引进技术的、属于国内具有自主知识产权的煤气化装置和技术,有常压固定层间歇式无烟煤(或焦炭)气化技术、常压固定层无烟煤(或焦炭)富氧连续气化技术、鲁奇固定层煤加压气化技术、灰熔聚流化床粉煤气化技术、恩德沸腾层(温克勒)粉煤气化技术、GE德士古(Texaco)水煤浆加压气化技术、多元料浆加压气化技术、多喷嘴(四烧嘴)水煤浆加压气化技术、壳牌(Shell)干煤粉加压气化技术、GSP干煤粉加压气化技术、两段式干煤粉加压气化技术、四喷嘴对置式干粉煤加压气化技术,几乎是国外有的煤气化技术我国都有,国外没有的煤气化技术我国也有。
煤气化工艺技术很多,使选择煤气化工艺技术无从着手。
首先我们不能只轻信专利商的宣传,现在世界上还没有万能气化炉,各种气化工艺技术都有其特点和优缺点,有其适应范围。
对专利商的宣传要去粗取精、去伪存真,只有通过生产实践长期稳产高产考验过的,经济上合理、环境上符合国家和当地环保规定和要求的,才是最可靠的。
下面分别介绍这些技术的优缺点。
1.常压固定层间歇式无烟煤(或焦炭)气化技术这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重。
从发展看,属于将逐步淘汰的工艺。
2.常压固定层无烟煤(或焦炭)富氧连续气化技术这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂、连续气化、原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低、适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。
3.鲁奇固定层煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。
各种煤气化工艺的优缺点
各种煤气化工艺的优缺点各种煤气化工艺的优缺点1、常压固定层间歇式无烟煤(或焦炭)气化技术这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。
从发展看,属于将逐步淘汰的工艺。
2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。
3、鲁奇固定层煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。
4、灰熔聚流化床粉煤气化技术中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。
床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。
缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%),环境污染及飞灰综合利用问题有待进一步解决。
此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。
5、恩德粉煤气化技术恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料为不粘结或弱粘结性、灰分小于25%-30%,灰熔点高(ST大于1250℃)、低温化学活性好的煤。
至今在国内已建和在建的装置共有9套,14台气化炉。
各种煤气化工艺的比较与选择
各种煤气化工艺的比较与选择煤化工中不同类型的煤气化技术是在技术发展的不同阶段,为适应不同的工艺要求而发展起来的。
离开煤种、煤气化配套的下游转化装置等具体问题,泛泛而谈不同煤气化技术的优劣,是没有意思的。
Simbeck等人曾对不同气化工艺的特点做了比较,见表1-17.表1-17 不同气化工艺的特点比较项目固定(移动床)流化床气流床灰渣形态干灰熔渣干灰灰团聚熔渣气化工艺Lurgi BGL Winkler,HTWICC,U-Gas K-T,TexacoCFB KRW Shell,E-Gas,GS P原料特点煤颗粒/mm 6~50 6~50 6~106~10 <0.1细灰循环有限制最好是干灰可以较好无限制粘结性煤加搅拌可以基本可以可以可以适宜煤阶任意高煤阶低煤阶任意任意操作特点出口温度/℃425~650 425~650 900~1050 900~1050 1250~1600氧气耗量低低中中高蒸汽耗量高低中中低碳转化率低低低低高焦油等有有无无无本书将从不同煤气化工艺的固有技术特征出发,从煤种适应性、合成气产物处理的难易程度、原料消耗、生产强度等几个方面对不同的气化技术作进一步的比较。
1.1 煤种适应性固定床气化炉煤炭网早期的固定床气化炉一般采用活性高、灰熔点高、黏结性低的无烟煤或焦炭,Lurgi加压固定床气化技术的成功,拓展了固定床对煤种的适应性,一些褐煤也可用于固定床加压气化,BGL技术的煤种适应性与干法排灰的Lurgi加压气化炉相比又进了一步。
1.2 流化床气化炉与固定床气化炉类似,早期一般的流化床气化炉为了提高碳转化率,多采用褐煤、长焰煤等活性比较好的煤种。
灰熔聚气化技术的发展拓展了流化床气化技术对煤种的适应性,特别是对一些高灰、高灰熔点的劣质煤油其独特的优势。
1.3 气流床气化炉气流床气化炉对煤的活性没有任何要求,从原理上讲几乎可以适应所有的煤种。
但是受制于诸多的工程问题,不同的气流床气化炉对煤种还是有所要求的。
几种煤气化工艺的优缺点
浅谈几种煤气化工艺的优缺点我国石油、天然气资源短缺,煤炭资源相对丰富。
发展煤化工产业,有利于推动石油替代战略的实施,满足经济社会发展的需要,煤化工产业的发展对于缓解我国石油、天然气等优质能源供求矛盾,促进钢铁、化工、轻工和农业的发展,发挥了重要的作用。
因此,加快煤化工产业发展是必要的。
1.各类气化技术现状和气化特征煤化工要发展,一个重要的工艺环节就是煤气化技术要发展。
我国自上世纪80年代就开始引进国外的煤气化技术,包括早期引进的Lurgi固定床气化、U-gas 流化床气化、Texaco水煤浆气流床气化,Shell气流床粉煤气化、以及近期拟引进的BGL碎煤熔渣气化、GSP气流床粉煤气化等等,世界上所有的气化技术在我国几乎都是有应用,正因为我国是一个以煤为主要燃料的国家,世界上也只有我国使用如此众多种类的煤气化技术。
随着煤气化联合循环发电(IGCC)、煤制油(CTL)、煤基甲醇制烯烃(MTP&MTO)等煤化工技术的发展,用煤生产合成气和燃气的加压气化工艺近年来有了较快的发展。
Lurgi固定床气化、Texaco水煤浆气化、Shell干粉加压气化、GSP干粉加压气化、BGL碎煤熔渣气化、以及我国自有知识产权的多喷嘴水煤浆气化、加压两段干煤粉气流床气化、多元料浆气化等等技术在我国的煤化工领域展开了激烈的竞争,对促进煤化工的发展做出了贡献。
Lurgi固定床气化工艺在我国有哈气化、义马、天脊、云南解肥、兰州煤气厂等6个厂;Texaco水煤浆气化工艺已在我国鲁南、上海焦化、渭化、淮化、浩良河、金陵石化、南化等9个厂投入生产,情况良好;Shell干粉加压气化技术在我国已经有双环、洞氮、枝江、安庆、柳化等5个厂投产,还有10余个项目正在安装,将于今后几年陆续投产;多喷嘴水煤浆气化已在山东华鲁恒升、兖矿国泰2个厂投运,还有7个厂家正在安装,最晚在2009年投产;GSP干煤粉气化技术在神华宁夏煤业集团和山西兰花煤化工有限责任公司的煤化工厂也将投入建设;加压两段干煤粉气流床气化技术已通过中试验收,华能集团“绿色煤电”项目2000t/d级和内蒙古世林化工有限公司1000t/d级的气化装置正在设计安装中。
浅谈煤气化工艺的优缺点
浅谈煤气化工艺的优缺点摘要:本文主要介绍了Texaco、Shell、GSP三个主要的煤气化工艺的原理及优缺点。
关键词:Texaco Shell GSP 原理优缺点一、引言我国煤炭资源相对丰富,而煤化工属“两高一资”产业,其发展必然受到资源、环境和产业政策等制约,因此煤化工发展必须采用新技术,开发新产品。
煤气化技术成熟,只需确定气化技术路线与气化炉配置。
本文主要介绍了Texaco、Shell、GSP三个主要的煤气化工艺。
二、反应原理Texaco气化工艺:采用两相并流型气化炉,氧气和煤浆通过特制的喷嘴混合喷入气化炉,在炉内水煤浆和氧气发生不完全反应产生水煤气,其反应释放的能量可维持气化炉在煤灰熔点温度以上,以满足液态排渣的需要。
Shell气化工艺:煤气化在高温加压条件下进行,煤粉、氧气及蒸汽并流进入气化炉,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理化学过程。
由于气化炉内温度很高,在有氧存在的条件下,以燃烧反应为主,在氧化反应完后进入到气化反应阶段,最终形成以CO和H2为主的煤气离开气化炉。
GSP气化工艺:GSP连续气化炉是在高温加压条件下进行,几根煤粉输送管均匀分布进入最外环隙,并在通道内盘旋,使粉煤旋转喷出。
给煤管末端与喷嘴顶端相切,在喷嘴外形成一个相当均匀的粉煤层,与气化介质混合后在气化室中进行气化,反应完后最终形成CO和H2为主的煤气进入激冷室。
三、主要工艺指标对比四、工艺技术优缺点4.1优点Texaco气化工艺:可用于气化的原料范围比较宽;工艺技术成熟,流程简单,过程控制安全可靠,运转效率高,操作性好,可靠程度高;碳转化率高,可达95%以上;合成气质量好,用途广;可供选择的气化压力范围宽(2.6-8.5Mpa),为满足多种下游工艺提供条件,即节省了中间压缩工序,也降低了能耗;单台炉投煤量选择范围大,根据气化压力等级及炉径的不同,单炉投煤量一般在400-2200t/d左右;气化过程污染少,环保性能好。
★间歇法、富氧法、纯氧法气化技术的特点及优缺点比较
固定床间歇、富氧、纯氧气化技术的特点及优缺点比较田守国江西昌昱实业有限公司注1:根据贵公司的要求,对照分析三种固定床气化工艺的经济性、可行性。
注2:因贵公司生产工艺需求无氮水煤气,下面只重点介绍固定床煤气炉生产水煤气的工艺比较。
注3:工艺比较的条件;∮2800煤气炉(截面积6.2㎡)、质量比较好的无烟块煤。
一、普通间歇法、富氧法、纯氧法煤气的组分?H2、CO、CO2的组分比例?有效气比例?单台炉产气量?1.固定床间歇气化生产水煤气:煤气成份:CO2=7—9%、O2=0.4-0.5%、CO=38-39%、H2=43—46%、N2=4—6%、DH4=1-2%。
有效气体含量80%左右。
固定床煤气炉间歇气化生产水煤气,是最不经济的气化工艺。
单位面积的气化强度仅为650—750m3/㎡.h。
而且,吹风过程前后都要有排除氮气的过程,氮气是由煤气带出去的,排氮过程伴有大量煤气浪费。
间歇气化生产水煤气,煤气中氮气含量控制越低,煤耗越高、发气量越小,如果氮气含量控制小于4%单位面积的气化强度仅为650m3/㎡.h。
而且出气温度高,显热损失大,灰渣残炭量≥20%,吹风带出物达到了10%左右,型煤气化能达到15—20%。
因此,间歇气化生产水煤气原料转化利用率仅为65%左右,吨醇原料煤消耗2吨左右。
而且吹风过程有大量烟气排放,不但降低了煤气炉的热效率,更不符合国家洁净煤气化的产业政策。
2.固定床富氧连续气化生产半水煤气:半水煤气成份:CO2=16-19%、O2=0.2-0.5%、CO=28-32%、H2=36-39%、N2=10—14%、DH4=1-3%。
有效气体含量70%左右。
入炉富氧气中氧浓度50—58%单位面积的气化强度仅为1200—1300m3/㎡.h。
富氧连续气化只能生产半水煤气,不适应醇类产品生产。
3.纯氧+蒸汽生产水煤气成份:纯氧连续气化的水煤气成份因原煤质量、装备条件、控制条件而不同而有一定差距。
(太化)半焦(也称“兰炭”)气体成份:CO2=16.5-17%、02=0.2—0.4%、CO=38—39.8%、H2=44.4%、N2=0、CH4=≤1.0%。
煤气化工艺的简要评述
煤气化工艺的简要评述目前国内可供选择的成熟或相对成熟的煤加压气化工艺很多,各种煤气化工艺的综合比较也有较多的文献、资料可供查阅,这里只简要叙述几种主要煤气化工艺的特点及现阶段存在存在的问题。
1、TEXACO水煤浆气化TEXACO水煤浆气化采用水煤浆进料、液态排渣、在气流床中加压气化,水煤浆与纯氧在高温高压下反应生成煤气。
气化炉主要结构是水煤浆单喷嘴下喷式,大部分是采用水激冷工艺流程,单炉容量目前最大可达日投煤量2000吨,操作压力大多采4MPa、6.5MPa,少数项目也已达到8.4MPa。
我国引进该技术最早的是山东鲁南化肥厂,于1993年投产,后来又有若干厂使用,目前已有十来家。
比较有代表性的有渭河(气化压力6.0MPa)、淮南(气化压力4.0MPa)和鲁南(气化压力2.0MPa)。
由于国内已经完全掌握了TEXACO气化工艺,积累了大量的经验,因此设备制造、安装和工程实施周期短,开车运行经验丰富,达标达产时间也相对较短,主要问题是对使用煤质有一定的选择性,同时存在气化效率相对较低、氧耗相对较高及耐火砖寿命短等问题,但随着在国内投运时间的延长部分问题已得到有效解决。
2、多喷嘴对置水煤浆气化本项技术是“九五”期间由华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司合作开发的。
2000年10月通过原国家石油和化学工业局组织的鉴定和验收。
示范装置为兖矿国泰化工有限公司,建成两套日投煤1150吨的气化炉,操作压力4.0MPa,生产24万吨/年甲醇,联产71.8MW发电。
装置已于2005年10月投入运行。
第二个项目是应用在华鲁恒升化工股份有限公司大氮肥国产化工程,建设一套多喷嘴对置式水煤浆气化装置,日投煤750吨,操作压力6.5MPa,装置已于2005年6月初投入运行。
该工艺仍属于水煤浆气化的范畴,与TEXACO的主要区别是由TEXACO单喷嘴改为对置式多喷嘴,强化了热质传递,气化效果较好,但多喷嘴需要设置多路控制系统,增加了设备投资和维修工作量。
煤气化技术——精选推荐
煤炭气化技术煤炭气化是煤炭转化的主导途径之一,是煤化工、IGCC、加氢工艺、煤液化等的龙头和基础,我公司正在建设的煤直接液化项目,以及即将建设的煤间接液化项目,煤制烯烃项目都要用到煤炭气化。
一、煤气化原理气化过程是煤炭的一个热化学加工过程。
它是以煤或煤焦为原料,以氧气(空气、富氧或工业纯氧)、水蒸气作为气化剂,在高温高压下通过化学反应将煤或煤焦中的可燃部分转化为可燃性气体的工艺过程。
气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。
煤炭气化包含一系列物理、化学变化。
一般包括热解和气化和燃烧四个阶段。
干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。
其他属于化学变化,燃烧也可以认为是气化的一部分。
煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。
煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。
气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。
主要反应有:1、水蒸气转化反应C+H2O=CO+H2-131KJ/mol2、水煤气变换反应CO+ H2O =CO2+H2+42KJ/mol3、部分氧化反应C+0.5 O2=CO+111KJ/mol4、完全氧化(燃烧)反应C+O2=CO2+394KJ/mol5、甲烷化反应CO+2H2=CH4+74KJ/mol6、Boudouard反应C+CO2=2CO-172KJ/mol二、煤气化工艺煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。
不同煤气化技术优劣性分析
不同煤气化技术优劣性分析如果要问最近我国煤气化技术领域最受关注的事件是什么,那世界第一台水煤浆气化的水冷壁气化炉在山西建成并成功连续运行了几个月当仁不让。
而由此,水煤浆热壁炉和水冷壁炉优缺点的比较再次成为业界的热点话题,继而又引起了关于煤气化技术孰优孰劣的争议。
事实上,目前国内煤气化技术种类众多,近几年围绕各种技术之间的优缺点比较、评判就一直就没有停止过。
国内煤化工企业也想通过选择与比较,寻求最好的技术。
哪种煤气化技术好?什么样的企业适用什么样的技术?企业在选取煤气化技术时应注意什么问题?气化技术各有优劣煤气化技术是煤化工项目的龙头。
目前在国内推广的煤气化技术,包括我国自主开发技术和国外技术10多种。
煤气化技术若按炉型分,主要有固定床、流化床、气流床三种。
具体来讲,固定床气化炉有UGI炉和鲁奇炉,目前我国氮肥产业就主要采用UGI炉,有几千台炉子在运行;流化床常用气化炉有温克勒炉、循环流化床炉、灰熔聚流化床炉、恩德炉、U-Gas气化炉等;气流床按进料形式不同,分为干煤粉进料和水煤浆进料两大类,而以气化炉内是否衬有耐火保温材料分类,又有热壁炉和水冷壁炉两种。
所谓水冷壁,就是由水管、石英砂、煤渣组成的内腔。
一直以来,水冷壁都用于粉煤气化炉,水煤浆气化炉则多用耐火砖结构的热壁炉。
但是,山西阳煤丰喜肥业(集团)有限责任公司临猗分公司与清华大学、北京达力科公司共同合作,把水煤浆气化炉的内衬革新改造为了水冷壁,可谓一项重大创新。
江苏索普集团有限责任公司副总经理邵守言向记者介绍,耐火砖结构的水煤浆气化炉,其耐火温度为1350℃。
如果煤的灰熔点超过1350℃,耐火砖会受不了。
水冷壁气化炉最大的优势,就是对灰熔点超过1350℃的煤也能气化。
尽管他认为水冷壁气化炉还要经过几年的工程运行考验,还要解决水带走的热量、结垢后怎么处理等工程问题,但这是个技术发展方向,从技术方案上来说具有可行性。
毕竟目前适合热壁炉的煤种在国内只在河南义马、甘肃华亭、陕西榆林等地有,适合的煤种不多,水冷壁气化炉拓宽了煤种的使用范围。
煤的气化技术
煤的气化技术煤的气化技术是一种将煤转化为可用气体燃料的过程。
这项技术已经存在了很长时间,并在过去几十年中得到了广泛的应用和研究。
煤气化可以将煤中的碳转化为一种称为合成气的混合气体,该混合气体可用于发电、制造化学品和液体燃料等多个领域。
煤气化技术的基本原理是将煤与氧气和水蒸气反应,产生一种气体混合物。
这个过程发生在高温和高压下,通常在1000摄氏度以上进行。
在这个过程中,煤中的碳会与氧气反应,产生一氧化碳和氢气。
一氧化碳和氢气的比例取决于气化过程的条件和煤的性质。
这种合成气可以用作燃料或作为其他化学反应的原料。
煤气化技术有几种不同的变体,包括固定床气化、流化床气化和喷射流气化。
在固定床气化中,煤被放置在一个固定的反应器中,气体通过煤床流过,使煤发生气化反应。
在流化床气化中,煤粒被气体流体化,形成一个流化床,其中煤气化反应发生。
喷射流气化是一种较新的技术,其中煤被喷射到燃烧器中,并与气体混合,形成合成气。
煤的气化技术具有多种优点。
首先,煤气化可以将煤中的碳转化为气体,从而减少对煤的直接燃烧,降低了污染物的排放。
其次,合成气可以用作燃料,替代传统的石油和天然气,从而减少对有限资源的依赖。
此外,合成气还可以用于制造化学品和液体燃料,提供了多样化的能源来源。
然而,煤气化技术也面临一些挑战。
首先,气化过程需要高温和高压条件,这对设备和能源消耗提出了要求。
此外,气化过程还会产生大量的废水和废气,需要适当的处理和排放措施。
此外,煤气化技术的经济性也是一个问题,需要考虑投资成本和气化产物的利用价值。
为了克服这些挑战,研究人员一直在努力改进煤气化技术。
他们致力于开发更高效、节能的气化反应器,以减少能源消耗和排放。
他们还在研究如何更好地利用气化产物,例如开发新的化学品和液体燃料制造技术。
此外,研究人员还在探索将可再生能源与煤气化技术相结合,以进一步降低碳排放。
总的来说,煤的气化技术是一种重要的能源转化技术,可以将煤转化为合成气,为多个领域提供能源和原料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种煤气化工艺的优缺点1、常压固定层间歇式无烟煤(或焦炭)气化技术这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。
从发展看,属于将逐步淘汰的工艺。
2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。
3、鲁奇固定层煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。
4、灰熔聚流化床粉煤气化技术中科院山西煤炭化学研究所的技术,2001 年单炉配套20kt/a 合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100C左右,中心局部高温区达到1200-1300C,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。
床层温度比恩德气化炉高100-200C,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。
缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%,环境污染及飞灰综合利用问题有待进一步解决。
此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。
5、恩德粉煤气化技术恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料为不粘结或弱粘结性、灰分小于25%-30%灰熔点高(ST大于1250C)、低温化学活性好的煤。
至今在国内已建和在建的装置共有9 套,14 台气化炉。
属流化床气化炉,床层温度在1000C左右。
目前最大的气化炉,用富氧气化,最大产气量为40000m3/h半水煤气。
缺点是气化压力为常压,单炉气化能力还比较低,产品气中CH4含量高达1.5%-2.5%,飞灰量大、对环境的污染及飞灰综合利用问题有待解决。
6、GE德士古(Texaco)水煤浆加压气化技术GE德士古(Texaco)水煤浆加压气化技术,属气流床加压气化技术,原料煤经磨制成水煤浆后用泵送进气化炉顶部单烧嘴下行制气,原料煤运输、制浆、泵送入系统比Shell 和GSP等干粉煤加压气化要简单得多,安全可靠、投资省。
单炉生产能力大,目前国际上最大的气化炉日投煤量为2000t,国内已投产的最大气化炉日投煤量为1000t。
对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能作气化原料。
但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300C,灰渣粘结特性好。
气化压力从2.5、4.0、6.5到8.0MPa皆有工业性生产装置在稳定长周期运行,装置建成后即可正常稳定生产。
气化系统的热利用有两种形式,一种是废热锅炉型,可回收煤气中的显热,副产高压蒸汽,适用于联合循环发电;另一种是水冷激型,制得的合成气水气比高达 1.4,适用于制氢、制合成氨、制甲醇等化工产品。
气化系统不需要外供蒸汽、高压氮气及输送气化用原料煤的N2和CO2气化系统总热效率高达94%-96%高于Shell干粉煤气化(为91%-93% 和GSP干粉煤气化(为88%-92%。
气化炉结构简单,为耐火砖衬里。
气化炉无转动装置或复杂的膜式水冷壁内件,所以制造方便、造价低,在开停车和正常生产时无需连续燃烧一部分液化气或燃料气(合成气)。
煤气除尘也比较简单,无需价格昂贵的高温高压飞灰过滤器,投资省。
碳转化率达96%-98%有效气成分(CO+H2为80%-83%有效气(CO+H2比氧耗为336-410m3/km3,有效气(CO+H2比煤耗为550-620kg/km3。
国外已建成投产的装置有 6 套,15台气化炉;国内已建成投产的装置有7套,21台气化炉,正在建设、设计的装置还有4 套,13 台气化炉。
已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、一氧化碳、燃料气、联合循环发电。
各装置建成投产后,一直连续稳定、长周期运行。
装备国产化率已达90%以上,由于国产化率高,装置投资较其它加压气化装置都低。
水煤浆加压气化与其它加压气化装置建设费用的比例为Shell法:GSP法:多喷嘴水煤浆加压气化:水煤浆法=(2-2.5) :(1.4-1.6) :(1.2-1.3) :1。
国内已掌握了丰富的工程技术经验,已培养出一大批掌握该技术的设计、设备制造、建筑安装、煤种评价、试烧和工程总承包的单位及工程技术人员,所以从建设、投产到正常连续运行的周期比较短,这是业主所期望的。
缺点是气化用原料煤受气化炉耐火衬里的限制,适宜于气化低灰熔点的煤。
碳转化率较低,比氧耗和比煤耗较高。
气化炉耐火砖使用寿命较短,一般为1-2 年,国产砖寿命为一年左右,有待改进。
气化烧嘴寿命较短,一般使用2 个月后,需停车进行检查、维修或更换喷嘴头部,有待改进和提高。
7、多元料浆加压气化技术多元料浆加压气化技术是西北化工研究院提出的,具有自主知识产权。
其基本生产装置与水煤浆加压气化技术相仿,属气流床单烧嘴下行制气。
典型的多元化料浆组成为煤60%-65%、油料10%-15%水20%-30%粘度不大于2500CP。
但在制备多元化料浆时掺入油类的办法与当前我国氮肥工业以煤代油改变原料路线的方针不符合,是不可取的,有待改进。
8、多喷嘴(四烧嘴)水煤浆加压气化技术“九五”期间,华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司承担了国家重点科技攻关课题“新型(多喷嘴对置)水煤浆气化炉开发”。
该技术为气流床多烧嘴下行制气,气化炉内用耐火砖衬里。
开发成功后,相继在山东德州华鲁恒升化工有限公司建设了一套气化压力为6.5MPa、日处理煤750t的气化炉系统,于2005年6月正式投入运行,至今运转良好。
在山东滕州兖矿国泰化工有限公司建设了两套气化压力为 4.0MPa、日处理煤1150t的气化炉系统,于2005年7月21 日一次投料成功,运行至今。
多喷嘴气化炉与单烧嘴气化炉相比,比煤耗可降低约2.2%,比氧耗可降低8%,这是很有吸引力的。
同时调节负荷比单烧嘴气化炉灵活。
适宜于气化低灰熔点的煤。
但目前暴露出来的问题是这两个厂的气化炉都存在气化炉顶部耐火砖磨蚀较快和炉顶超温的问题;以及同样直径同生产能力的气化炉,其高度比德士古单烧嘴气化炉高,又多了三套烧嘴和其相应的高压煤浆泵、煤浆阀、氧气阀、止回阀、切断阀及连锁控制仪表,一套投煤量1000t/d 的气化炉投资比单烧嘴气化炉系统的投资多2000-3000 万元,而且多增加维护检修费用。
该技术有待进一步在生产实践中改进提高。
9、壳牌(Shell )干粉煤加压气化技术壳牌(Shell )干粉煤加压气化技术,属于气流床加压气化技术。
可气化褐煤、烟煤、无烟煤、石油焦及高灰熔点的煤。
入炉原料煤为经过干燥、磨细后的干煤粉。
干煤粉由气化炉下部进入,属多烧嘴上行制气。
目前最大的气化炉是日处理2000t 煤,气化压力为3.0MPa,国外只有一套用于商业化联合循环发电的业绩,尚无更高气化压力的业绩。
这种气化炉采用水冷壁,无耐火砖衬里。
采用废热锅炉冷却回收煤气的显热,副产蒸汽,气化温度可以达到1400-1600C,气化压力可达3.0-4.0MPa,可以气化高熔点的煤,但为了操作稳定,仍需在原料煤中添加石灰石作助熔剂。
该种炉型原设计是用于联合循环发电的,国内在本世纪初开始有13 家相继引进14 套气化装置,其最终产品有合成氨、甲醇、氢气、气化压力3.0-4.0MPa 。
其特点是干煤粉进料,用高压氮气气动输送入炉,对输煤粉系统的防爆要求严格;气化炉烧嘴为多喷嘴,有4 个(也可用6 个)对称式布置,调节负荷比较灵活;为了防止高温气体排出时夹带的熔融态和粘结性飞灰在气化炉后的输气导管换热器、废热锅炉管壁粘结,采用将高温除灰后的部分330-350C气体与部分水洗后的160- 165C气体混合,混合后的气体温度约200C,用返回气循环压缩机加压送到气化炉顶部,将气化炉排出的合成气激冷至900C 后,再进入废热锅炉热量回收系统,不但投资高,多耗动力,而且出故障的环节也多;出废热锅炉后的合成气,采用高温中压陶瓷过滤器,在高温下除去夹带的飞灰,陶瓷过滤器不但投资高,而且维修工作量大;据介绍碳转化率可达98-99%;可气化褐煤、烟煤、无烟煤、石油焦;冷煤气效率高达80-83%;有效气(CO+H2比煤耗为550-600kg/km3,比氧耗为330-360m3/km3,比蒸汽(过热蒸汽)耗为120-150kg/km3,可副产蒸汽880-900kg/km3。
其存在的问题是专利商只有一套用于发电的装置,缺乏用于煤化工生产的业绩。
所以我国引进的Shell 煤气化装置只设一台气化炉单系列生产,没有备用炉,在煤化工生产中能否常年连续稳定生产应予高度重视。
一套不设备用炉的Shell 煤气化装置投资相当于设备用炉的Texaco 气化装置投资的2-2.5 倍,排出气化炉的高温煤气用庞大的、投资高的废热锅炉回收显热副产蒸汽后,如用于煤化工,尚需将蒸汽返回后续一氧化碳变换系统,如用于制合成氨和氢气,副产的蒸汽还不够用。
同时另外还需要另设中压过热蒸汽系统用于气化。
目前Shell 带锅炉的干煤粉加压气化技术并不适用于煤化工生产,有待改进。
10、GSP干煤粉加压气化技术GSP干煤粉加压气化技术,属于气流床加压气化技术,入炉原料煤为经过干燥、磨细后的干煤粉,干煤粉由气化炉顶部进入,属单烧嘴下行制气。
气化炉内有水冷壁内件,目前最大的GSP气化炉是每天投煤量720t褐煤,操作压力2.8MPa,操作温度1400C,有6年采用褐煤为原料进行气化的经验。
气化高灰熔点的煤时,可以在原料中添加石灰石作助熔剂,因采用水冷激流程,所以投资比Shell炉要省得多,两者投资不是Shell炉:GSP炉=(1.34-1.67): 1,适用于煤化工生产。
碳转化率可达到98%-99%,可气化褐煤、烟煤、次烟煤、无烟煤、石油焦及焦油,冷煤气效率高达80%-83%,合成气有效气(CO+H)2 含量高达90%以上,有效气(CO+H2比煤耗为550-600kg/km3,比氧耗为330-360m3/km3,比蒸汽(过热蒸汽)耗为120-150kg/km3。
水冷壁的盘管内用压力为4.0MPa、温度达250C的水冷却,在盘管内不产生蒸汽,只在器外冷却水循环系统中副产0.5MPa的低压蒸汽。
气化炉外壳还设计有水夹套,用冷却水进行冷却,外壳温度低于60C,所以热损失比较大。