人教版高中数学必修四第一章单元测试(一)- Word版含答案

合集下载

(完整版)人教版必修四第一章测试题.doc

(完整版)人教版必修四第一章测试题.doc

第一章测试题(总 120 分)一、选择题 :本大题共 12 小题,每小题 4 分,满分 48 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知 A={ 第一象限角 } , B={ 锐角 } ,C={ 小于 90°的角 } ,那么 A 、 B 、 C 关系是 ()A . B=A ∩CB . B ∪ C=C C .A CD . A=B=C 2.将分针拨慢 5 分钟,则分钟转过的弧度数是()π B .-ππ D . -πA .3C .6363.已知 sin2cos 5, 那么 tan 的值为()3sin5cosA .-2B .223D . -23C .16164.已知角 的余弦线是单位长度的有向线段;那么角 的终边( )A .在 x 轴上B .在直线C .在 y 轴上D .在直线y x 上 y x 或 yx 上5.若 f (cos x)cos2 x ,则 f (sin15 ) 等于 ()3 3 1 1 A .B .C .D .22226.要得到 y3sin(2 x πy=3sin2x 的图象()) 的图象只需将π 4πA .向左平移个单位B .向右平移个单位44C .向左平移π个单位 D .向右平移π个单位887.如图,曲线对应的函数是( )A . y=|sinx|B . y=sin|x|C .y=- sin|x|D . y=- |sinx|8.化简 1 sin 2 160 的结果是()A . cos160B .C .cos160D .cos160cos16019. A 为三角形 ABC 的一个内角,若 sin AcosA 12 ,则这个三角形的形状为25()A .锐角三角形B .钝角三角形C .等腰直角三角形D .等腰三角形10.函数 y2sin(2 xπ ()) 的图象3B .关于点( -π, 0)对称A .关于原点对称6C .关于 y 轴对称D .关于直线 x=π对称611.函数 ysin(x π R 是()), xπ π 2A . [B . [0, π]上是减函数, ] 上是增函数2 2C . [ π,0] 上是减函数D . [ π,π] 上是减函数12.函数 y 2cos x 1 的定义域是()A . 2k π π, 2kπ( kZ )B . 2k π π, 2k π π( k Z )3 36 6C . 2k ππ 2π Z )2π 2π Z ), 2k π3 (kD . 2k π ,2k π( k333二、填空题 :本大题共 4 小题,每小题 4 分.共 16 分.13.已知 π4π, π π,则 2 的取值范围是 .3314. f (x) 为奇函数, x 0时 , f (x) sin 2x cos x, 则 x 0时f (x). 15.函数16.已知 ycos(x π π 2.)( x [ , π]) 的最小值是86 3sincos1 π π .,且4, 则 cos sin82三、解答题 :本大题共 5 小题,共 56 分,解答应写出文字说明、证明过程或演算过程.17.(10 分)已知 sin xcos x1(0 x π),求 tan x 的值.52cos(π )sin( π )18.( 10 分)已知角 终边上一点 P( 4a,3a), a0 ,求2cos(11π)sin(9π)22的值.1 sin 1 sin 19.(12 分)已知 α 是第三角限的角,化简sin1 sin120(.本 12 分)已知函数 y a b cos 2x(b 0) 的最大值为 3,最小值为 1 .622( 1)求 a, b 的值;( 2)求函数 g( x)4a sin(bxπx 的集合.) 的最小值并求出对应321.( 12 分)是否存在实数 a ,使得函数 y sin 2x acosx5 a 3 在闭区间 π8 2上的最大值是 1?若存在,求对应的 a值?若不存在,试说明理由 .[0, ]2参考答案一、选择题: 1. B 2. C 3. D 4. A 5. A 6.C 7.C 8.B 9.B 10. B 11. B 12. D二、填空题: 13. (0, ) 14.sin 2x cosx6 3 2223 15.416.2三、简答题:317 解:∵sin x cos x1(0 x π),故 cosx 0 .5两边平方得,2sin x cos x24.2549 ∴ (sin x cosx) 2 1 2 sin x cosx. 而 sin x cos x25∴sin x cos x7cosx1联立解得 3, cosx. 与 sin x5 sin x5 5∴ tanxsin x3cosx.418.解:∵ tany 3x.4cos(π)sin( π)sin sin3 ∴2tan11π9πsincos.)sin()4cos(2219 解:– 2tan α20 解:( 1) cos π 1,1b 0b 0 ymaxb a2x,6y min b a1 a,b 1.2( 2)由( 1)知: g x2sin xπ,34.532,1 2,∴ sin x1,1 , g x2,2 ,3∴ g x 的最小值为2 .对应 x 的集合为x | x 2k π 5π,kZ.621. 解:原函数整理为ycos 2 x a cosx 5 a 1 ,8 2令 t=cosx ,则f (t)t 2at5 a 1(t a ) 2 a 2 5 a1 , [0,1] .8 2 2 4 82 t4( 1)当a0时, f (t) max f ( 0) 5 a 1 1,2 8 212a(舍);5a1时,a a2 5a1(2)当0 f (t )max f ( )8 1,2 2 4 2a 4 或 a 3 3 , a ;2 2( 3)a1时13 3 20当,f (t )max f (1)a 1 a (舍),2 832 13综上所述可得 a.25。

最新数学必修四第一章检测题及答案

最新数学必修四第一章检测题及答案

第一章《三角函数》单元检测试卷一、选择题:(本答题共12小题,每小题5分,共60分。

) 1.-300°化为弧度是 ( ) A.34π-B.35π- C .32π- D .65π- 2.为得到函数)32sin(π-=x y 的图象,只需将函数)62sin(π+=x y 的图像A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度3.函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=4.若实数x 满足㏒x2=2+sin θ,则 =-++101x x ( ) A. 2x-9 B. 9-2x C.11 D. 9 5.点A(x,y)是300°角终边上异于原点的一点,则xy值为( ) A.3 B. - 3 C. 33 D. -336. 函数)32sin(π-=x y 的单调递增区间是( ) A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin(-310π)的值等于( ) A .21 B .-21C .23D .-238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( ) A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是 ( )A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是 ( )A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 12.比较大小,正确的是( ) A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D . 5sin )5sin(3sin >->二、填空题(每小题5分,共20分)13.终边在坐标轴上的角的集合为__________________.14. 已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心 角是________________. 15.已知角α的终边经过点P(-5,12),则sin α+2cos α的值为______.16.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________. 三、解答题:(本大题共6小题,共70分。

数学必修四第一章试卷(含答案).

数学必修四第一章试卷(含答案).

必修四第一章姓名:___________班级:___________考号:___________ 一、单选题1.若sin cos 0αα⋅<,则α的终边在( ) A .第一或第二象限 B .第一或第三象限C .第一或第四象限D .第二或第四象限 2.sin (﹣285°)=( ) A .624- B .624--C .624+ D .624+-3.已知sinx +cosx =15(0≤x <π),则tanx 的值等于( ). A .-34 B .-43C .34D .434.若tan 3α=,则2sin cos 3cos()-5cos 2ααπαα+-- 的值为( )A .12B .1-2C .514D .74-5.化简12sin 50cos50-︒︒的结果为( )A .sin50cos50︒-︒B .cos50sin50︒-︒C .sin50cos50︒+︒D .sin50cos50-︒-︒ 6.sin110cos40cos70sin320︒︒+︒︒=( ) A .12B .32C .12-D .32-7.设函数()()002f x Asin x A πωϕωϕ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则f (0)=( ) A .3 B .32C .2D .1 8.函数f (x )=lg (1+2cosx )的定义域为( ) A .-2233k k ππππ⎛⎫++ ⎪⎝⎭,()k Z ∈ B .22-2233k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈C .-2266k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈D .22263k k ππππ⎛⎫++⎪⎝⎭, ()k Z ∈9.下列函数中,最小正周期为π,且图象关于直线x =3π对称的是( )A .sin(2)6y x π=+B .sin(2)3y x π=+ C .sin(2)3y x π=- D .sin(2)6y x π=-10.把函数sin 2)6y x π=+(的图象沿x 轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x = 的图象,则()g x 的解析式为( ) A .()sin(4)12g x x π=-B .()sin(4)6g x x π=-C .()sin(4)3g x x π=-D .2()sin(4)3g x x π=-11.已知函数f (x )=cos 23x πω⎛⎫+⎪⎝⎭(x ∈R ,ω>0)的最小正周期为2π,为了得到函数g (x )=sin ωx 的图象,只要将y =f (x )的图象( )A .向左平移76π个单位长度 B .向右平移76π个单位长度 C .向左平移724π个单位长 D .向右平移724π个单位长度12.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象 A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 二、填空题 13.若扇形的面积为38π、半径为1,则扇形的圆心角为____________. 14.已知α 为第三象限角,则2α所在的象限是_________________. 15.设0a <,角θ的终边与单位圆的交点为(3,4)P a a -,那么sin 2cos θθ+值等于_________________. 16.已知1sin cos 5θθ-=,则sin cos θθ的值是__________. 三、解答题17.已知sin()3cos(2)0απαπ---=. (1)求tan α的值;(2)求333sin ()5cos (3)33sin ()2πααππα-+--的值.18.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.19.函数23()sin cos 3sin 2f x x x x ωωω=⋅-+(0>ω)的部分图象如图所示. (1)求ω的值; (2)求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值与最小值.20.已知函数()sin(2)f x x φ=+是奇函数,且02φπ<<. (1)求φ;(2)求函数f (x )的单调增区间.21.(1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图. 列表:126x π+x y(1)作图:(2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的.(3)求函数()f x 图象的对称轴方程.22.已知函数2()23cos sin(π2)f x x x =+-. (Ⅰ)求函数()f x 的最小正周期. (Ⅱ)求函数()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上的最值. (Ⅲ)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间.参考答案1.D 【解析】 【分析】分sin 0α>,cos 0α<和sin 0α<,cos 0α>两种情况讨论得解. 【详解】若sin 0α>,cos 0α<,则α的终边在第二象限; 若sin 0α<,cos 0α>,则α的终边在第四象限, 故选D. 【点睛】本题主要考查三角函数在各象限的符号,意在考查学生对该知识的理解掌握水平和分析推理能力. 2.C 【解析】 【分析】利用诱导公式化简sin (﹣285°)可得:sin (﹣285°)=sin (45°+30°),利用两角和的正弦公式计算得解。

人教A版数学必修四高一年级第二学期数学4第一章测试题1附答案解析.docx

人教A版数学必修四高一年级第二学期数学4第一章测试题1附答案解析.docx

高一年级第二学期数学4第一章测试题班级: 座号: 姓名: 得分:一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各角中,与角330°的终边相同的角是( )A .510°B .150°C .-150°D .-390°【解析】 与330°终边相同的角的集合为S ={β|β=330°+k ·360°,k ∈Z },2.把-1 485°转化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°【解析】 B 、C 选项中α不在0°~360°范围内,A 选项的结果不是-1 485°,只有D 正确.【答案】 D3.3π5弧度化为角度是( ) A .110° B .160°C .108°D .218°【解析】 3π5=35×180°=108°. 【答案】 C4.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203πC.2003 D .4003π 【解析】 240°=240180π=43π, ∴弧长l =|α|·r =43π×10=403π,选A. 【答案】 A5.(2014·济宁高一检测)与30°角终边相同的角的集合是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ α=k ·360°+π6,k ∈Z B .{α|α=2k π+30°,k ∈Z }C .{α|α=2k ·360°+30°,k ∈Z } D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ α=2k π+π6,∈Z 【解析】 ∵30°=30°×π180°=π6, ∴与30°终边相同的所有角可表示为α=2k π+π6,k ∈Z ,故选D.【答案】 D6.cos ⎝ ⎛⎭⎪⎫-11π6等于( ) A.12 B .-12C.32 D .-32【解析】 cos ⎝ ⎛⎭⎪⎫-11π6=cos ⎝⎛⎭⎪⎫-2π+π6=cos π6=32.【答案】 C7.下列说法:①终边相同的角的同名三角函数的值相等;②终边不同的角的同名三角函数的值不等;③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y 2,其中正确的个数为( )A .0B .1C .2D .3【解析】 根据诱导公式(一)可知①正确;因为sin 0=sin π=0,故②不正确;③中因为sin π2=1>0,但π2不是第一、二象限角,故③错误;④中应为cos α=x x 2+y 2,所以只有①正确,应选B. 【答案】 B8.已知α=π6+2k π(k ∈Z ),则cos 2α的值为( ) A.32 B.12C .-12D .-32【解析】 cos 2α=cos ⎝ ⎛⎭⎪⎫π3+4k π=cos π3=12. 【答案】 B9.已知角α的终边过点P (-3,4),则sin α+cos α=( )A.35 B .-45C.15 D .-15【解析】 ∵r =x 2+y 2=(-3)2+42=5,∴sin α+cos α=y +x r =15. 【答案】 C10.(2014·天水高一检测)已知点P (tan α,cos α)在第三象限,则角α在( )A .第一象限B .第二象限C .第三象D .第四象限【解析】 因为点P 在第三象限,所以tan α<0且cos α<0,从而可推得α为第二象限角.【答案】 B11.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-512【解析】 由条件知sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫12132=-513. 【答案】 B12.若tan α=2,则2sin α-cos αsin α+2cos α的值为( ) A .0 B.34C .1D .54 【解析】 2sin α-cos αsin α+2cos α=2tan α-1tan α+2=4-12+2=34. 【答案】 B二、填空题(本大题共4小题,每小题5分共20分,将答案填在题中的横线上)13.若角α与角β终边相同,则α-β=________.【解析】 根据终边相同角的定义可知:α-β=k ·360°(k ∈Z ).【答案】 k ·360°(k ∈Z )14.当α为第二象限时,|sin α|sin α-|cos α|cos α的值是______. 【解析】 因为α为第二象限角,所以|sin α|sin α=1,|cos α|cos α=-1.【答案】 215.(2014·潍坊高一检测)已知sin α,cos α是方程3x 2-2x +a =0的两根,则实数a 的值为______.【解析】 由题意得⎩⎨⎧ sin α+cos α=23 ①sin αcos α=a 3 ② ①2-2×②得1=49-23a ,所以a =-56. 16.(2014·济宁高一检测)若sin ⎝ ⎛⎭⎪⎫π6-θ=33,则sin ⎝ ⎛⎭⎪⎫7π6-θ=________.【解析】 ∵sin ⎝ ⎛⎭⎪⎫π6-θ=33, ∴sin ⎝ ⎛⎭⎪⎫76π-θ=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π6-θ=-sin ⎝ ⎛⎭⎪⎫π6-θ =-33. 【答案】 -33三、解答题(本大题共2题,共20分)17. 已知一扇形的圆心角是72°,半径等于20 cm ,求扇形的面积.【解】 设扇形弧长为l ,∵72°=72×π180=2π5(rad), ∴l =|α|r =2π5×20=8π(cm). ∴S =12lr =12×8π×20=80π(cm 2). 18.已知α是第三象限角且tan α=2,求下列各式的值.(1)cos α,sin α;(2)4sin α-2cos α5cos α+3sin α; 【解】 (1)由tan α=2,知sin αcos α=2,sin α=2cos α,则sin 2α=4cos 2α.又因为sin 2α+cos 2α=1,所以4cos 2α+cos 2α=1,即cos 2α=15.由α在第三象限知cos α=-55.∴sin α=2cos α=-255. (2)法一 由(1)可知: 原式=4×⎝ ⎛⎭⎪⎪⎫-255-2×⎝ ⎛⎭⎪⎪⎫-555×⎝ ⎛⎭⎪⎪⎫-55+3×⎝ ⎛⎭⎪⎪⎫-255=-655-1155=611, ∴原式=611. 法二 原式=4sin αcos α-2·cos αcos α5cos αcos α+3sin αcos α=4 tan α-25+3tan α=4×2-25+3×2=611∴原式=611。

人教版高中数学必修四第一章单元测试(一)及参考答案

人教版高中数学必修四第一章单元测试(一)及参考答案

2018-2019学年必修四第一章训练卷三角函数(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)( )A. B.23C. D.21 2.已知点33sin ,cos 44P ⎛⎫ππ ⎪⎝⎭落在角θ的终边上,且[)0,2θ∈π,则θ的值为( )A.4πB.43π C.45π D.47π 3.已知3tan 4α=,3,2α⎛⎫∈ππ ⎪⎝⎭,则cos α的值是( ) A.45±B.45 C.45-D.354.已知sin 24()5απ-=,32α⎛⎫∈π,2π ⎪⎝⎭,则sin cos sin cos αααα+-等于( ) A.17 B.17-C.7-D.75.已知函数()(2)sin f x x ϕ+=的图象关于直线8x π=对称,则ϕ可能取值是( ) A.2π B.4π-C.4π D.43π 6.若点sin cos ,t ()an P ααα-在第一象限,则在[)0,2π内α的取值范围是( ) A.35,,244πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭B.5,,424πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭C.353,,2442ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D.3,,244ππ3π⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭7.已知a 是实数,则函数()1sin f x a ax +=的图象不可能是( )8.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象( )A.向右平移6π个单位长度 B.向右平移3π个单位长度 C.向左平移6π个单位长度 D.向左平移3π个单位长度 9.电流强度I (安)随时间t (秒)变化的函数()sin 0,0,02I A x A ωϕωϕπ⎛⎫=+>><< ⎪⎝⎭的图象如右图所示,则当1100t =秒时,电流强度是( ) 此卷只装订不密封班级 姓名 准考证号 考场号座位号A.5A -B.5AC.D.10A10.已知函数())2sin 0(y x ωθθ=+<<π为偶函数,其图象与直线2y =的某两个交点横坐标为1x 、2x ,若21x x -的最小值为π,则( ) A.2ω=,2θπ= B.12ω=,2θπ= C.12ω=,4θπ=D.2ω=,4θπ=11.设0ω>,函数sin 23y x ωπ⎛⎫=++ ⎪⎝⎭的图象向右平移34π个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D.312.如果函数(3cos 2)y x ϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,那么ϕ的最小值为( ) A.6πB.4π C.3π D.2π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知一扇形的弧所对的圆心角为54︒,半径20 cm r =,则扇形的周长为_______.14.方程1sin 4x x π=的解的个数是________.15.已知函数()2sin()f x x ωϕ+=的图象如图所示,则712f π⎛⎫= ⎪⎝⎭________.16.已知函数sin 3xy π=在区间[]0,t 上至少取得2次最大值,则正整数t 的最小值是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)求函数234sin 4cos y x x =--的最大值和最小值,并写出函数取最值时对应的x 的值.18.(12分)已知函数cos 233y a x π⎛⎫=++ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的最大值为4,求实数a 的值.19.(12分)如右图所示,函数()2cos 0,02y x x ωθωθπ⎛⎫=+∈>≤≤ ⎪⎝⎭R,的图象与y 轴交于点(,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点,02A π⎛⎫⎪⎝⎭,点P 是该函数图象上一点,点00(,)Q x y 是PA 的中点,当0y =0,2x π⎡⎤∈π⎢⎥⎣⎦时,求0x 的值.20.(12分)已知α是第三象限角,()()()()()()sin cos 2tan tan sin f ααααααπ-⋅π-⋅--π=-⋅-π-.(1)化简()f α;(2)若31cos 25α⎛⎫-π= ⎪⎝⎭,求()f α的值;(3)若1860α=-︒,求()f α的值.21.(12分)在已知函数()sin()f x A x ωϕ+=,x ∈R 0,002A ωϕπ⎛⎫>><< ⎪⎝⎭其中,的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.22.(12分)已知函数()sin()f x A x ωϕ+=0002A ϕωπ⎛⎫>><< ⎪⎝⎭且,的部分图象,如图所示.(1)求函数()f x 的解析式;(2)若方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根,试求a 的取值范围.2018-2019学年必修四第一章训练卷三角函数(一)答案一、选择题1.【答案】Bsin120=︒=故选B.2.【答案】D【解析】点33sin,cos44P⎛⎫ππ⎪⎝⎭即P⎝⎭;它落在角θ的终边上,且[)0,2θ∈π,∴4θ=7π,故选D.3.【答案】C【解析】∵3tan4α=,3,2α⎛⎫∈ππ⎪⎝⎭,∴cos45α=-,故选C.4.【答案】A【解析】4sin2sin()5αα=-π-=,∴sin45α=-.又32α⎛⎫∈π,2π⎪⎝⎭,∴cos35α=.∴sin cos1sin cos7αααα+=-,故选A.5.【答案】C【解析】检验sin84fϕππ⎛⎫=⎪⎝+⎭⎛⎫⎪⎝⎭是否取到最值即可.故选C.6.【答案】B【解析】sin cos0αα->且tan0α>,∴,42αππ⎛⎫∈ ⎪⎝⎭或5,4απ⎛⎫∈π⎪⎝⎭.故选B.7.【答案】D【解析】当0a=时()1f x=,C符合,当01a<<时2T>π,且最小值为正数,A符合,当1a>时2T<π,B符合.排除A、B、C,故选D.8.【答案】B【解析】sin2cos2cos2cos2cos2626333y x x x x xπ⎡ππ⎤2π2ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=--=-=-=-⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选B.9.【答案】A【解析】由图象知10A=,4112300300100T=-=,∴150T=,∴2100Tωπ==π.∴()10sinI tϕ=100π+.∵1,10300⎛⎫⎪⎝⎭为五点中的第二个点,∴11003002ϕππ⨯+=.∴6ϕπ=.∴10sin6I tπ⎛⎫=100π+⎪⎝⎭,当1100t=秒时, 5 AI=-,故选A.10.【答案】A【解析】∵()2siny xωθ=+为偶函数,∴2θπ=.∵图象与直线2y=的某两个交点横坐标为1x、2x,21minx x-=π,即minT=π,∴2ωπ=π,2ω=,故选A.11.【答案】C【解析】由函数向右平移34π个单位后与原图象重合,得34π是此函数周期的整数倍.又0ω>,∴243kωπ⋅=π,∴()32k kω=∈Z,∴min32ω=.故选C.12.【答案】A【解析】∵(3cos2)y xϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,即43cos 203ϕπ⎛⎫⨯+= ⎪⎝⎭,∴,32k k ϕ8ππ+=+π∈Z . ∴136k ϕπ=-+π,∴当2k =时,ϕ有最小值6π.故选A .二、填空题13.【答案】640cm () π+ 【解析】∵圆心角35410απ=︒=,∴6l r α=⋅=π. ∴周长为640cm () π+. 14.【答案】7【解析】在同一坐标系中作出sin y x =π与14y x =的图象, 观察易知两函数图象有7个交点,所以方程有7个解. 15.【答案】0【解析】方法一,由图可知,54432T ππ=-=π,即3T 2π=, ∴3T ω2π==.∴(32sin )y x ϕ+=,将,04π⎛⎫ ⎪⎝⎭代入上式sin 04ϕ3π⎛⎫⎪⎝⎭=+. ∴4k ϕ3π+=π,k ∈Z ,则4k ϕ3π=π-. ∴2sin 447012f k 7π3ππ⎛⎛⎫== ⎫+π- ⎪⎪⎝⎭⎝⎭.方法二,由图可知,54432T ππ=-=π,即3T 2π=, 又由正弦图象性质可知, 若()0002T f x f x ⎛⎫= ⎪⎝⎭=+,∴7012434f f f ππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 16.【答案】8 【解析】6T =,则54T t ≤,∴152t ≥,∴min 8t =.三、解答题 17.【答案】见解析.【解析】222134sin 4cos 4sin 4sin 14sin 22y x x x x x ⎛⎫=--=--=-- ⎪⎝⎭,令sin t x =,则11t -≤≤, ∴()2142112y t t ⎛⎫=---≤≤ ⎪⎝⎭.∴当12t =,即26x k π=+π或()26x k k 5π=+π∈Z 时,min 2y =-;当1t =-,即()22x k k 3π=+π∈Z 时,max 7y =. 18.【答案】2或1-.【解析】∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴42,333x πππ⎡⎤+∈⎢⎥⎣⎦,∴11cos 232x π⎛⎫-≤+≤ ⎪⎝⎭.当0a >,1cos 232x π⎛⎫+= ⎪⎝⎭时,y 取得最大值132a +,∴1342a +=,∴2a =. 当0a <,cos 213x π⎛⎫+=- ⎪⎝⎭时,y 取得最大值3a -+,∴34a -+=,∴1a =-,综上可知,实数a 的值为2或1-. 19.【答案】(1)6π,2;(2)023x π=或43π.因为02θπ≤≤,所以6θπ=. 由已知T =π,且0ω>,得222T ωππ===π. (2)因为点,02A π⎛⎫⎪⎝⎭,00(,)Q x y 是PA 的中点,0y =所以点P 的坐标为022x π⎛- ⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,且02x π≤≤π,所以056c 4os x ⎛⎫ ⎪⎝⎭π-=,且056646x 7ππ19π-≤≤, 从而得05664x π11π-=,或05664x π13π-=,即023x π=,或04x 3π=. 20.【答案】(1)cos α;(2);(3)12. 【解析】(1)()()()()()()sin cos 2tan sin cos tan cos tan sin tan sin f ααααααααααααπ-⋅π-⋅--π-⋅⋅===-⋅-π--⋅.(2)∵33cos cos sin 22ααα⎛⎫⎛⎫-π=π-=- ⎪ ⎪⎝⎭⎝⎭,又31cos 25α⎛⎫-π= ⎪⎝⎭,∴1sin 5α=-.又α是第三象限角, ∴cos α==, ∴()f α=. (3)()()()11860cos 1860cos1860cos 536060cos60()2f f α︒︒=︒=⨯︒+=︒=-︒==-. 21.【答案】(1)()sin 226f x x π⎛⎫+ ⎝=⎪⎭;(2)[]1,2-.由x 轴上相邻两个交点之间的距离为2π,得T 2=π2,即T =π, ∴222T ωππ===π. 由点2,23M π⎛⎫- ⎪⎝⎭在图象上得3sin 2222ϕπ⎛⎫⎝+⨯=-⎪⎭, 即sin 13ϕ4π⎛⎫=- ⎪⎝⎭+,故()223k k ϕπ+=π-4π∈Z ,∴()1126k k ϕπ=π-∈Z . 又0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴6ϕπ=,故()sin 226f x x π⎛⎫+ ⎝=⎪⎭.(2)∵,122x ππ⎡⎤∈⎢⎥⎣⎦,∴,2636x ππ7π⎡⎤+∈⎢⎥⎣⎦,当262x ππ+=,即6x π=时,()f x 取得最大值2; 当626x π7π+=,即2x π=时,()f x 取得最小值1-, 故()f x 的值域为[]1,2-.22.【答案】(1)()sin 3f x x π+=⎛⎫ ⎪⎝⎭;(2)() 1,0a ⎫∈-⎪⎪⎝⎭.【解析】(1)由图象易知函数()f x 的周期为724263T ππ⎛⎫=⨯-=π ⎪⎝⎭,1A =, 所以1ω=.方法一,由图可知此函数的图象是由sin y x =的图象向左平移3π个单位得到的, 故3ϕπ=,所以函数解析式为()sin 3f x x π+=⎛⎫ ⎪⎝⎭.方法二,由图象知()f x 过点,03π⎛⎫- ⎪⎝⎭,则sin 03ϕπ⎛⎫-+= ⎪⎝⎭,∴3k ϕπ-+=π,k ∈Z .∴3k ϕπ=π+,k ∈Z , 又∵0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴3ϕπ=,∴()sin 3f x x π+=⎛⎫ ⎪⎝⎭.(2)方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根等价于()y f x =与y a =的图象在50,3π⎛⎫⎪⎝⎭上有两个交点,在图中作y a =的图象, 如图为函数()sin 3f x x π+=⎛⎫ ⎪⎝⎭在50,3π⎛⎫ ⎪⎝⎭上的图象,当0x =时,()f x =当53x π=时,()0f x =, 由图中可以看出有两个交点时,() 1,0a ⎫∈-⎪⎪⎝⎭.。

人教版高中数学必修四第一章单元测试(一)及参考答案

人教版高中数学必修四第一章单元测试(一)及参考答案

人教版高中数学必修四第一章单元测试(一)及参考答案2018-201年必修四第一章训练卷三角函数(一)注意事项:1.答题前请填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上。

2.选择题请用2B铅笔将答案标号涂黑,非选择题请用签字笔直接答在答题卡上。

3.考试结束后,请将试题卷和答题卡一并上交。

一、选择题1.sin²120°等于( )A。

±33B。

2C。

±3/2D。

1/22.已知点P的坐标为(sin(3π/4)。

cos(3π/4)),则点P落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A。

π/4B。

3π/4C。

5π/4D。

7π/43.已知tanα=3/4,α∈(3π/2.2π),则cosα的值是( )A。

±4/5B。

±3/5C。

±5/4D。

±5/34.已知sin(2π-α)=4/5,α∈(2π/3.π),则sinα+cosα的值等于( )A。

1/7B。

-1/7C。

-7D。

75.已知函数f(x)=sin(2x+θ)的图象关于直线x=π/8对称,则θ可能取值是( )A。

π/2.3π/2B。

-π/4C。

4πD。

4π/36.若点P(sinα-cosα。

tanα)在第一象限,则在[0,2π)内α的取值范围是( )A。

(π/2.π)B。

(0.π/2)C。

(π/3.π/2)D。

(π/4.π/3)7.已知a是实数,则函数f(x)=1+asinax的图象不可能是( )A。

一条直线B。

一段正弦曲线C。

一段余弦曲线D。

一段正切曲线8.为了得到函数y=sin(2x+π/3)的图象向左平移π/12个单位,应该将x改为( )A。

2x+π/12B。

2x-π/12C。

2(x+π/12)D。

2(x-π/12)A.将函数y=cos2x的图象向右平移π/6个单位长度。

B.已知函数y=Asin(ωt+φ)的图象如右图所示,当t=1/100秒时,电流强度是5A。

人教A版数学必修4第一章测试题(一).doc

人教A版数学必修4第一章测试题(一).doc

高中数学学习材料马鸣风萧萧*整理制作云南省昭通市实验中学必修4第一章测试题(一)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列各角中与0330角的终边相同的是 ( )A .0510 B .0150 C . 060- D .0390-2.已知α为第三象限角,则2α所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限3.扇形的周长是16,圆心角是2rad ,则扇形的面积是 ( ) A .16 B .32 C .π16 D .π324.α是第二象限角,)5,(x P 为其终边上一点,且x 42cos =α,则αs i n 的值为 ( ) A .410 B .46 C .42 D .410- 5.已知0tan .cos <θθ,那么角θ是 ( )A .第一或第二象限B .第二或第三象限C .第三或第四象限D .第一或第四象限6.若21tan =α,)2,(ππα∈,则αcos 的值等于 ( ) A .553-B .552-C .553D .55-7.化简)cos 1)(tan 1sin 1(ααα-+的结果是 ( ) A .αsin B .αcos C .αsin 1+ D .αcos 1+8.1717cos sin 44ππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭的值是 ( )A .2B .2-C .0D .229.函数)42sin()(π+=x x f 的单调减区间为 ( )A .∈++k k k ],85,8[ππππZ B .∈++k k k ],285,82[ππππZC .∈+-k k k ],8,83[ππππZD .Z k k k ∈+-],82,832[ππππ10.函数)32sin(2)(π+=x x f 的最大值及取最大值时x 的集合为( )A .2,}2|{π=x x B .2,},22|{Z k k x x ∈+=ππC .2,},12|{Z k k x x ∈+=ππD .2-,},125|{Z k k x x ∈+-=ππ11.要得到函数2sin 35y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数2sin3y x =的图象( )A .向左平移5π个单位B .向右平移5π个单位 C .向左平移15π个单位 D .向右平移15π个单位12.函数)||,0,0)(sin(πϕωϕω<>>+=A x A y 的图象如右,则函数的解析式是( )A .)652sin(2π-=x yB .)652sin(2π+=x yC .)62sin(2π-=x yD .)62sin(2π+=x y二、填空题:本大题共4小题,每小题5分,共20分。

必修四第一章测试卷(含答案)

必修四第一章测试卷(含答案)

必修四第一章单元练习一、选择题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A.B.C 的关系是( )A .B=A ∩CB .B ∪C=C C .A CD .A=B=C2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .1sin 2C .1sin 2D .2sin 4. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( )A .ππ434或B .ππ4745或 C .ππ454或 D .ππ474或5. 已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-1623 6、已知34tan =x ,且x 在第三象限,则=x cos ( )A.54 B. 54- C. 53 D.53-7. 1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >> B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>8. 设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A .33B .-33 C .3 D .-39. 函数)4sin(π+=x y 在下列哪个区间为增函数.( )A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ-10. 函数)42sin(log 21π+=x y的单调减区间为( )A .)(],4(Z k k k ∈-πππ B .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππD .)(]83,8(Z k k k ∈++ππππ11. 函数)252sin(π+=x y的图象的一条对称轴方程是( )A .2π-=xB .4π-=x C .8π=xD .π45=x12.已知)2cos()(),2sin()(ππ-=+=x x g x x f ,则下列结论中正确的是 ( ) A.函数)(x g x f y⋅=)(的周期为π2 B.函数)()(x g x f y ⋅=的最大值为1C.将)(x f 的图像向左平移2π单位后得)(x g 的图像D.将)(x f 的图像向右平移2π单位后得)(x g 的图像二、填空题13、函数()sin(2)3f x x π=-的图象向左平移3π个单位,再将图像上的横坐标缩短为原来的12,那么所得图像的函数表达式为__________________. 14、已知21tan -=x ,则1cos sin 3sin 2-+x x x =______. 15、设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若,1)2004(=f 则=)2005(f .16.函数])32,6[)(8cos(πππ∈-=x x y的最小值是必修四第一章单元练习答题卷一、选择题二、填空题13.____________________ 14.____________ 15.______________ 16._________________三、解答题 17、若xx x x x tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.18、已知),0(πθ∈,且137cos sin -=+θθ,求θtan 。

高一数学人教版必修4测试题及答案

高一数学人教版必修4测试题及答案

高一数学人教版必修4第一章测试题及答案(时间:90分钟.总分150分)第Ⅰ卷(选择题 共60分)一、选择题:本答题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.-300°化为弧度是 ( ) A.34π- B.35π- C .32π- D .65π-2.为得到函数)32sin(π-=x y 的图象,只需将函数)62sin(π+=x y 的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度C .向左平移2π个单位长度D .向右平移2π个单位长度3.函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=4.若实数x 满足㏒x2=2+sin θ,则 =-++101x x ( )A. 2x-9B. 9-2xC.11D. 95.点A(x,y)是300°角终边上异于原点的一点,则x y值为( )A.3B. - 3C.33 D. -336. 函数)32sin(π-=x y 的单调递增区间是( )A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin(-310π)的值等于( ) A .21 B .-21C .23D .-238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是 ( )A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是 ( )A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数12.比较大小,正确的是( ) A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D . 5sin )5sin(3sin >->第Ⅱ卷(非选择题 共90分)二、填空题(每小题6分,共30分) 13.终边在坐标轴上的角的集合为_________.14.时针走过1小时50分钟,则分钟转过的角度是______.15. 已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________.16.已知角α的终边经过点P(-5,12),则sin α+2cos α的值为______.17.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________.三、解答题:本大题共4小题,共60分。

高中人教A版数学必修4:第一章 章末检测 Word版含解析

高中人教A版数学必修4:第一章 章末检测 Word版含解析

第一章章末检测班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列命题中正确的是( )A .终边相同的角一定相等B .锐角都是第一象限角C .第一象限角都是锐角D .小于90°的角都是锐角答案:B2.已知sin(2π-α)=45,α∈⎝⎛⎭⎫3π2,2π,则sin α+cos αsin α-cos α等于( ) A.17 B .-17C .-7D .7答案:A解析:∵sin(2π-α)=sin(-α)=-sin α=45, ∴sin α=-45. ∵α∈⎝⎛⎭⎫3π2,2π,∴cos α=1-sin 2α=35. ∴sin α+cos αsin α-cos α=-45+35-45-35=-15-75=17. 3.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4答案:B解析:∵sin α=-12=-12,且α的终边在第四象限,∴α=116π. 4.若函数y =2cos ωx 在区间⎣⎡⎦⎤0,2π3上递减,且有最小值1,则ω的值可以是( ) A .2 B.12C .3 D.13答案:B解析:由y =2cos ωx 在⎣⎡⎦⎤0,2π3上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫2π3=1,即2×cos ⎝⎛⎭⎫ω×2π3=1,cos ⎝⎛⎭⎫2π3ω=12,检验各选项,得出B 项符合. 5.sin(-1740°)的值是( )A .-32B .-12C.12D.32答案:D解析:sin(-1740°)=sin60°=32. 6.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3 答案:B解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1,故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3,即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 7.下列函数中,在⎝⎛⎭⎫0,π2上是增函数的偶函数是( ) A .y =|sin x | B .y =|sin2x |C .y =|cos x |D .y =tan x答案:A解析:作图比较可知.8.要得到函数y =cos(3x +2)的图象,只要将函数y =cos3x 的图象( )A .向左平移2个单位B .向右平移2个单位C .向左平移23个单位 D .向右平移23个单位 答案:C解析:∵y =cos(3x +2)=cos3⎝⎛⎭⎫x +23, ∴只要将函数y =cos3x 的图象向左平移23个单位即可. 9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为( ) A .-12 B.32C .-32 D.12答案:B解析:f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫π3=sin π3=32. 10.若函数f (x )=2sin ⎝⎛⎭⎫ax +π4(a >0)的最小正周期为1,且g (x )=⎩⎪⎨⎪⎧sin ax (x <0)g (x -1)(x ≥0),则g ⎝⎛⎭⎫56等于( )A .-12 B.12C .-32 D.32答案:C 解析:由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,∴g ⎝⎛⎭⎫56=g ⎝⎛⎭⎫-16=sin ⎝⎛⎭⎫-a 6= sin ⎝⎛⎭⎫-π3=-32. 11.已知ω>0,函数f (x )=sin(ωx +π4)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2] 答案:A解析:因为ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,所以ωπ2+π4≤ωx +π4≤ωπ+π4,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A. 12.下图为一半径为3m 的水轮,水轮圆心O 距离水面2m ,已知水轮自点A 开始旋转,15s 旋转一圈.水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系式y =A sin(ωx +φ)+2,则有( )A .ω=2π15,A =3B .ω=152π,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 答案:A解析:∵T =15,故ω=2πT =2π15,显然y max -y min 的值等于圆O 的直径长,即y max -y min =6,故A =y max -y min 2=62=3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知sin ⎝⎛⎭⎫π4-α=m ,则cos ⎝⎛⎭⎫π4+α=________. 答案:m解析:cos ⎝⎛⎭⎫π4+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α=m . 14.已知f (x )的定义域为(0,1],则f (sin x )的定义域是________.答案:(2k π,2k π+π),k ∈Z解析:由0<sin x ≤1得2k π<x <2k π+π(k ∈Z ).15.函数y =sin x +cos x -12的定义域为________. 答案:{x |2k π≤x ≤2k π+π3,k ∈Z }.解析:由题意知⎩⎪⎨⎪⎧ sin x ≥0cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x ≥0cos x ≥12, 如图,结合三角函数线知:⎩⎪⎨⎪⎧ 2k π≤x ≤2k π+π (k ∈Z )2k π-π3≤x ≤2k π+π3 (k ∈Z ),解得2k π≤x ≤2k π+π3(k ∈Z ), ∴函数的定义域为{x |2k π≤x ≤2k π+π3,k ∈Z }. 16.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R )有下列命题,其中正确的是________. ①y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ②y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ③y =f (x )的最小正周期为2π;④y =f (x )的图象的一条对称轴为x =-π6. 答案:①②解析:4sin ⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫2x -π6,故①②正确,③④错误. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值. 解:(1)∵|OP |=1,∴点P 在单位圆上.由正弦函数的定义得sin α=-35. (2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α. 由余弦函数的定义得cos α=45,故所求式子的值为54. 18.(12分)已知sin θ,cos θ是关于x 的方程x 2-2 2ax +a =0的两个根.(1)求实数a 的值;(2)若θ∈⎝⎛⎭⎫-π2,0,求sin θ-cos θ的值. 解:(1)∵(sin θ+cos θ)2-2sin θcos θ=1,又∵⎩⎨⎧sin θ+cos θ=2 2a ,sin θ·cos θ=a , ∴a =12或a =-14,经检验Δ≥0都成立, ∴a =12或a =-14.(2)∵θ∈⎝⎛⎭⎫-π2,0,∴a <0, ∴a =-14且sin θ-cos θ<0, ∴sin θ-cos θ=-62. 19.(12分)若函数f (x )=a -b cos x 的最大值为52,最小值为-12,求函数g (x )=-4a sin bx 的最值和最小正周期.解:当b >0时,⎩⎨⎧ a +b =52a -b =-12⇒⎩⎪⎨⎪⎧ a =1,b =32, g (x )=-4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. 当b <0时,⎩⎨⎧ a -b =52a +b =-12⇒⎩⎪⎨⎪⎧a =1,b =-32, g (x )=-4sin(-32x )=4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. b =0时不符合题意.综上所述,函数g (x )的最大值为4,最小值为-4,最小正周期为4π3. 20.(12分)如图,单摆从某点开始来回摆动,离开平衡位置的距离s (cm)和时间t (s)的函数关系是s =A sin(ω t +φ),0<φ<π2,根据图象,求:(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需要多长时间?解:(1)由图象知,34T =1112-16=34,所以T =1.所以ω=2πT=2π. 又因为当t =16时取得最大值,所以令2π·16+φ=π2+2k π, ∵φ∈⎝⎛⎭⎫0,π2. 所以φ=π6.又因为当t =0时,s =3, 所以3=A sin π6,所以A =6,所以函数解析式为s =6sin ⎝⎛⎭⎫2πt +π6. (2)因为A =6,所以单摆摆动到最右边时,离开平衡位置6cm.(3)因为T =1,所以单摆来回摆动一次需要 1s.21.(12分)设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期. (1)求f (0);(2)求f (x )的解析式;(3)已知f ⎝⎛⎭⎫α4+π12=95,求sin α的值.解:(1)f (0)=3sin ⎝⎛⎭⎫ω×0+π6=3sin π6=32. (2)∵T =2πω=π2,∴ω=4,所以f (x )的解析式为:f (x )=3sin(4x +π6). (3)由f ⎝⎛⎭⎫α4+π12=95得3sin ⎣⎡⎦⎤4⎝⎛⎭⎫α4+π12+π6=95,即sin ⎝⎛⎭⎫α+π2=35,∴cos α=35, ∴sin α=±1-cos 2α=± 1-⎝⎛⎭⎫352=±45. 22.(12分)已知函数f (x )=2cos ⎝⎛⎭⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤-π8,π2时,方程f (x )=k 恰有两个不同的实数根,求实数k 的取值范围; (3)将函数f (x )=2cos ⎝⎛⎭⎫2x -π4的图象向右平移m (m >0)个单位后所得函数g (x )的图象关于原点中心对称,求m 的最小值.解:(1)因为f (x )=2cos ⎝⎛⎭⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π, 由-π+2k π≤2x -π4≤2k π,得-3π8+k π≤x ≤π8+k π,故函数f (x )的递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ); (2)因为f (x )=2cos ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤-π8,π8上为增函数,在区间⎣⎡⎦⎤π8,π2上为减函数 又f ⎝⎛⎭⎫-π8=0,f ⎝⎛⎭⎫π8=2,f ⎝⎛⎭⎫π2=2cos ⎝⎛⎭⎫π-π4=-2cos π4=-1, ∴当k ∈[0,2)时方程f (x )=k 恰有两个不同实根. (3)∵f (x )=2sin ⎝⎛⎭⎫-2x +3π4=2sin ⎝⎛⎭⎫2x +π4=2sin2⎝⎛⎭⎫x +π8 ∴g (x )=2sin2⎝⎛⎭⎫x +π8-m = 2sin ⎝⎛⎭⎫2x +π4-2m 由题意得π4-2m =2k π,∴m =-k π+π8,k ∈Z 当k =0时,m =π8,此时g (x )=2sin2x 关于原点中心对称.。

(完整版)高中数学必修四第一章测试(可编辑修改word版)

(完整版)高中数学必修四第一章测试(可编辑修改word版)

3 2 22 2232 第一章 基本初等函数(Ⅱ)的测试时间:120 分钟 满分:150 分一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1.(2016·陕西延川县期中)半径为 π cm ,中心角为 120°的弧长为 ( ) π A.3π2cm B. 32π cm C. 3 12π2 cm D. 3cm 3π2.(2016·桂林全州学段考)如果 sin(π+A )=-2,那么 cos ( 2-A )等于( )1 A .-2 1 B.2C. D.- 3.若点 P (sin2,cos2)是角 α 终边上一点,则角 α 的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4右.图是函数 f (x )=A sin ωx (A >0ω,>0)一个周期的图象则,f (1)+f (2)+f (3) +f (4)+f (5)+f (6)的值等于()A. B.C .2+D .27πsin 10cosπ 5.给出下列各函数值:①sin100°;②cos(-100°);③tan(-100°);④ 17π .其中符号为负的是()A .①B .②C .③D .④ tan 9 π16.把函数 y =sin (x +6)图象上各点的横坐标缩短为原来的2倍(纵坐标不变),再将图象π向右平移3个单位,那么所得图象的一条对称轴方程为( )π A. x =-2 π B. x =-4 π C. x =8 1 πD. x =47.(2016·山西大同一中测试)若 0<α<2π,且 sin α< ,cos α> ,利用三角函数线得到角 α2 的取值范围是()π ππ5π π5πA.(-3,3)B.(0,3)2sin αcos α-cos αC.( 3 ,2π)D.(0,3)∪( 3 ,2π)8.化简 + 2 - - 2 等于( )1 sin α sin α cos α11 A .tan α B.C .-tan αD .-tan αtan α32 2π ππ 5π 2π 2π9. 设 a =sin 7 ,b =cos 7 ,c =tan 7 ,则()A .a <c <bB .a <b <cC .b <c <aD .b <a <cπ10.(2016·上海高考)设 a ∈R ,b ∈[0,2π].若对任意实数 x ,都有 sin (3x -3)=sin(ax +b ),则满足条件的有序实数对(a ,b )的对数为() A .1B .2C .3D .411.已知函数 f (x )=A sin(ωx +φ)+m (A >0,ω>0)的最大值是 4,最小值是 0,该函数的π π图象与直线 y =2 的两个相邻交点之间的距离为4,对任意的 x ∈R ,满足 f (x )≤|A sin (12ω+φ)|+m ,且 f (π)<f (4),则下列符合条件的函数的解析式是() π7πA .f (x )=2sin (4x +6)+2B .f (x )=2sin (2x + 6 )+2π7πC .f (x )=2sin (4x +3)+2D .f (x )=2sin (4x + 6)+212.(2016·山西榆社中学期中)函数 f (x )=A sin(ωx +φ)(A ,ω,φ 是常数,A >0,ω>0)的部分图象如图所示,下列结论:π①最小正周期为 π;②将 f (x )的图象向左平移6个单位,所得到的函数是偶函数;12π 14π 5π ③f (0)=1; ④f ( 11 )<f ( 13); ⑤f (x )=-f( 3-x ).其中正确的是( )A .①②③B .②③④C .①④⑤D .②③⑤二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.sin(-120°)cos1 290°+ cos(-1 020°)sin(-1 050°)=.14.(2016·河南灵宝高级中学期中)已知函数 f (x )=3sin (ωx -6)(ω>0)和 g (x )=2cos(2x +φ)+1 的图象的对称轴完全相同,若 x ∈[0,2],则 f (x )的取值范围是.221+2sin(3π-α)cos(α-3π)sin(α-2 )-1-sin2(2 +α)3π5π32ππ2π15.(2016·河南洛阳八中月考)函数y=f(cos x)的定义域为[2kπ-6,2kπ+3 ](k∈Z),则函数y=f(x)的定义域为.sin x+cos x+|sin x-cos x|16.已知函数f(x)=2,则下列结论正确的是.π①f(x)是奇函数;②f(x)的值域是[-,1];③f(x)是周期函数;④f(x)在[0,2]上递增.三、解答题(本大题共6 小题,共70 分)17.(10 分)化简,其中角α 的终边在第二象限.18.(12 分)已知函数y=A sin(ωx+φ)的部分图象如图所示(ω>0),试求它的表达式.1 19.(12 分)(2016·山西大同一中期中)已知α 是一个三角形的内角,且sinα+cosα=.5(1)求tanα 的值;1(2)用tanα 表示2 -并求其值.2sin αcos αx π20.(12 分)(2016·银川九中期中)已知函数f(x)=3sin(2+6)+3.(1)用五点法画出这个函数在一个周期内的图象;(必须列表)(2)求它的振幅、周期、初相、对称轴方程;(3)说明此函数图象可由y=sin x 在[0,2π]上的图象经怎样的变换得到.21.(12 分)设函数f(x)=sin(2ωx+3)++a(其中ω>0,a∈R),且f(x)的图象在y 轴右[ ]ππ3 66.A 依题意得,经过图象变换后得到的图象相应的解析式是 y =sin [2(x -π)+π]=sin 7π侧的第一个最低点的横坐标为 6.(1) 求 ω 的值;π 5π(2) 如果 f (x )在区间 - , 上的最小值为3,求 a 的值.22.(12 分)已知函数 f (x )=log a cos (2x -3)(其中 a >0,且 a ≠1).(1) 求它的定义域;(2) 求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的周期.2π 2π2详解答案1.D 120°= 3 ,∴弧长为 3,故选 D.1 1 3π12.A sin(π+A )=-2,∴sin A =2,cos ( 2 -A )=-sin A =-2,故选 A. 3.D ∵2 弧度是第二象限角∴sin2>0,cos2<0. ∴点 P 在第四象限,∴角 α 的终边在第四象限,故选 D.2π π πx4.A 易知 A =2,由ω =8,得 ω=4,∴f (x )=2sin 4,又由对称性知,原式=f (1)= π = 2,故选 A.2sin 45.B ①sin100°>0;②cos(-100°)=cos100°<0;③tan(-100°)=-tan100°>0;④∵sin7π7π 17π sin 10cosπ 10>0,cosπ=-1,tan 9<0,∴ 17π >0.其中符号为负的是②,故选 B. tan 93 6(2x -2)=π-cos2x ,注意到当 x =-2时,y =-cos(-π)=1,此时 y =-cos2x 取得最大值,因此π直线 x =-2是该图象的一条对称轴,故选 A .32 3 4π ( )( 33 3 π 2π7.D 如图示,满足 sin α< 的角 α 为(0,3)∪( 3 ,2π),满足1 π 5π cos α>2的角 α 为(0,3)∪( 3 ,2π),所以符π 5π合条件的角 α 为(0,3)∪( 3 ,2π),故选 D.8.B 原式= cos α(2sin α-1) 1-cos 2α+sin 2α-sin αcos α(2sin α-1) cos α(2sin α-1) = =2sin 2α-sin α 1= .故选 B. tan αsin α(2sin α-1) 5π 2π 2π9.D a =sin 7 =sin 7 <tan 7=c .2π π 2π 3π cos 7 =sin (2- 7 )=sin 14, 3π 2π 3π 2π∵14< 7 ,∴sin 14<sin 7.故 b <a <c . π π10.B sin (3x -3)=sin (3x -3+2π)=5π 5π ππ 4π sin (3x + 3 ),(a ,b )=(3, 3 ),又 sin (3x -3)=sin [π-(3x -3)]=sin (-3x + 3 ),(a ,b )= (-3, 3 ),因为 b ∈[0,2π],所以只有这两组.故选 B.π 2π π 11.D 由题意得Error!解得Error!由题可知周期 T =2,由T = ω =2得 ω=4,于是函π π π数 f (x )=2sin(4x +φ)+2.又由题可知 x = 是函数的对称轴,故 4× +φ=k π+ , 则 φ=k π+12 12 2π π 6(k ∈Z ),又因为 f (π)<f(4),验证选项 A 、D ,可得选项 D 正确.7π π 7π7π 3π12.C 由图象可知,A =2,T =(12-3)×4=π,∴ω=2,当 x =12时,2×12+φ= 2,∴φ= π π π,∴f (x )=2sin 2x + 故①正确;f (0)=2sin = 3,故③不正确,故选 C.13.1解析:原式=-sin120°cos210°+cos60°sin30°= 3 1 1 - 2× - )+ × =1.2 2 2331 23π π 3π 3 2π π解析:由题可知,f (x )与 g (x )的周期相同,∴T = 2 =π,∴ω=2,则 f (x )=3sin (2x -6), 当 0≤x ππ π 5π≤2x - 3 f (x )≤3. ≤2时,-6 6≤ 6 ,∴- ≤ 15.[-2,1]π 2π 1 1解析:∵2k π-6≤x ≤2k π+ 3 ,k ∈Z .∴-2≤cos x ≤1.∴f (x )的定义域为[-2,1].16.②③解析:f (x )=Error!∴f (x )的图象如图所示.依据图象可知②③正确.17. 解 : 原 式 = 1+2sin[2π+(π-α)]cos[(α-π)-2π] -sin( 2 -α)- 1-sin 2[2π+(2+α)]1+2sin (π-α)cos (α-π) (cos α-sin α)2 = = .cos α- 1-cos 2α∵α 是第二象限角,∴sin α>0,cos α-sin α<0. sin α-cos αcos α-|sin α| 于是,原式= - =-1.cos α sin αT 5π π π 2π18.解:∵2= 6 - = ,ω>0,∴T =π,ω= T =2.3 2 π π 2π ∵图象过点(3,0),∴f (3)=A sin ( 3 +φ)=0, 2π∴ 3+φ=2k π+π,k ∈Z , π令 k =0,得 φ=3.又图象过点(0, ),由 A sin (2 × 0+ )= 得,A = 3. 2 3 2π∴所求表达式为 y = sin (2x +3).19.解:(1)已知 α 是一个三角形的内角,∴0<α<π,sin α>0.3 24 2 - 2 22 2- 4 7 2 -2 π2 π1 1 24由sin α+cos α= ,得 1+2sin αcos α= ,∴2sin αcos α=- ,∴cos α<0,∴(sin α-cos α)2=1-5 25 2549 7 4 32sin αcos α= ,∴sin α-cos α= .∴sin α= ,cos α=- ,25 5 5 54∴tan α=- . 31 sin 2α+cos 2αtan 2α+1(-3)2+1 251 25 (2) = = = sin α cos α sin α cos α tan α 120.解:(1)列表(-3)2-1 = .∴ = .sin α cos α 7x π - 3 2π 3 5π 3 8π 3 11π 3 x π+ 2 6 0 π 2π 3π 2 2π y3633π x π π 2π (2) 周期 T =4π,振幅 A =3,初相 φ=6,由 + =k π+ ,得 x =2k π+ (k ∈Z )即为对称轴方程;2 6 23π π(3) ①由 y =sin x 的图象上各点向左平移 φ=6个长度单位,得 y =sin (x +6)的图象;②由 y =sin (x +6)的图象上各点的横坐标伸长为原来的 2 倍(纵坐标不变),得 y =sinx π(2+6)的图象;x π③由 y =sin (2+6)的图象上各点的纵坐标伸长为原来的 3 倍(横坐标不变),得 y =3sinx π(2+6)的图象;x πx π④由 y =3sin (2+6)的图象上各点向上平移 3 个长度单位,得 y =3sin (2+6)+3 的图象.7π π 3π 121.解:(1)依题意知,2× 6 ω+3= 2 ⇒ω= .(2)由(1)知 f (x )=sin (x +3)+ +a ,32 3+1 π π π 5π π 7π又当 x ∈[-3, 6 ]时,x +3∈[0, 6 ],1 π故-2≤sin (x +3)≤1,π 5π 1 从而 f (x )在[-3, 6 ]上取最小值-2++a . 1 3 因此- + +a = 3,解得 a = .222πππππ22.解:(1)由题意知 cos (2x -3)>0,∴2k π-2<2x -3<2k π+2(k ∈Z ).即 k π-12<x <k π+5ππ5π 12(k ∈Z ).故定义域为(k π-12,k π+12)(k ∈Z ).π π2π π(2)由 2k π≤2x -3≤(2k +1)π(k ∈Z ),得 k π+6≤x ≤k π+ 3 (k ∈Z ).即 cos (2x -3)的单调π 2π 减区间为[k π+6,k π+ 3]ππ π π(k ∈Z ).由 2k π-π≤2x -3≤2k π(k ∈Z ),得 k π-3≤x ≤k π+6(k ∈Z ).即 cos (2x -3)的单π π调增区间为[k π-3,k π+6](k ∈Z ).π πππ5π∴函数 u =cos (2x -3)在(k π-12,k π+6](k ∈Z )上是增函数,在[k π+6,k π+12)(k ∈Z )上 是减函数. ∴当 a >1 时,f (x )的单调增区间为 π π(k π-12,k π+6](k ∈Z ). π 5π单调减区间为[k π+6,k π+12)(k ∈Z ).当 0<a <1 时,f (x )的单调增区间为π 5π[k π+6,k π+12)(k ∈Z ),单调减区间为π π(k π-12,k π+6](k ∈Z ).(3)∵f (x )的定义域不关于原点对称, ∴函数 f (x )既不是奇函数,也不是偶函数.(4)∵f (x +π)=log a cos [2(x +π)-3]=log a cos (2x -3)=f (x ).∴函数 f (x )的周期为 T =π.。

人教A版数学必修四高一年级第二学期数学4第一章测试题1附答案解析.docx

人教A版数学必修四高一年级第二学期数学4第一章测试题1附答案解析.docx

高中数学学习材料马鸣风萧萧*整理制作高一年级第二学期数学4第一章测试题班级: 座号: 姓名: 得分:一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各角中,与角330°的终边相同的角是( )A .510°B .150°C .-150°D .-390°【解析】 与330°终边相同的角的集合为S ={β|β=330°+k ·360°,k ∈Z },2.把-1 485°转化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是( ) A .45°-4×360° B .-45°-4×360° C .-45°-5×360° D .315°-5×360° 【解析】 B 、C 选项中α不在0°~360°范围内,A 选项的结果不是-1 485°,只有D 正确.【答案】 D 3.3π5弧度化为角度是( )A .110°B .160°C .108°D .218°【解析】 3π5=35×180°=108°. 【答案】 C4.在半径为10的圆中,240°的圆心角所对弧长为( ) A.403π B.203π C.2003 D .4003π 【解析】 240°=240180π=43π, ∴弧长l =|α|·r =43π×10=403π,选A. 【答案】 A5.(2014·济宁高一检测)与30°角终边相同的角的集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·360°+π6,k ∈Z B .{α|α=2k π+30°,k ∈Z } C .{α|α=2k ·360°+30°,k ∈Z } D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+π6,∈Z【解析】 ∵30°=30°×π180°=π6, ∴与30°终边相同的所有角可表示为 α=2k π+π6,k ∈Z ,故选D. 【答案】 D6.cos ⎝ ⎛⎭⎪⎫-11π6等于( )A.12 B .-12C.32 D .-32【解析】 cos ⎝ ⎛⎭⎪⎫-11π6=cos ⎝ ⎛⎭⎪⎫-2π+π6=cos π6=32.【答案】 C 7.下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y2, 其中正确的个数为( )A .0B .1C .2D .3【解析】 根据诱导公式(一)可知①正确;因为sin 0=sinπ=0,故②不正确;③中因为sin π2=1>0,但π2不是第一、二象限角,故③错误;④中应为cos α=x x 2+y2,所以只有①正确,应选B. 【答案】 B8.已知α=π6+2k π(k ∈Z ),则cos 2α的值为( ) A.32 B.12 C .-12 D .-32【解析】 cos 2α=cos ⎝ ⎛⎭⎪⎫π3+4k π=cos π3=12.【答案】 B9.已知角α的终边过点P (-3,4),则sin α+cos α=( ) A.35 B .-45 C.15 D .-15【解析】 ∵r =x 2+y 2=(-3)2+42=5, ∴sin α+cos α=y +x r =15. 【答案】 C10.(2014·天水高一检测)已知点P (tan α,cos α)在第三象限,则角α在( )A .第一象限B .第二象限C .第三象D .第四象限【解析】 因为点P 在第三象限,所以tan α<0且cos α<0,从而可推得α为第二象限角.【答案】 B11.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-512 【解析】 由条件知sin α=-1-cos 2α=- 1-⎝ ⎛⎭⎪⎫12132=-513. 【答案】 B12.若tan α=2,则2sin α-cos αsin α+2cos α的值为( )A .0 B.34 C .1 D .54【解析】 2sin α-cos αsin α+2cos α=2tan α-1tan α+2=4-12+2=34.【答案】 B二、填空题(本大题共4小题,每小题5分共20分,将答案填在题中的横线上)13.若角α与角β终边相同,则α-β=________. 【解析】 根据终边相同角的定义可知: α-β=k ·360°(k ∈Z ). 【答案】 k ·360°(k ∈Z )14.当α为第二象限时,|sin α|sin α-|cos α|cos α的值是______. 【解析】 因为α为第二象限角,所以|sin α|sin α=1,|cos α|cos α=-1. 【答案】 215.(2014·潍坊高一检测)已知sin α,cos α是方程3x 2-2x +a =0的两根,则实数a 的值为______. 【解析】 由题意得⎩⎨⎧sin α+cos α=23 ①sin αcos α=a3 ②①2-2×②得1=49-23a ,所以a =-56.16.(2014·济宁高一检测)若sin ⎝ ⎛⎭⎪⎫π6-θ=33,则sin ⎝ ⎛⎭⎪⎫7π6-θ=________.【解析】 ∵sin ⎝ ⎛⎭⎪⎫π6-θ=33, ∴sin ⎝ ⎛⎭⎪⎫76π-θ=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π6-θ=-sin ⎝ ⎛⎭⎪⎫π6-θ =-33. 【答案】 -33三、解答题(本大题共2题,共20分) 17. 已知一扇形的圆心角是72°,半径等于20 cm ,求扇形的面积. 【解】 设扇形弧长为l ,∵72°=72×π180=2π5 (rad), ∴l =|α|r =2π5×20=8π(cm). ∴S =12lr =12×8π×20=80π(cm 2).18.已知α是第三象限角且tan α=2,求下列各式的值. (1)cos α,sin α; (2)4sin α-2cos α5cos α+3sin α; 【解】 (1)由tan α=2,知sin αcos α=2,sin α=2cos α,则sin 2α=4cos 2α.又因为sin 2α+cos 2α=1,所以4cos 2α+cos 2α=1,即cos 2α=15.由α在第三象限知cos α=-55.∴sin α=2cos α=-255.(2)法一 由(1)可知:原式=4×⎝ ⎛⎭⎪⎫-255-2×⎝⎛⎭⎪⎫-555×⎝ ⎛⎭⎪⎫-55+3×⎝⎛⎭⎪⎫-255=-655-1155=611,∴原式=611.法二 原式=4sin αcos α-2·cos αcos α5cos αcos α+3sin αcos α=4 tan α-25+3tan α=4×2-25+3×2=611∴原式=611。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4) (特别适合按14523顺序的省份) 必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A∩CB .B ∪C=CC .A CD .A=B=C22120s i n 等于 ( ) A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=x x 22tan 1tan 1+-5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34± D36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πx C.y=1)42sin(21++πx D. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8πD.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 12.函数2cos 1y x =+的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单调区间必修4 第一章 三角函数(2)一、选择题:1.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( ) A .θcos B. θcos - C .θcos ± D. 以上都不对 2.若角α的终边过点(-3,-2),则 ( )A .sin α tan α>0B .cos α tan α>0C .sin α cos α>0D .sin α cot α>0 3 已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( ) A 231+-B 231+- C 231- D 231+4.函数)22cos(π+=x y 的图象的一条对称轴方程是 ( )A .2π-=x B. 4π-=x C. 8π=x D. π=x5.已知)0,2(π-∈x ,53sin -=x ,则tan2x= ( ) A .247 B. 247- C. 724 D. 724-6.已知31)4tan(,21)tan(-=-=+παβα,则)4tan(πβ+的值为 ( )A .2 B. 1 C. 22D. 2 7.函数xx xx x f sin cos sin cos )(-+=的最小正周期为 ( )A .1 B. 2πC. π2D. π8.函数)32cos(π--=x y 的单调递增区间是 ( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 9.函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为 ( )A .1 B. 2 C. 3 D.23 10.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位11.已知sin(4π+α)=23,则sin(43π-α)值为 ( )A.21 B. —21C. 23D. —2312.若).(),sin(32cos 3sin 3ππφφ-∈-=-x x x ,则=φ ( )A. 6π-B.6π C. 65π D. 65π-二、填空题13.函数tan 2y x =的定义域是14.)32sin(3π+-=x y 的振幅为 初相为15.求值:00cos20sin202cos10-=_______________ 16.把函数)32sin(π+=x y 先向右平移2π个单位,然后向下平移2个单位后所得的函数解析式为_____________2)322sin(--=πx y ___________________三、解答题17 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值18.已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期;(2)函数y 的单调递增区间19. 已知βαtan tan 、是方程04332=++x x 的两根,且)2,2(ππβα-∈、, 求βα+的值20.如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线2=x 对称的函数解析式必修4 第三章 三角恒等变换(1)一、选择题:1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A 0 B12 C 32 D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan x x +=-则sin 2x 的值是 ( )A 35B 34-C 34D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A 47-B 47C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A 3365B 1665C 5665D 63656. )4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A 725-B 2425-C 2425D 7257.在3sin cos 23x x a +=-中,a 的取值域范围是 ( )A 2521≤≤aB 21≤aC 25>aD 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A 1010B 1010-C 10103D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 3cos 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53π C 、53x π=- D 、3x π=- 11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [2,2]-B 31(1,]2-- C 31[1,]2-- D 31(1,)2--12.在ABC ∆中,tan tan 33tan tan A B A B ++=,则C 等于 ( )A3π B 23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于14. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos223sin cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:17. 化简000020cos 1)]10tan 31(10sin 50sin 2[+++18. 求)212cos 4(12sin 312tan 30200--的值.19. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

(完整word版)必修四第一章练习加答案

(完整word版)必修四第一章练习加答案

必修四第一章练习一、单选题1.若角α的终边过点P (-5,12),则ααsin cos +=( )A.137-B.137C.15679 D 。

15679-2.周长为1,圆心角为rad 1的扇形的面积等于(A)1 (B )31 (C ) 91 (D)1813.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为 A .3 B .23 C .22 D .24.若角的终边落在直线上,则的值等于( ).A 。

2 B. 2- C 。

2-或2 D 。

0 5.0sin 210的值为 ( )A 12B 12-C 3D 3-6.(2015秋•友谊县校级期末)一个扇形的面积为3π,弧长为2π,则这个扇形中心角为( ) A .B .C .D .7.若0tan sin <αα,且0tan cos <αα,则角α是( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 8.与-263°角终边相同的角的集合是 A 。

{}Z k k ∈︒+︒⋅=,250360|αα B. {}Z k k ∈︒+︒⋅=,197360|αα C. {}Z k k ∈︒+︒⋅=,63360|αα D. {}Z k k ∈︒-︒⋅=,263360|αα9. 如果0tan sin <αα且0tan cos >αα,则角2α为( )A .第一象限角B .第二象限角C .第一或第二象限角D .第一或第三象限角10.已知半径为2,弧长为83π的扇形的圆心角为α,则sin α等于( )A .33.12- D .1211.与463-︒终边相同的角可以表示为(k Z)∈ ( ) A .k 360463⋅︒+︒ B .k 360103⋅︒+︒C .k 360257⋅︒+︒D .k 360257⋅︒-︒12.若角α的终边经过点(1,2)P -,则tan α的值为( ) A. 2- B. 2 C 。

12-D 。

人教A版数学必修四高一年级第二学期数学4第一章测试题1附答案解析.docx

人教A版数学必修四高一年级第二学期数学4第一章测试题1附答案解析.docx

高中数学学习材料唐玲出品高一年级第二学期数学4第一章测试题班级: 座号: 姓名: 得分:一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各角中,与角330°的终边相同的角是( )A .510°B .150°C .-150°D .-390°【解析】 与330°终边相同的角的集合为S ={β|β=330°+k ·360°,k ∈Z },2.把-1 485°转化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是( ) A .45°-4×360° B .-45°-4×360° C .-45°-5×360° D .315°-5×360° 【解析】 B 、C 选项中α不在0°~360°范围内,A 选项的结果不是-1 485°,只有D 正确.【答案】 D 3.3π5弧度化为角度是( )A .110°B .160°C .108°D .218°【解析】 3π5=35×180°=108°. 【答案】 C4.在半径为10的圆中,240°的圆心角所对弧长为( ) A.403π B.203π C.2003 D .4003π 【解析】 240°=240180π=43π, ∴弧长l =|α|·r =43π×10=403π,选A. 【答案】 A5.(2014·济宁高一检测)与30°角终边相同的角的集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·360°+π6,k ∈Z B .{α|α=2k π+30°,k ∈Z } C .{α|α=2k ·360°+30°,k ∈Z } D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+π6,∈Z【解析】 ∵30°=30°×π180°=π6, ∴与30°终边相同的所有角可表示为 α=2k π+π6,k ∈Z ,故选D. 【答案】 D6.cos ⎝ ⎛⎭⎪⎫-11π6等于( )A.12 B .-12C.32 D .-32【解析】 cos ⎝ ⎛⎭⎪⎫-11π6=cos ⎝ ⎛⎭⎪⎫-2π+π6=cos π6=32.【答案】 C 7.下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y2, 其中正确的个数为( )A .0B .1C .2D .3【解析】 根据诱导公式(一)可知①正确;因为sin 0=sinπ=0,故②不正确;③中因为sin π2=1>0,但π2不是第一、二象限角,故③错误;④中应为cos α=x x 2+y2,所以只有①正确,应选B. 【答案】 B8.已知α=π6+2k π(k ∈Z ),则cos 2α的值为( ) A.32 B.12 C .-12 D .-32【解析】 cos 2α=cos ⎝ ⎛⎭⎪⎫π3+4k π=cos π3=12.【答案】 B9.已知角α的终边过点P (-3,4),则sin α+cos α=( ) A.35 B .-45 C.15 D .-15【解析】 ∵r =x 2+y 2=(-3)2+42=5, ∴sin α+cos α=y +x r =15. 【答案】 C10.(2014·天水高一检测)已知点P (tan α,cos α)在第三象限,则角α在( )A .第一象限B .第二象限C .第三象D .第四象限【解析】 因为点P 在第三象限,所以tan α<0且cos α<0,从而可推得α为第二象限角.【答案】 B11.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-512 【解析】 由条件知sin α=-1-cos 2α=- 1-⎝ ⎛⎭⎪⎫12132=-513. 【答案】 B12.若tan α=2,则2sin α-cos αsin α+2cos α的值为( )A .0 B.34 C .1 D .54【解析】 2sin α-cos αsin α+2cos α=2tan α-1tan α+2=4-12+2=34.【答案】 B二、填空题(本大题共4小题,每小题5分共20分,将答案填在题中的横线上)13.若角α与角β终边相同,则α-β=________. 【解析】 根据终边相同角的定义可知: α-β=k ·360°(k ∈Z ). 【答案】 k ·360°(k ∈Z )14.当α为第二象限时,|sin α|sin α-|cos α|cos α的值是______. 【解析】 因为α为第二象限角,所以|sin α|sin α=1,|cos α|cos α=-1. 【答案】 215.(2014·潍坊高一检测)已知sin α,cos α是方程3x 2-2x +a =0的两根,则实数a 的值为______. 【解析】 由题意得⎩⎨⎧sin α+cos α=23 ①sin αcos α=a3 ②①2-2×②得1=49-23a ,所以a =-56.16.(2014·济宁高一检测)若sin ⎝ ⎛⎭⎪⎫π6-θ=33,则sin ⎝ ⎛⎭⎪⎫7π6-θ=________.【解析】 ∵sin ⎝ ⎛⎭⎪⎫π6-θ=33, ∴sin ⎝ ⎛⎭⎪⎫76π-θ=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π6-θ=-sin ⎝ ⎛⎭⎪⎫π6-θ =-33. 【答案】 -33三、解答题(本大题共2题,共20分) 17. 已知一扇形的圆心角是72°,半径等于20 cm ,求扇形的面积. 【解】 设扇形弧长为l ,∵72°=72×π180=2π5 (rad), ∴l =|α|r =2π5×20=8π(cm). ∴S =12lr =12×8π×20=80π(cm 2).18.已知α是第三象限角且tan α=2,求下列各式的值. (1)cos α,sin α; (2)4sin α-2cos α5cos α+3sin α; 【解】 (1)由tan α=2,知sin αcos α=2,sin α=2cos α,则sin 2α=4cos 2α.又因为sin 2α+cos 2α=1,所以4cos 2α+cos 2α=1,即cos 2α=15.由α在第三象限知cos α=-55.∴sin α=2cos α=-255.(2)法一 由(1)可知:原式=4×⎝ ⎛⎭⎪⎫-255-2×⎝⎛⎭⎪⎫-555×⎝ ⎛⎭⎪⎫-55+3×⎝⎛⎭⎪⎫-255=-655-1155=611,∴原式=611.法二 原式=4sin αcos α-2·cos αcos α5cos αcos α+3sin αcos α=4 tan α-25+3tan α=4×2-25+3×2=611∴原式=611。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年必修四第一章训练卷三角函数(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1)A. B .23 C. D .21 2.已知点33sin ,cos 44P ⎛⎫ππ ⎪⎝⎭落在角θ的终边上,且[)0,2θ∈π,则θ的值为( )A .4πB .43π C .45π D .47π 3.已知3tan 4α=,3,2α⎛⎫∈ππ ⎪⎝⎭,则cos α的值是( ) A .45±B .45 C .45-D .354.已知sin 24()5απ-=,32α⎛⎫∈π,2π ⎪⎝⎭,则sin cos sin cos αααα+-等于( ) A .17B .17-C .7-D .75.已知函数()(2)sin f x x ϕ+=的图象关于直线8x π=对称,则ϕ可能取值是( ) A .2π B .4π-C .4π D .43π 6.若点sin cos ,t ()an P ααα-在第一象限,则在[)0,2π内α的取值范围是( ) A .35,,244πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭B .5,,424πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭C .353,,2442ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .3,,244ππ3π⎛⎫⎛⎫π ⎪⎪⎝⎭⎝⎭7.已知a 是实数,则函数()1sin f x a ax +=的图象不可能是( )8.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos2y x =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度 9.电流强度I (安)随时间t (秒)变化的函数()sin 0,0,02I A x A ωϕωϕπ⎛⎫=+>><< ⎪⎝⎭的图象如右图所示,则当1100t =秒时,电流强度是( ) 此卷只装订不密封班级 姓名 准考证号 考场号座位号A .5A -B .5AC.AD .10A10.已知函数())2sin 0(y x ωθθ=+<<π为偶函数,其图象与直线2y =的某两个交点横坐标为1x 、2x ,若21x x -的最小值为π,则( )A .2ω=,2θπ=B .12ω=,2θπ=C .12ω=,4θπ=D .2ω=,4θπ=11.设0ω>,函数sin 23y x ωπ⎛⎫=++ ⎪⎝⎭的图象向右平移34π个单位后与原图象重合,则ω的最小值是( ) A .23B .43C .32D .312.如果函数(3cos 2)y x ϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,那么ϕ的最小值为( ) A .6πB .4π C .3π D .2π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知一扇形的弧所对的圆心角为54︒,半径20 cm r =,则扇形的周长为_______.14.方程1sin 4x x π=的解的个数是________.15.已知函数()2sin()f x x ωϕ+=的图象如图所示,则712f π⎛⎫= ⎪⎝⎭________.16.已知函数sin 3xy π=在区间[]0,t 上至少取得2次最大值,则正整数t 的最小值是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)求函数234sin 4cos y x x =--的最大值和最小值,并写出函数取最值时对应的x 的值.18.(12分)已知函数cos 233y a x π⎛⎫=++ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的最大值为4,求实数a 的值.19.(12分)如右图所示,函数()2cos 0,02y x x ωθωθπ⎛⎫=+∈>≤≤ ⎪⎝⎭R,的图象与y轴交于点(,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点,02A π⎛⎫⎪⎝⎭,点P 是该函数图象上一点,点00(,)Q x y 是PA的中点,当0y =0,2x π⎡⎤∈π⎢⎥⎣⎦时,求0x 的值.20.(12分)已知α是第三象限角,()()()()()()sin cos 2tan tan sin f ααααααπ-⋅π-⋅--π=-⋅-π-.(1)化简()f α;(2)若31cos 25α⎛⎫-π= ⎪⎝⎭,求()f α的值;(3)若1860α=-︒,求()f α的值.21.(12分)在已知函数()sin()f x A x ωϕ+=,x ∈R 0,002A ωϕπ⎛⎫>><< ⎪⎝⎭其中,的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.22.(12分)已知函数()sin()f x A x ωϕ+=0002A ϕωπ⎛⎫>><< ⎪⎝⎭且,的部分图象,如图所示.(1)求函数()f x 的解析式;(2)若方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根,试求a 的取值范围.2018-2019学年必修四第一章训练卷三角函数(一)答案一、选择题1.【答案】Bsin120︒=,故选B.2.【答案】D【解析】点33sin,cos44P⎛⎫ππ⎪⎝⎭即22P⎛⎝⎭;它落在角θ的终边上,且[)0,2θ∈π,∴4θ=7π,故选D.3.【答案】C【解析】∵3tan4α=,3,2α⎛⎫∈ππ⎪⎝⎭,∴cos45α==-,故选C.4.【答案】A【解析】4sin2sin()5αα=-π-=,∴sin45α=-.又32α⎛⎫∈π,2π⎪⎝⎭,∴cos35α=.∴sin cos1sin cos7αααα+=-,故选A.5.【答案】C【解析】检验sin84fϕππ⎛⎫=⎪⎝+⎭⎛⎫⎪⎝⎭是否取到最值即可.故选C.6.【答案】B【解析】sin cos0αα->且tan0α>,∴,42αππ⎛⎫∈ ⎪⎝⎭或5,4απ⎛⎫∈π⎪⎝⎭.故选B.7.【答案】D【解析】当0a=时()1f x=,C符合,当01a<<时2T>π,且最小值为正数,A符合,当1a>时2T<π,B符合.排除A、B、C,故选D.8.【答案】B【解析】sin2cos2cos2cos2cos2626333y x x x x xπ⎡ππ⎤2π2ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=--=-=-=-⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选B.9.【答案】A【解析】由图象知10A=,4112300300100T=-=,∴150T=,∴2100Tωπ==π.∴()10sinI tϕ=100π+.∵1,10300⎛⎫⎪⎝⎭为五点中的第二个点,∴11003002ϕππ⨯+=.∴6ϕπ=.∴10sin6I tπ⎛⎫=100π+⎪⎝⎭,当1100t=秒时, 5 AI=-,故选A.10.【答案】A【解析】∵()2siny xωθ=+为偶函数,∴2θπ=.∵图象与直线2y=的某两个交点横坐标为1x、2x,21minx x-=π,即minT=π,∴2ωπ=π,2ω=,故选A.11.【答案】C【解析】由函数向右平移34π个单位后与原图象重合,得34π是此函数周期的整数倍.又0ω>,∴243kωπ⋅=π,∴()32k kω=∈Z,∴min32ω=.故选C.12.【答案】A【解析】∵(3cos2)y xϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,即43cos 203ϕπ⎛⎫⨯+= ⎪⎝⎭,∴,32k k ϕ8ππ+=+π∈Z .∴136k ϕπ=-+π,∴当2k =时,ϕ有最小值6π.故选A .二、填空题13.【答案】640cm () π+ 【解析】∵圆心角35410απ=︒=,∴6l r α=⋅=π. ∴周长为640cm () π+. 14.【答案】7【解析】在同一坐标系中作出sin y x =π与14y x =的图象, 观察易知两函数图象有7个交点,所以方程有7个解. 15.【答案】0【解析】方法一,由图可知,54432T ππ=-=π,即3T 2π=, ∴3T ω2π==.∴(32sin )y x ϕ+=,将,04π⎛⎫ ⎪⎝⎭代入上式sin 04ϕ3π⎛⎫⎪⎝⎭=+. ∴4k ϕ3π+=π,k ∈Z ,则4k ϕ3π=π-. ∴2sin 447012f k 7π3ππ⎛⎛⎫== ⎫+π- ⎪⎪⎝⎭⎝⎭.方法二,由图可知,54432T ππ=-=π,即3T 2π=, 又由正弦图象性质可知, 若()0002T f x f x ⎛⎫= ⎪⎝⎭=+,∴7012434f f f ππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 16.【答案】8 【解析】6T =,则54T t ≤,∴152t ≥,∴min 8t =.三、解答题17.【答案】见解析.【解析】222134sin 4cos 4sin 4sin 14sin 22y x x x x x ⎛⎫=--=--=-- ⎪⎝⎭,令sin t x =,则11t -≤≤, ∴()2142112y t t ⎛⎫=---≤≤ ⎪⎝⎭.∴当12t =,即26x k π=+π或()26x k k 5π=+π∈Z 时,min 2y =-;当1t =-,即()22x k k 3π=+π∈Z 时,max 7y =. 18.【答案】2或1-.【解析】∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴42,333x πππ⎡⎤+∈⎢⎥⎣⎦,∴11cos 232x π⎛⎫-≤+≤ ⎪⎝⎭.当0a >,1cos 232x π⎛⎫+= ⎪⎝⎭时,y 取得最大值132a +,∴1342a +=,∴2a =. 当0a <,cos 213x π⎛⎫+=- ⎪⎝⎭时,y 取得最大值3a -+,∴34a -+=,∴1a =-,综上可知,实数a 的值为2或1-. 19.【答案】(1)6π,2;(2)023x π=或43π.【解析】(1)将0x =,y =代入函数()2cos y x ωθ=+中,得cos θ=, 因为02θπ≤≤,所以6θπ=. 由已知T =π,且0ω>,得222T ωππ===π. (2)因为点,02A π⎛⎫⎪⎝⎭,00(,)Q x y 是PA 的中点,0y =P的坐标为022x π⎛- ⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,且02x π≤≤π,所以056c 4os x ⎛⎫ ⎪⎝⎭π-=,且056646x 7ππ19π-≤≤, 从而得05664x π11π-=,或05664x π13π-=,即023x π=,或04x 3π=. 20.【答案】(1)cos α;(2);(3)12. 【解析】(1)()()()()()()sin cos 2tan sin cos tan cos tan sin tan sin f ααααααααααααπ-⋅π-⋅--π-⋅⋅===-⋅-π--⋅.(2)∵33cos cos sin 22ααα⎛⎫⎛⎫-π=π-=- ⎪ ⎪⎝⎭⎝⎭,又31cos 25α⎛⎫-π= ⎪⎝⎭,∴1sin 5α=-.又α是第三象限角,∴cos α=, ∴()f α=. (3)()()()11860cos 1860cos1860cos 536060cos60()2f f α︒︒=︒=⨯︒+=︒=-︒==-. 21.【答案】(1)()sin 226f x x π⎛⎫+ ⎝=⎪⎭;(2)[]1,2-.【解析】(1)由最低点为2,23M π⎛⎫- ⎪⎝⎭得2A =.由x 轴上相邻两个交点之间的距离为2π,得T 2=π2,即T =π,∴222T ωππ===π. 由点2,23M π⎛⎫- ⎪⎝⎭在图象上得3sin 2222ϕπ⎛⎫⎝+⨯=-⎪⎭,即sin 13ϕ4π⎛⎫=- ⎪⎝⎭+,故()223k k ϕπ+=π-4π∈Z ,∴()1126k k ϕπ=π-∈Z . 又0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴6ϕπ=,故()sin 226f x x π⎛⎫+ ⎝=⎪⎭.(2)∵,122x ππ⎡⎤∈⎢⎥⎣⎦,∴,2636x ππ7π⎡⎤+∈⎢⎥⎣⎦,当262x ππ+=,即6x π=时,()f x 取得最大值2; 当626x π7π+=,即2x π=时,()f x 取得最小值1-, 故()f x 的值域为[]1,2-.22.【答案】(1)()sin 3f x x π+=⎛⎫ ⎪⎝⎭;(2)() 1,0a ⎫∈-⎪⎪⎝⎭.【解析】(1)由图象易知函数()f x 的周期为724263T ππ⎛⎫=⨯-=π ⎪⎝⎭,1A =, 所以1ω=.方法一,由图可知此函数的图象是由sin y x =的图象向左平移3π个单位得到的, 故3ϕπ=,所以函数解析式为()sin 3f x x π+=⎛⎫ ⎪⎝⎭.方法二,由图象知()f x 过点,03π⎛⎫- ⎪⎝⎭,则sin 03ϕπ⎛⎫-+= ⎪⎝⎭,∴3k ϕπ-+=π,k ∈Z .∴3k ϕπ=π+,k ∈Z , 又∵0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴3ϕπ=,∴()sin 3f x x π+=⎛⎫ ⎪⎝⎭.(2)方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根等价于()y f x =与y a =的图象在50,3π⎛⎫⎪⎝⎭上有两个交点,在图中作y a =的图象, 如图为函数()sin 3f x x π+=⎛⎫ ⎪⎝⎭在50,3π⎛⎫ ⎪⎝⎭上的图象,当0x =时,()f x =,当53x π=时,()0f x =,由图中可以看出有两个交点时,() 1,0a ⎫∈-⎪⎪⎝⎭.。

相关文档
最新文档