川崎主泵构造原理及调试

合集下载

5负流量控制国产中型挖掘机主阀总成(川崎KMX15RA)结构原理分析

5负流量控制国产中型挖掘机主阀总成(川崎KMX15RA)结构原理分析
-9-
图6 未操作动臂动作时的保持阀的局部回路全剖示意图 此时,如图6所示,动臂1与动臂2阀芯(图中不可见)均处于初始位置,保 持阀的先导阀处于图示左侧(在此位置,通道Sa与通道Sb通过保持阀的先导阀相 沟通)。因此,保持阀主阀芯HV阀的弹簧腔承受因动臂结构件产生的动臂油缸无 杆腔的压力,该部分压力油从Ab1接口通过通道Sa,再经保持阀的先导阀,再通 过通道Sb而导通,所以将HV阀向右推压在阀ቤተ መጻሕፍቲ ባይዱ上呈现关闭状态。作为插装阀的HV 阀,其锥面密封可使渗漏抑制在极小的量,最终保证动臂不因主阀的泄漏造成明 显的掉缸。此过程即为“动臂保持”功能。 在作动臂提升动作时,该保持阀的先导阀仍处于图6所示初始位置,即通道S a与通道Sb通过保持阀的先导阀相沟通。主泵来油可直接打开HV阀(此时HV阀弹 簧腔油液实现内泄)而通过接口Ab1进入动臂油缸无杆腔。 在动作动臂下降动作时,操作手柄的先导油除可到达动臂1阀芯的XBb1口实 现主阀换向,还可到达保持阀的先导阀的PbL口。图7为动臂下降过程中保持阀局 部回路全剖示意图。PbL口的先导油会将保持阀的先导阀向图示右侧推动,从而 切断通道Sa与通道Sb,且此时通道Sb将与泄漏油道Dr4油道沟通。因此,HV阀的 弹簧腔通过通路Sb与通道Dr4节流回油箱。此时,由于动臂1阀芯的换向使得P2泵 油液进入动臂油缸有杆腔,动臂油缸无杆腔油液经过接口Ab1,打开HV阀后到达
P2 泵接口(P2侧) R2 主回油接口
斗杆保持阀(锁止阀)先导 PaL
接口
动臂保持阀(锁止阀)先导 PbL
接口
右行走马达(前进)主油接 Atr

右行走马达(后退)主油接 Btr

(Ao (选装件主油接口)
) (Bo (选装件主油接口)

川崎液压系统的设计原理分析

川崎液压系统的设计原理分析

川崎液压系统的设计原理分析分析挖掘机中应用广泛的川崎系统,介绍其系统结构原理和关键功能,并对挖掘机液压故障提出故障诊断步骤探讨,能对挖掘机液压系统普遍性故障排查有指导作用。

标签:川崎系统;液压;挖掘机近年来,国内港口矿物码头虽然频繁有许多高效率、环保节能的新型工程机械如堆取料机、全自动皮带系统等亮相,但液压挖掘机仍是矿物码头不可替代的主力机械,它负责码头堆场矿物的堆垛、加高、转堆以及联合门吊或卸船机交叉卸船作业,其工作内容和范围十分广泛。

而针对不同品牌和型号的挖掘机,其结构和设计上都存在一定的共性,以湛江港三分公司为例,早年投入使用的日立ZAXIS200,近年引进的现代R220、R330的7系列和9系列挖掘机,其液压系统特点均使用川崎液压设计,因此,研究分析川崎液压系统,对于一般性故障如何能快速判断、检测、故障排除有着重要意义。

1 川崎液压系统功能设计分析川崎液压系统因其结构简单,系统响应快,维护方便等优点在挖掘机结构体系中被广泛使用,以现代R225LC-7为例,结构可简单概括为“一泵一阀四缸三马达”,其中一泵是指液压主泵,它是驱动整个液压系统的动力源;一阀是指主控阀,也称多路分配阀,是将来自于泵的高压油根据先导控制油路信号再分配到工作制动器。

四缸三马达则是挖掘机的动力输出装置,主要负责行走、旋转和油缸臂动作。

因此,从功能上看,整个液压系统包含了三大油路:(1)先导控制油路;(2)基础油路;(3)工作辅助油路。

1.1 先导控制油路先导控制油路由先导泵供油,经过滤油器和先导溢流阀(3.5kgf/cm2),然后大致分为三条线路:(1)是向主要液压器件提供常压油,如液压主泵EPPR阀提供私服压力(35bar)、回转马达驻车制动常压供油、主控阀行走信号测压点常压油等。

(2)是通过安全锁定电磁阀向操作手柄和踏板提供控制油,再反馈到主控阀相应的阀芯控制基础油路实现动作。

(3)是向电磁阀组件提供压力信号油。

1.2 基础油路基础油路是川崎系统的核心部分,它包括吸油油路(主泵端)、分配油路(主控阀端)和回油泄漏油路三部分,三种油路形成闭环控制。

川崎泵K3V泵说明书

川崎泵K3V泵说明书

川崎K3V系列斜盘式轴向柱塞泵使用说明书川崎重工业株式会社液压泵一、概述:液压泵将原动机的机械能转换成工作液体的压力能。

按其职能系统,属于液压能源元件,又称为动力元件。

液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。

液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分)本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。

1、液压泵的基本性能参数液压泵的主要性能参数是压力P 和流量Q(1)压力泵的输出压力由负载决定。

当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。

所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。

如果负载无限制的增长。

泵的压力也无限制的增高。

直至密封或零件强度或管路被破坏。

这是容积式液压泵的一个重要特点。

因此在液压系统中必须设置安全阀。

限制泵的最大压力,起过载保护作用。

在位置的布置上,安全阀越靠近泵越好。

液压泵说明书对压力有两种规定:额定压力和最大压力。

额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。

最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。

(2)流量Q流量是指泵在单位时间输出液体的体积。

流量有理论流量和实际流量之分理论流量Q0,等于排量q 与泵转数的乘积:Q0=q*n*10-3(L/min)泵的排量是指泵每转一周所排出液体的体积。

泵的排量取决于泵的结构参数。

不同类型泵的排量记算方法也不同。

排量不可变的称为定量泵,排量可变的称为变量泵。

泵的实际流量Q小于理论流量Q0(因为泵的各密封间隙有泄漏)Q= Q0ηV = q.n.ηV /1000(L/min)式中ηV----泵的容积效率ηV =(Q(实际流量)/ Q0(理论流量))*100%齿轮泵的容积效率,ηV≥92%,柱塞泵ηV≥95%泵的泄漏量(漏损)与泵的输出压力有关,压力升高泄漏量(Q0-Q)即ΔQ增加,所以泵的实际流量是随泵的输出压力变化而变化的,而液压泵的理论流量与泵的输出压力无关。

川崎泵K3V泵说明书

川崎泵K3V泵说明书

川崎K3V系列斜盘式轴向柱塞泵使用说明书川崎重工业株式会社液压泵一、概述:液压泵将原动机的机械能转换成工作液体的压力能。

按其职能系统,属于液压能源元件,又称为动力元件。

液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。

液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分)本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。

1、液压泵的基本性能参数液压泵的主要性能参数是压力P 和流量Q(1)压力泵的输出压力由负载决定。

当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。

所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。

如果负载无限制的增长。

泵的压力也无限制的增高。

直至密封或零件强度或管路被破坏。

这是容积式液压泵的一个重要特点。

因此在液压系统中必须设置安全阀。

限制泵的最大压力,起过载保护作用。

在位置的布置上,安全阀越靠近泵越好。

液压泵说明书对压力有两种规定:额定压力和最大压力。

额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。

最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。

(2)流量Q流量是指泵在单位时间输出液体的体积。

流量有理论流量和实际流量之分理论流量Q0,等于排量q 与泵转数的乘积:Q0=q*n*10-3(L/min)泵的排量是指泵每转一周所排出液体的体积。

泵的排量取决于泵的结构参数。

不同类型泵的排量记算方法也不同。

排量不可变的称为定量泵,排量可变的称为变量泵。

泵的实际流量Q小于理论流量Q0(因为泵的各密封间隙有泄漏)Q= Q0ηV = q.n.ηV /1000(L/min)式中ηV----泵的容积效率ηV =(Q(实际流量)/ Q0(理论流量))*100%齿轮泵的容积效率,ηV≥92%,柱塞泵ηV≥95%泵的泄漏量(漏损)与泵的输出压力有关,压力升高泄漏量(Q0-Q)即ΔQ增加,所以泵的实际流量是随泵的输出压力变化而变化的,而液压泵的理论流量与泵的输出压力无关。

K3V泵变量原理

K3V泵变量原理

日本川崎K5V泵变量原理及故障排出方法开场白:德国人问:为什么产品使用没有达到更长的使用寿命时间,而日本人会问产品到了设计寿命的时间为什么产品不坏呢。

德国人注重产品的可维修性,零件可更换性。

日本人注重一次性使用,坏了那就更换新总成件吧。

日本川崎公司在2008年向市场推出最新产品K5V系列泵,型号及排量从63cc/rpm到280cc/rpm,K5V泵与K3V泵从外观及内部都有重大改变,外观的改变那就是整台泵的体积变的更小,另一项是前后两泵的8根连接螺栓变成内藏式,这一改变是把泵壳的强度提高,减少泵的噪声8%。

川崎公司为了把泵的体积变小,泵的内部零件不可模仿性制造,可是费尽心机。

把不可能变成可能,那就是把缸体外径变小,柱塞外径变粗变短。

缸体的外径变小就是缸体上的柱塞孔与孔之间隔达到2.2mm。

从金属的抗液压力变形理论是不可能的,但川崎就做出了这类产品。

这一改变,川崎人说:10年内世界上要能模仿制造是不可能的。

新型配流盘,使生压各降压的过度渐变更平稳,将输送液体的压力波动减少到最小,配流窗口交变引起的力偶更平稳。

K5V泵的变量形式还是与K3V泵一样,没有大的改变,下面利用插图作一个简要的介绍。

首先要对这个既不符合机械制图标准,也不完全照液压标准图形符号绘制的变量泵原理图做一点介绍。

世界上的各式柱塞式变量泵的变量方式都是靠一个内藏式液压缸作为变量的主机构,内藏式液压缸中的“活塞”两端在压力油的作用下,或向左或向右方向移动(或者不移动),活塞上带有一个销轴,这个销轴插在变量斜盘上耳孔中(日立泵插在配流盘的中心孔中),活塞在移动中带动斜盘或配流盘向不同的方向移动。

那么K5V泵的变量是靠图中的“变量活塞”的位移来带动斜盘左右移动的。

⒈从图上看变量活塞有大小两端及容量腔,小端处的容量腔总是与泵的出口相通,变量活塞小端上总是作用着泵的出口压力。

变量活塞大端容腔比较听话,是与泵的出口压力相通,还是与油箱相通,或是关闭自守,自己没有主见,完全听命于泵控调节器(也叫提升器)控制阀的安排。

川崎主油泵工作原理和调试方法培训资料BD

川崎主油泵工作原理和调试方法培训资料BD

泵送研究院
川崎精机旳总企业工厂位于明石市向北约5公里, 建于神户市西端旳丘陵地带。有着液压行业第一 旳规模和设备,以液压泵·马达、操作器、阀等 液压机器为主,广泛生产全部机械·设备用液压 装置以及液压甲板机械、电动液压操舵机、液压 捕鱼机械等多种应用机械。
泵送研究院
1916·在川崎造船所·造机工厂(目前旳神户工厂),组装海伦-肖径向柱塞泵
泵送研究院
川崎重工 组织架构
泵送研究院
川崎重工 组织架构
泵送研究院
泵送研究院
川崎重工发展史
泵送研究院
川崎重工产品
泵究院
在向防卫省提供旳业务方面,以中级教练机T-4和固定翼巡查机P-3C系列为主。 在回转翼机方面,以日本最早旳国产直升机BK117为主。除了从事CH-47J/JA 型直升机、以及观察用直升机OH-1旳制造之外,还开始了MCH-101及南极运送 增援用直升机CH-101旳机身及发动机旳特许制造。
川崎重工产品-铁路车辆
泵送研究院
川崎重工自1923年着手铁路车辆制造。 在以新干线列车为代表旳高速车辆方面, 涉及特快列车、通勤列车、地铁列车、货 车、机车、单轨列车、新交通系统。在该 领域还从事振动•摇动控制系统、站台屏 蔽门系统旳开发等。
Kawasaki牌车辆也在美国生产。除了位于
川崎重工产品-船舶
1924·完毕电动液压操舵机 1936·开始制造、销售螺杆泵
川崎精机旳历史
1950·制造、销售纺丝用齿轮泵
1962·制造、销售斜轴形轴向柱塞泵、马达
1968·新设并搬迁到西神户工厂。成立液压机械业务部 开发斜盘式轴向柱塞泵、马达
1976·制造、销售高压型螺杆泵(B4型)
1986·设置川重液压株式会社,并向其移交液压机械业务部产品旳服务、维修业务

川崎K3V泵说明书

川崎K3V泵说明书

03890312川崎斜板形K3V系列轴向活塞泵使用说明书株式会社川崎精機目录1. 型号表示 22. 规格 33. 构造和动作原理 44. 使用上的注意事项 64-1 安装 6 4-2 配管上的注意事项 7 4-3 关于过滤网 9 4-4 动作油和温度范围 11 4-5 使用上的注意事项 12 4-6 注满油和排气 12 4-7 开始运转时的注意事项 135 故障的原因及处理 145-1 一般的注意事项 14 5-2 泵体异常的检查方法 14 5-3 马达的过载 15 5-4 泵流量的过低,排出压力不能升高时 16 5-5 异常音,异常振动 16附图,附表附图1. 泵的构造图 17 附图2. 泵的展开图 18 附表1. 泵体装紧扭矩一览表 1911.型号表示K3V 112 DT - 1CE R - 9C32 – 1B22.规格*1. 闭路规格的最高旋转数使用闭路规格时,请预先商谈。

*2. 吸入压力 0 kgf/cm 时的旋转数。

33. 构造及动作原理该泵的构造是两台泵以花键接头(114)相连接的,马达的旋转被传递到前部的驱动轴F(111),同时驱动两台泵。

油的吸入和排出口在二台泵的连接部即阀块(312)处汇集,前泵和后泵共用吸入口。

因为前,后泵的构造原理和动作原理是相同的,故以前泵为例,进行说明。

此泵大致由以下几个部分组成,进行泵的旋转运动的旋转机构,调整吐出流量的斜板机构,交替进行油的吸入—吐出动作的阀盖机构。

旋转机构由驱动轴F(111),油缸体(141),活塞瓦(151,152),压板(153), 球面缸衬(156), 垫片(158),油缸弹簧(157)组成。

驱动轴的两端由轴承(123,124)支持。

活塞瓦装于活塞上,形成球接头,同时减轻由负荷压力产生的推力,有一个把活塞瓦(211)上轻轻扇以调整油压平衡的壳部。

为了使活塞瓦的副机构能在支撑板上圆滑的动作,通过押板和球面缸衬,使活塞瓦被油压弹簧压在支撑板之上。

川崎K3V系列泵的维修手册

川崎K3V系列泵的维修手册

品名及检查项目
K3V63
活塞、油缸内空间 的间隙量
(D-d)
0.028 0.056
活塞、活塞瓦间隙 部的松懈
(δ)
0~0.1 0.3
活塞瓦的厚度
3.9
(t) 3.7
油缸弹簧的自由高 31.3 度
(L) 30.2
压板、球面衬套的 10.5 装配高度
(H-h) 9.8
标准尺寸/调换推荐值 泵的型号
K3V112
17-1
157 156 153 152 151 141 127 124 123 114 113 111 部品序号
油缸弹簧 球面衬套
压板 活塞瓦 活塞 油缸体 轴承垫圈
花键接头
部品名
弹簧钢 合金钢 合金钢
合金钢
碳素钢 轴承钢 轴承钢 合金钢 合金钢 合金钢
材料
18PC 2PC 2PC 18PC 18PC 2PC 4PC 2PC 2PC 1PC 1PC 1PC 备考
及密封盖(262)按
相同的要领装入。
11
No
操作内容
注意事项
形式
5 装配好辅助活塞缸体〔油缸(141)、辅 助活塞(151,152)、压板(153)、球面 衬 套(156)、垫片(158)、油缸弹簧 (157)〕、将球面衬套与油缸花键轴的位 置对准、插入泵壳内。
全类型
6 将阀快(313)对准销子后装入阀体 (312)内。
17-2
9
No
操作内容
注意事项
形式
1 用锤子轻轻地将旋转斜板支撑台(251) (1) 取出辅助活塞,倾转 全类型
敲入泵壳(271)内安装好。
销、挡块(L)、挡块(S)
时,预先在泵壳上将

川崎K3V泵调节器动作

川崎K3V泵调节器动作

川崎K3V泵调节器动作1)通过泵的控制压力控制之与操作杆行程成比例的二级先导压力,在选择器阀中转化成压力Pi 后,进入泵的调节器。

泵调节器得知操作杆的状态,从而控制泵的斜盘角度。

控制结果有流量增加和流量减少两种。

2)通过自身或另一泵输油压力控制(恒扭矩控制)通过自身输油压力和另一泵输油压力进行泵控制,具有一下两种功能:流量减少(防过载)功能,流量增加(流量恢复)功能。

流量减少(防过载)功能,当负载(压力)增加时,泵流量减少,因此发动机不会过载。

流量增加(流量恢复)功能,当负载(压力)减少时,泵流量增加,因此发动机输出功率可得到有效利用。

3)通过来自功率控制电磁阀的先导压力控制(转速传感控制)当扭矩控制电磁阀(位于泵2的调节器上)提供扭矩控制压力P时,f泵流量减少。

4)通过来自泵最大流量限制电磁阀的先导压力控制(泵最大流量控制)通过来自泵最大流量限制电磁阀的先导压力控制的操作,与通过泵控制压力控制相同。

油路中的泵最大流根据来自MC(主控制器)的信号,泵控制压力Pi量限制电磁阀器起作用。

泵最大流量限制电磁阀起减压作用,限制泵控制压力Pi5)通过最大流量转换电磁阀控制(仅限泵1)当泵1最大流量转换电磁阀起作用时,作用在制动器上的泵1最大流进入液压邮箱,由于止动器向右移动,先导柱塞向右量转换压力Pic移动得要比一般情况下更多,使泵的最大流量增加。

6)较小斜盘角度或较小流量信号优先控制当泵流量增加和减少信号同时到达时,泵调节器动作,使流量减少信号优先。

由泵控制器提供泵排量角度控制信号,扭矩控制电磁阀提供先导压力,通过杆A和杆B上的孔以及销6传递到反馈杆和伺服阀芯上,销6与杆A或杆B上的流量减少侧与孔相接触,使流量和功率减少控制优先。

日本川崎公司工程机械用泵

日本川崎公司工程机械用泵

1、排量问题 现象1:最大排量和最小排量打泵次数一样(单川崎泵)
序号
可能原因
判断方法
解决方案
1
电比例阀没电
测电比例阀输入线路
接好线路
2 减压阀P口与T口接反 测减压阀出口压力
对调P口与T口管路
3
减压阀P口无压力
测减压阀P口压力
解决进口压力问题
4 减压阀压力调整不合适 测减压阀出口压力
调整减压阀
5
电比例阀卡住
PPT文档演模板
日本川崎公司工程机械用泵
川崎斜盘型 K3V系列 轴向活塞泵
斜盘机构由斜盘、活塞瓦、斜板支持台、倾转缸衬、倾转销、 伺服 油缸构成。斜板在活塞瓦动作面的相反侧形成的圆筒状的部位上被支撑 在斜板支撑台上。由调节器控制的油压力,在活塞两侧的油压室的引导 作用下,使得活塞左右运动,此时借助于倾转销的球部,斜盘支持台上 摇动,可以改变倾转角。
(2) 分解前,仔细阅读维修要领书,按正确的顺序进行分解。
(3) 即使只分解某个部分,也要注意不要让灰尘进入。
(4) 部件都经过精密加工,工作时要注意不要碰伤。
PPT文档演模板
日本川崎公司工程机械用泵
川崎斜盘型 K3V系列 轴向活塞泵
8、泵体的异常的检查方法
泵内往往安装有调整器,附属阀,附属泵,虽然难以发现故障的原 因,但如按以下几项大的项目进行调查,异常部分便可查明。
1
卡死 力正常,调整 阀尾部螺钉,在a2口接上压力表,慢慢拧入M6螺钉
排量,观察a2 ,到a2口压力为2.0-2.2MPa(70%左右排量)时锁。
口压力变化
彻底方案:更换电比例阀
更换时用扳手从此处旋出
电比例阀尾部螺钉
PPT文档演模板

川崎泵控制阀结构原理说明k3v(中文版2)

川崎泵控制阀结构原理说明k3v(中文版2)
泵转速 2100 min 出口压力 78.5 bar 无 Qcut 有 Qcut
-1
P1
负流量控制
A1
Pi Pm1
Pi
Dr
P1
负流量控制
A1
Pi Pm1
Pi
Dr
P1
负流量控制
A1
Pi Pm1
Dr
P1
负流量控制
A1
Pi Pm1
Dr
P1
负流量控制
A1
α
Pi Pm1
max
α
min
12bar
32bar
Pi
Dr
P1
负流量控制
A1
α
Pi Pm1
12bar 32bar
Pi
Dr
P1
负流量控制
A1
α
Pi Pm1
12bar 32bar
Pi
Dr
P1
负流量控制
A1
α
Pi Pm1
12bar 32bar
Pi
Dr
P1
A1
负流量控制
α
Pi Pm1
12bar 32bar
Pi
Dr
P1
负流量控制
A1
α
Pi Pm1
12bar 32bar
Pi
D
r Dr
P1
负流量控制
A1
α
Pi Pm1
12bar 32bar
Pi
Dr
P1
负流量控制
A1
α
Pi Pm1
12bar 32bar
Pi
Dr
两级最大流量控制
P1
两级最大流量控制
A1
Pi Pm1

1负流量控制国产中型挖掘机主泵总成(川崎K3V112DT)结构原理分析

1负流量控制国产中型挖掘机主泵总成(川崎K3V112DT)结构原理分析
10-螺栓;11-斜盘支撑板;12-黄油嘴;13-锁紧螺母;14-调整螺钉;15定位销;
16-O型圈;17-辅助活塞;18-O型圈;19-垫片;20-调节器;21-倾斜销;22泵壳体;
23-螺堵;24-O型圈;25-伺服活塞;26-垫片;27-O型圈;28-辅助活塞;29斜盘座;
30-衬套;31-斜盘;32-滑靴;33-柱塞;34-滑靴压板;35-球面衬套;36衬套垫圈;
负流量控制国产中型挖掘机主泵分析
导读:
本篇章主要分析负流量控制的国产中型挖掘机的主泵总成(川崎K3V112DT) 的结构、原理、变量分析及相关部位调整之后对整机的影响。附有大量结构原理 图、零部件分解爆炸图、变量分析曲线、调整相关部位后的压力排量特性曲线等。
1、主泵总成概述
负流量控制系统的国产中型挖掘机使用的主泵总成为其液压传动系统的动力
(前泵输出的油液可流经左行走、回转、动臂2(动臂副联)及斗杆1(斗杆主联 )的主换向阀芯,后泵输出的油液可流经右行走、备用(破碎锤或液压剪等)、 动臂1(动臂主联)、铲斗及斗杆2(斗杆副联)的主换向阀芯)
图3 主泵总成各部件位置及名称 对于前泵与后泵,每个泵均由泵体、输入轴、缸体、(九个带滑靴结构的) 柱塞、配流盘、斜盘、伺服活塞及对应泵调节器等组成,柱塞头部(即滑靴表面 )紧贴斜盘表面。双柱塞泵共用一个中间体,在中间体上布置有一个双泵共用的 吸油口,并布置有两个泵对应的出油口。从轴侧看,工作中,主轴顺时针旋转。 以前泵为例,如图4所示,(从轴侧看)输入轴顺时针旋转,带动缸体顺时 针旋转,因柱塞均在缸体的柱塞孔内,且柱塞头部紧贴斜盘,故在缸体在作旋转 运动的同时,柱塞一方面会随缸体作旋转运动,另一方面将在缸体的柱塞孔内作 往复直线运动,造成(缸体柱塞孔内的)柱塞尾部密封容腔交替变换,密封容腔 变大时,产生真空度,经配流盘吸油区通过中间体吸油口吸油;密封容腔变小, 即可从配流盘压油区通过泵中间体出油口向外排油,此时泵出口排油压力取决于 外负载(即排油阻力)。该型主泵的伺服活塞可带动斜盘摆动,以带动泵内部柱 塞改变有效行程,最终改变泵排量,以实现主泵工作过程中液压系统功率与发动 机功率的匹配。

川崎主油泵功率调节及检验参数(精)

川崎主油泵功率调节及检验参数(精)

60C-1810Ⅲ

26~28
18~20
12~14
19~21 12~14 20~22 14~16
低压
低压 低压 低压 低压
80C-1816Ⅲ
②+③
28~30 18~20
80C-1818Ⅲ
②+①
28~30
泵送研究院
功率预调第一阶段各机型功率检验要求 型号 主油泵 主系统压力 换向次数 泵送状态 空打次数
α(°)
330 / 330 / 235 240 240 / 330 / 426 91
β(°)
-270 / -270 / -192 -195 -195 / -270 / -350 -75
调后V′(mm)
10±0.2 / 10±0.2 / 10.4±0.2 10.3±0.2 10.3±0.2 / 10.2±0.2 / 9.5±0.2 11±0.2
主油 泵
① ②+③ ① ① ① ① ① ②+③ ②+ ① ③ ① ①
油泵出厂设 置恒功率起 始点(MPa)
9.1 ③为15.9 9.1 9.1 9.1 9.1 9.1 ③为15.9 ①为9.1 15.9 9.1 9.1
油泵设定恒 功率起始点 (MPa)
16 16 16 9.1 14 15 15 16 ①为16; 16 18 11
MPa
17~19 60C-1413DⅢ ③ 26~30 19~21 60C-1816DⅢ ① 26~30 16~18 80C-1813DⅢ ① 26~30 11~13 18~20 SY5121THB9012Ⅲ车载泵 120方小排量泵车(带臂架补 油阀) 120方小排量泵车(不带臂架 补油阀) ① 26~30 18~20 ① 26~30 18~20 ① 26~30 18~20 140方大排量泵车 ②+③ 26~30 19~21 14~16 18~20 13~15 18~20 12~14 14~16 17~19 12~14

川崎主泵构造原理及调试

川崎主泵构造原理及调试

a排量控 制压力
12
川崎泵的调试 调节器的调整
a
13
川崎泵的调试 调节器的调整
a
14
川崎泵的调试 调节器的调整
a
15
川崎泵的调试 调节器的调整
a
16
川崎主泵拆步骤
a
17
川崎主泵拆步骤
a
18
川崎主泵拆步骤
a
19
川崎主泵拆步骤
a
20
川崎主泵拆步骤
a
21
调节器拆装步骤
a
22
调节器拆装步骤
a
7
川崎主泵动作原理(二)
a
8
调 节 器 的 结 构
1
a
9
调 节 器
的 结 构
2
压力
切断
a
10
调 节 器
的 结 构
3
a
11
恒功率调节: 泵 送压力低于折点 力时,调节外弹 簧;泵送压力高 于折点压力时,调
节内弹簧。
调节器的原理及调节
1、恒功率工作原理及调节:
2、排量控制的工作原理:
泵送压力
a
23
调节器拆装步骤
a
24
调节器拆装步骤
a
25
调节器拆装步骤
a
26
调节器拆装步骤
a
27
调节器拆装步骤
a
28
调节器拆装步骤
a
29
川崎主泵构造、原理及调试
研究院 裴杰
1
a
川崎主泵构造、原理及调试
川崎主泵型号表示 川崎主泵液压原理 川崎主泵结构图 调节器的原理及调节 川崎主泵的拆卸
2
a
川崎主泵的型号表示

川崎泵的原理与调整

川崎泵的原理与调整

现在的挖掘机多为斜盘式变量双液压泵,所谓变量泵就是泵的排量可以改变,它是通过改变斜盘的摆角来改变柱塞的行程从而实现泵排出油液容积的变化。

变量泵的优点是在调节范围之内,可以充分利用发动机的功率,达到高效节能的效果,但其结构和制造工艺复杂,成本高,安装调试比较负责。

按照变量方式可分为手动变量、电子油流变量、负压油流变量、压力补偿变量、恒压变量、液压变量等多种方式。

现在的挖掘机多采用川崎交叉恒功率调节系统,多为反向流控制,功率控制,工作模式控制(电磁比例减压阀控制)这三种控制方式复合控制。

下载(44.84 KB)前天21:51调节器代码对应的调节方式下载(64.54 KB)前天21:51调节器内部结构各种控制都是通过调节伺服活塞来控制斜盘角度,达到调节液压泵流量的效果。

大家知道在压强相等的情况下,受力面积的受到的作用力就大。

下载(25.52 KB)前天21:52调节器就是运用这一原理,通过控制伺服活塞的大小头与液压泵出油口的联通关闭来控制伺服活塞的行程。

在伺服活塞大小头腔都有限位螺丝,所以通过调节限位螺丝可以调节伺服活塞最大或最小行程,达到调节液压泵的最大流量或者最小流量的效果。

下载(55.63 KB)前天21:51向内调整限制伺服活塞最大和最小行程及限制最大流量和最小流量要谈谈反向流控制,就必须要弄明白反向流是如何产生的。

在主控阀中有一条中心油道,当主控阀各阀芯处于中位时(及手柄无操作时)或者阀芯微动时(及手柄微操作时)液压泵的液压油通过中心油道到达主控阀底部溢流阀,经过底部溢流阀的增压产生方向流(注当发动机启动后无动作时液压回路是直通油箱,液压系统无压力)。

下载(57.08 KB)昨天00:30所以方向流控制的功能是减少操作控制阀在中位时,泵的流量,使泵流量随司机操作所属流量变化,改善调速性能,避免了无用能耗。

大家注意方向流控制并非交叉控制,一个泵对应一个主控阀块(一般主控阀都为双阀块)。

如果单边手柄动作速度很慢特别是回转和铲斗奇慢,复合动作正常一般就是反向流油管安装反了。

主泵的工作原理

主泵的工作原理

主泵的工作原理
主泵是工业生产中常用的一种泵,它的工作原理是通过电机驱动叶轮旋转,从而将液体吸入泵体内部,然后通过压力将液体推出泵体,实现液体的输送。

主泵的工作原理可以分为三个步骤:吸入、压缩和排出。

首先,当电机启动时,叶轮开始旋转,形成一定的负压,使液体从进口处进入泵体内部。

其次,随着叶轮的旋转,液体被压缩,增加了液体的压力。

最后,当液体被压缩到一定程度时,它会被推出泵体,流向管道或其他设备中。

主泵的工作原理与其他泵的工作原理有所不同。

例如,离心泵是通过离心力将液体推出泵体,而排污泵则是通过机械压缩将液体推出泵体。

相比之下,主泵的工作原理更加简单,且适用于各种不同的液体输送场景。

在实际应用中,主泵的工作原理还需要考虑一些其他因素。

例如,泵的设计和材料选择需要考虑液体的性质和输送要求,以确保泵的性能和寿命。

此外,泵的安装和维护也需要注意一些细节,以确保泵的正常运行和安全使用。

主泵是一种常用的液体输送设备,其工作原理是通过电机驱动叶轮旋转,从而将液体吸入泵体内部,然后通过压力将液体推出泵体。

在实际应用中,需要考虑液体的性质和输送要求,以及泵的设计、
材料选择、安装和维护等因素,以确保泵的正常运行和安全使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a排量控 制压力
12
川崎泵的调试 调节器的调整
a
13
川崎泵的调试 调节器的调整
a
14
川崎泵的调试 调节器的调整
a
15
川崎泵的调试 调节器的调整
a
16
川崎主泵拆步骤
a
17
川崎主泵拆步骤
a
18
川崎主泵拆步骤
a
19
川崎主泵拆步骤
a
20
川崎主泵拆步骤
a
21
调节器拆装步骤
a
22
调节器拆装步骤
a
7
川崎主泵动作原理(二)
a
8
调 节 器 的 结 构
1
a
9
调 节 器
的 结 构
2
压力
切断
a
10
调 节 器
的 结 构
3
a
11
恒功率调节: 泵 送压力低于折点 压力时,调节外弹 簧;泵送压力高 于折点压力时,调
节内弹簧。
调节器的原理及调节
1、恒功率工作原理及调节:
2、排量控制的工作原理:
泵送压力
a
23
调节器拆装步骤
a
24
调节器拆装步骤
a
25
调节器拆装步骤
a
26
调节器拆装步骤
a
27
调节器拆装步骤
a
28
调节器拆装步骤
a
29
川崎主泵构造、原理及调试
研究院 裴杰
1
a
川崎主泵构造、原理及调试
川崎主泵型号表示 川崎主泵液压原理 川崎主泵结构图 调节器的原理及调节 川崎主泵的拆卸
2
a
川崎主泵的型号表示
aቤተ መጻሕፍቲ ባይዱ
3
川崎主泵液压原理
a
4
川崎主泵结构图(图一)
a
5
川崎主泵结构图(图二)
压力切断 恒功率调整
a
6
川崎主泵动作原理(一)
相关文档
最新文档