北师大版七年级数学下册1.5 同底数幂的除法 教案
北师大版七年级下册数学《同底数幂的除法》整式的乘除培优说课教学复习课件
每个水分子的直径是4×10-10m,
用小数表示为
.
(2)拓展延伸:
如果一滴水的质量约为 0.05g,请根据(1) 中提供的数据回答:
①一滴水中大约有多少个水分子?
用科学记数法表示
.
②如果把一滴水中的水分子依次排成一列 (中间没有空隙),能排多少米?
用科学记数法表示
.
课堂小结
这节课你学到了哪些知识? 用科学记数法表示小于1的正数与表示大于10
只要m,n都是整数,就有am÷an=am-n成立!
我们前面学过 的运算法则是否
也成立呢?
反馈练习:
下面的计算是否正确?如有错误请改正
(1) b6÷b2 =b3 ;
(2) a10÷a-1 =a9 ;
(3) (-bc)4÷(-bc)2 = -b2c2 ; (4) xn+1÷x2n+1 =x-n .
反馈练习: 计算
假设一种可入肺颗粒物的直径约为 2.5μm,相当于多少米?
多少个这样的颗粒物首尾连接起来能 达到1m?与同伴交流
2. 估计1张纸的厚度大约是多少厘 米.你是怎样做的?与同伴交流
课堂练习
基础练习: (1)用科学记数法表示下列各数,并在计算
器上表示出来: 0.000 000 72; 0.000 861; 0.000 000 000 342 5
一般地,一个小于1的正数可以用 科学记数法表示为:
a× 10n (其中1≤a<10,n是负整数)
怎样确 定a和n?
巩固落实
1.用科学记数法表示下列各数: 0.000 000 000 1= 0.000 000 000 002 9= 0.000 000 001 295=
2.下面的数据都是用科学记数法表示的, 请你用小数把它们表示出来:
北师大版七年级数学下册1.3同底数幂的除法第1课时优秀教学案例
3.作业总结:学生在完成作业的过程中,总结自己的学习收获和不足,提高自主学习能力。
五、案例亮点
1.生活情境引入:通过设置与学生生活密切相关的情境,引发学生的兴趣和思考,如讨论手机信号强度的表示方法,引入幂的概念。这种教学方式能够激发学生的学习兴趣,提高学生对知识的理解和记忆。
2.同伴评价:学生之间进行互相评价,给予他人建设性的意见和建议,培养良好的评价习惯。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,激发学生的学习积极性。
四、教学内容与过程
(一)导入新课
1.生活情境引入:教师通过展示手机信号强度的图片,引导学生思考如何表示信号的强度,从而引入幂的概念。
(四)总结归纳
1.教师引导:教师引导学生总结本节课所学知识,明确同底数幂的除法法则及其应用。
2.学生总结:学生根据自己的学习体验,总结同底数幂的除法运算方法和技巧。
3.课堂小结:教师对课堂学习内容进行梳理和总结,巩固学生对同底数幂的除法法则的理解。
(五)作业小结
1.作业布置:教师布置具有针对性的作业,让学生巩固所学知识,提高学生的数学应用能力。
3.例题讲解:教师选取具有代表性的例题进行讲解,引导学生掌握同底数幂的除法运算方法。
(三)学生小组讨论
1.小组划分:教师根据学生的学习特点和能力,合理划分学习小组,鼓励学生互相帮助、共决问题的方法,培养团队协作能力。
3.问题解决:学生通过小组合作,共同解决问题,体会数学的乐趣。
(三)小组合作
1.小组划分:根据学生的学习特点和能力,合理划分学习小组,鼓励学生互相帮助、共同进步。
数学同底数幂的除法教案
数学同底数幂的除法教案1、掌握同底数幂的除法法则2、掌握应用运算法则进行计算.重点:同底数幂的法则的推导过程和法则本身的理解.难点:灵活应用同底数幂相除法则来解决问题.认真阅读教材p123~124页,弄清楚以下知识:1、同底数幂相除的法则:(注意指数的取值范围)2、同底数幂相除的一般步骤:1、完成课内练习部分(写在预习本上)2. 计算(1)a9a3(2) 21227(3)(-x)4(-x)(4)(-3)11(-3)8(5)10m10n (mn)(6)(-3)m(-3)n (mn)你还有哪些地方不是很懂?请写出来。
___________________________________________________________ ___________________________________________________________ ___________________________________________________________ _____________________预习检测:1. 一种液体每升含有1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1 滴杀菌剂可以杀死109 个此种细菌。
要将1升液体中的有害细菌全部杀死需要这种杀菌剂多少滴?2.计算下列各式:(1)108 105 (2)10m10(3)(3)m(3)n (4)(-ab)7(ab)4计算:(1) a7(2) (-x)6(-x)3;(3) (xy)4(-xy) ;(4) b2m+2b2 .注意①幂的指数、底数都应是最简的;②底数中系数不能为负;③幂的底数是积的形式时,要再用一次(ab)n=an an.2 、练一练:(1)下列计算对吗?为什么?错的请改正.①a6a2=a3 ②S2S=S3③(-C)4(-C)2=-C2④(-x)9(-x)9=-1(1) x4n+1x 2n-1x2n+1= ?(2)已知ax=2 ay=3 则ax-y= ?(3)已知ax=2 ay=3 则 a2x-y= ?(4)已知am=4 an=5 求a3m-2n的值。
七下数学课堂学习经历案--同底数幂的除法2
4.用科学记数法表示下列数:
(1)0.00001(2)0.00002
(3)0.000000567(4)0.000000301.
四、作业布置
一.选择题
1.华为Mate30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为堂”
学习经历案
一、目标引领
1.课题名称:北师大版 七年级 下册 数学 第一章 1.3同底数幂的除法(第2课时)
2.达成目标:
(1)会用科学记数法表示小于1的正数
(2)体验一些小于1的正数,建立对小于1的正数的感受
3.课前准备建议:
(1)复习初一上册学过科学记数法
(a:,n:)
例4一粒花粉的直径大约是0.00005m,大约多少粒花粉首尾连结起来能达到1米?请将问题中的数据表示成科学记数法。
知识链接:常见的长度单位
千米(km)1km=10³m
分米(dm)1dm=
厘米(cm)1cm=
毫米(mm)1mm=
微米( )1 =
纳米(nm)1nm=
三、当堂检测
1.人体血液中的血小板直径约为0.000002m,数字0.000002用科学记数法表示为.
(1)0.003009;
(2)﹣0.00001096;
(3)0.000329.
7.有一句谚语说:“捡了芝麻,丢了西瓜.”据测算,5万粒芝麻才200g,你能换算出1粒芝麻有多少克吗?(结果用科学记数法表示)
五、总结反思(学生填写)
六、错题纠正(学生填写)
a:n:
例1用科学记数法表示下列各数:
同底数幂的除法课件(北师大版七年级下)
有n个10
2021/3/11
6
解题思路
解:(根据幂的定义) (3) (-3)m ÷ (-3)n
有m个(-3)
(-3) ● (-3) …… (-3)
= (-3) ● (-3) …… (-3)
= (-3) m-n
n个(-3)
2021/3/11
7
总结规律 ——幂的除法的一般规律
am ÷ a n
2021/3/11
2
每一滴可杀109个病毒 每升液体1012个病毒.
要把一升液体中所 有病毒全部杀死,
需要药剂多少滴?
除法运算:
1012
2021/3/11
÷ 109
= 103(滴)
3
做一做 计算下列各式,并说明理由(m>n)
(1) 108 ÷ 105 = (2) 10m ÷ 10n = (3) (-3)m ÷ (-3)n =
1.5 同底数幂的除法
2003年在广州地区流行
的“非典型肺炎”,经专家 的研究,发现是由一种“病 毒”引起的,现有一瓶含有 该病毒的液体,其中每升含 有1012个病毒。
医学专家进行了实验,
发现一种药物对它有特殊的 杀灭作用,每一滴这种药物, 可以杀死109个病毒。
要把一升液体中的所有
病毒全部杀死,需要这种药 剂多少滴?
(5)62m+1 ÷ 6 m = 62m+1-m= 6m+1
2021/3/11
13
习题 下面的计算是否正确?如有错误, 请改正:
(1) a6 ÷ a1 = a 错误,应等于a6-1 = a5
(2)b6 ÷ b3 = b2 错误,应等于b6-3 = b3 (3) a10 ÷a9 = a 正确.
北师大版七下数学1.3同底数幂的除法教案
北师大版七下数学1.3同底数幂的除法教案一. 教材分析《北师大版七下数学》1.3节主要介绍同底数幂的除法运算。
本节内容是在学习了同底数幂的乘法运算的基础上进行的,是指数运算的一个重要组成部分。
同底数幂的除法运算规则是:同底数幂相除,底数不变,指数相减。
本节内容通过实例讲解和练习,使学生掌握同底数幂的除法运算方法,并能灵活运用。
二. 学情分析学生在学习本节内容之前,已经学习了同底数幂的乘法运算,对指数运算有一定的了解。
但学生在运用规则时,容易出错,特别是对底数和指数的理解不够深入,容易混淆。
因此,在教学过程中,需要加强对学生的引导,让学生深刻理解同底数幂的除法运算规则,并通过大量练习,提高学生的运算能力。
三. 教学目标1.理解同底数幂的除法运算规则,能正确进行同底数幂的除法运算。
2.培养学生逻辑思维能力和运算能力。
3.培养学生独立思考和合作交流的能力。
四. 教学重难点1.同底数幂的除法运算规则的理解和运用。
2.指数的减法运算的准确性。
五. 教学方法1.采用实例讲解,让学生通过观察和分析,发现同底数幂的除法运算规则。
2.采用小组合作交流的方式,让学生在讨论中加深对运算规则的理解。
3.通过大量练习,提高学生的运算能力。
六. 教学准备1.准备相关的实例,用于讲解和引导学生发现运算规则。
2.准备练习题,用于巩固所学内容。
3.准备多媒体教学设备,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过一个实例,让学生计算两个同底数幂的除法运算,引导学生发现运算规则。
2.呈现(10分钟)讲解同底数幂的除法运算规则,并用多媒体展示,让学生深刻理解。
3.操练(15分钟)让学生进行同底数幂的除法运算练习,教师巡回指导,纠正错误。
4.巩固(10分钟)让学生进行小组合作交流,共同完成一些综合性的练习题,加深对运算规则的理解。
5.拓展(5分钟)引导学生思考同底数幂的除法运算在实际生活中的应用,让学生体会数学的实用性。
6.小结(5分钟)总结本节课所学内容,强调同底数幂的除法运算规则,提醒学生注意事项。
七年级数学下册《1.3.2 同底数幂的除法》教案 (新版)北师大版
4.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.00000007平方毫米,那么这个数用科学记数法表示为__________平方毫米.
5.1本100张纸的书大约厚0.9 cm,则一张纸约厚______m.
6.一种塑料颗粒是边长为1毫米的小正方体,它的体积是多少立方米(用科学记数法表示)?若用这种塑料颗粒制成一个边长为1米的正方体塑料块,要用多少个颗粒?
同底数幂的除法公式为am÷an=am-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?
从学生已有的知识入手,引入课题
新知探索
例题
精讲
合作探究
探究点:用科学记数法表示较小的数
【类型一】用科学记数法表示绝对值小于1的数
2014年6月18日中商网报道,一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为()
A.3.5×104米B.3.5×10-5米
C.3.5×10-4米D.3.5×10-9米
2.一块10000 m2的足球场,它的百万分之一大约有 【】
A.一个大拇指头大B.一只手掌大
C.一张桌子大D.一张床大
3.1 ml的水大约可以滴10滴,1杯水约250 ml,则一滴水占一杯水的【】
A.4×10-4B.4×10-5
1.3.2同底数幂的除法
教学目标
1.理解并掌握科学记数法表示小于1的数的方法;
2.能将用科学记数法表示的数还原为原数.
教学重、难点
重点:理解并掌握科学记数法表示小于1的数的方法;
北师大版七年级册下数学1.3.1同底数幂的除法(教案)
2.案例分析:接下来,我们来看一个具体的案例。假设我们有2^5 / 2^2,通过同底数幂除法,我们可以直接得到2^3。这个案例展示了同底数幂除法在实际中的应用,以及它如何帮助我们解决问题。
-同底数幂除法的应用:通过典型例题,重点训练学生将同底数幂除法应用于实际问题的能力,如科学计数法、比例计算等。
举例:讲解同底数幂除法概念时,可举例2^5 / 2^2 = 2^(5-2) = 2^3,强调指数相减的重要性。
2.教学难点
-理解同底数幂除法法则:学生可能难以理解为什么底数相同、指数相减的幂可以相除,需要通过具体实例和图形直观展示。
本节课的核心素养目标旨在培养学生具备扎实的数学基础和良好的数学思维能力,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
-同底数幂除法的概念:重点讲解同底数幂除法的定义,即a^m / a^n = a^(m-n),强调底数相同且指数相减的规律。
-同底数幂除法的运算性质:详细阐述同底数幂除法的运算性质,如负指数、零指数幂的特殊情况,以及如何与其他幂运算结合。
-难点2:讲解负指数和零指数幂时,可用2^0 = 1(任何数的零次幂都是1)和2^(-3) = 1 / 2^3(负指数表示倒数)来具体说明。
-难点3:针对高级运算,如(2^5 / 2^2) * (3^2 / 3^4),需要引导学生先进行同底数幂的除法运算,再进行乘法运算,即2^3 * 3^(-2) = 2^3 / 3^2。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
北师大版数学七年级下册《同底数幂的除法》教案
北师大版数学七年级下册《同底数幂的除法》教案一. 教材分析《同底数幂的除法》是北师大版数学七年级下册第9章幂的运算中的一节内容。
本节课主要让学生掌握同底数幂的除法法则,并能灵活运用该法则进行计算。
教材通过引入实际问题,引导学生探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在七年级上册已经学习了幂的定义、幂的运算性质等基础知识,对幂的概念有一定的了解。
但是,对于同底数幂的除法运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,帮助学生理解和掌握同底数幂的除法运算。
三. 教学目标1.知识与技能目标:让学生掌握同底数幂的除法法则,能够正确进行同底数幂的除法运算。
2.过程与方法目标:通过探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:同底数幂的除法法则。
2.难点:同底数幂的除法运算的灵活运用。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学素养。
六. 教学准备1.教师准备:熟练掌握同底数幂的除法运算,了解学生的学习情况,准备相关案例和问题。
2.学生准备:回顾幂的定义和运算性质,准备好笔记本和笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾幂的定义和运算性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示同底数幂的除法运算的案例,引导学生观察和分析,提出问题:“如何进行同底数幂的除法运算?”3.操练(10分钟)教师引导学生分组讨论,共同探讨同底数幂的除法法则。
学生在小组内进行练习,教师巡回指导。
4.巩固(10分钟)教师挑选几组学生代表的答案,进行讲解和分析,巩固学生对同底数幂的除法法则的理解。
5.拓展(10分钟)教师提出一些有关同底数幂的除法运算的实际问题,引导学生运用所学知识进行解决,提高学生的解决问题的能力。
北师大版七年级数学下册第一章1.3同底数幂的除法优秀教学案例
3.小组合作培养团队精神:组织学生进行小组讨论,鼓励学生分享自己的观点和思路,培养了学生的团队协作能力和沟通能力,使学生在讨论中发现问题、解决问题,提高了学生的抽象思维能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示超市购物的图片,引导学生关注商品价格标签中的数学信息,激发学生对同底数幂除法运算的兴趣。
2.提出“购物预算”问题,让学生在解决实际问题的过程中,自然地引入同底数幂的除法运算。
3.通过情境导入,让学生感受到数学与生活的紧密联系,激发学生对数学学习的热情。
教学目标的设计旨在让学生在掌握知识与技能的基础上,形成积极的学习态度,培养良好的学习习惯和团队协作能力,提高学生的综合素质,为他们的可持续发展奠定基础。
三、教学策略
(一)情景创设
1.利用多媒体展示超市购物的图片,引导学生关注商品价格标签中的数学信息,激发学生对同底数幂除法运算的兴趣。
2.设计“购物预算”问题,让学生在解决实际问题的过程中,自然地引入同底数幂的除法运算。
3.引导学生运用归纳总结的方法,自主发现同底数幂的除法运算规律,培养学生的逻辑推理能力和抽象思维能力。
(三)情感态度与价值观
1.通过解决实际问题,让学生感受到数学与生活的紧密联系,提高学生对数学学习的兴趣和热情。
2.培养学生勇于尝试、克服困难的勇气,增强学生的自信心和自尊心。
3.通过对幂的运算规律的学习,让学生认识到数学知识的系统性和连贯性,培养学生的整体思维和归纳总结能力。
北师大版七年级数学下册第一章1.3同底数幂的除法优秀教学案例
一、案例背景
北师大版七年级数学下册教案
北师大版七年级数学下册教案(一)1.5 同底数幂的除法教学目标:1.了解同底数幂除法的运算性质,并解决一些实际问题。
2.理解零指数幂和负指数幂的意义。
3.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力;提高学生观察、归纳、类比、概括等能力。
4.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养。
教学重点:会进行同底数幂的除法运算。
教学难点:同底数幂的除法法则的总结及运用。
教学方法:尝试练习法,讨论法,归纳法。
教学过程:一、情境引入活动内容:一种液体每升含有 10 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,9发现1滴杀虫剂可以杀死 10 个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的? 12二、了解同底数幂除法的运算及应用活动内容:活动1先让学生作“做一做”:计算下列各式,并说明理由(m>n)(1)108105; (2)10m10n; (3)(3)m(3)n;从中归纳出同底数幂除法的运算性质。
从上面的练习中你发现了什么规律? 。
mn猜一猜:a a a0,m,n都是正整数,且m>n。
三、同底数幂除法运算的应用活动内容:例1计算:1)a7a4; (2)(x)6(x)3; (3)(xy)4(xy);(4)b2m2b2; (5)(m n)8(n m)3; (6)(m)4(m)2.例2:地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。
例如用里克特震级表示地震是8级,说明地震的强度是10。
1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。
加利福尼亚地震强度是荷兰地震强度的多少倍?(学生先想一想,再进行小组讨论,互相补充完善,并派代表回答) 7四、探索零指数幂和负整数指数幂的意义活动内容:想一想:10000=104 , 16=241000=10(), 8=2()100=10() , 4=2()10=10(), 2=2()猜一猜:1=10() 1=2()0.1=10() 1 =2()21() =241 =2()8 0.01=10() 0.001=10()例3 计算:用小数或分数分别表示下列各数:(1)103(2)7082;(3)1.610 4北师大版七年级数学下册教案(二)1.6 整式的乘法(一)教学目标:1.经历探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则。
北师大版七年级下册数学教案全册
三、提高练习:1、1、计算 5(P3)4·(-P2)3+2[(-P)2]4·(-P5)2[(-1)m]2n+1m-1+02002―(―1)19902、若(x2)n=x8,则m=_____________.3、、若[(x3)m]2=x12,则m=_____________。
4、若x m·x2m=2,求x9m的值。
5、若a2n=3,求(a3n)4的值。
6、已知a m=2,a n=3,求a2m+3n的值.板书设计:课后体会:1.4 积的乘方教学目的:1、经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2、了解积的乘方的运算性质,并能解决一些实际问题。
教学重点:积的乘方的运算教学难点:正确区别幂的乘方与积的乘方的异同。
教学方法:探索、猜想、实践法教学用具:课件教学过程:一、课前练习:1、计算下列各式:4 整式的乘法(3)——多项式乘以多项式 教学目标1.理解和掌握单项式与多项式乘法法则及其推导过程.2.熟练运用法则进行单项式与多项式的乘法计算.3.通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的和谐美、简洁美. 教学重点、多项式与多项式乘法的法则及应用. 教学难点:多项式乘法法则的推导过程以及法则的应用 教学过程: 一、 课前练习:1、 计算:(1)________)3(3=-xy (2)________)23(23=-y x (3)________)102(47=⨯- (4)_________)()(2=-⋅-x x(5)_________)(62=-⋅-a a (6)_____)(53=-x(7)______)(532=⋅-a a (8)______)()2(2532=-⋅-bc a b a2、计算:(1))132(22---x x x(2))6)(1253221(xy y x --+-二、 探索练习:如图,计算此长方形的面积有几种方法?如何计算? 小组讨论 你从计算中发现了什么?多项式与多项式相乘, 三、 巩固练习: 1、计算下列各题:(1))3)(2(++x x (2))1)(4(+-a a (3))31)(21(+-y y(4))436)(42(-+x x (5))3)(3(n m n m -+ (6)2)2(+x5 平方差公式(二)教学目的:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.教学重点和难点:公式的应用及推广教学过程一、复习提问1.(1)用较简单的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.希望推出公式:2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.3.判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×) (2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×) (4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1 运用平方差公式计算:(1)102×98; (2)(y+2)(y-2)(y2+4).解:(1)102×98 (2)(y+2)(y-2)(y2+4)=(100+2)(100-2) =(y2-4)(y2+4)=1002-22=10000-4 =(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;3.请每位同学自编两道能运用平方差公式计算的题目.例2 填空:(1)a2-4=(a+2)( );(2)25-x2=(5-x)( );(3)m2-n2=( )( );思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习空:1.x2-25=( )( );2.4m2-49=(2m-7)( );3.a4-m4=(a2+m2)( )=(a2+m2)( )( );例3 计算:(1)(a+b-3)(a+b+3); (2)(m2+n-7)(m2-n-7).三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样判断一个多项式的乘法问题是否可以用平方差公式?四、布置作业P39知1问1补充运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:板书设计:课后体会:6完全平方公式(1)教学目标:知识与技能:完全平方公式的推导及其应用过程与方法经历探索完全平方公式的过程,进一步发展符号感和推理能力情感态度与价值观:在灵活应用公式的过程中激发学生学习数学的兴趣,培养创新能力和探索精神教学重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用教学难点:理解完全平方公式的结构特征并能灵活应用公式进行计算教学方法与手段:探究与讲练相结合一、准备活动:利用整式的乘法计算下列各题:(1)(m + n)2(2)(m - n)2 (3)(a + 2b)2(4)(a - 2b)2二、巩固引入:1、叙述平方差公式的内容,使用的条件,得出的结果。
七年级数学下册《同底数幂的除法》教案、教学设计
3.学生的学习兴趣和积极性,对于数学基础薄弱的学生,教师应关注其心理需求,激发学习兴趣,提高学习积极性。
4.学生的合作交流能力,在教学过程中,教师应鼓励学生积极参与讨论,培养学生的团队协作能力。
三、教学重难点和教学设想
2.通过实际例题和练习,培养学生运用同底数幂的除法解决实际问题的能力。
3.引导学生运用逆向思维,将同底数幂的除法与乘法进行对比,提高学生的思灵活性。
4.利用数形结合的方法,帮助学生直观地理解同底数幂的除法法则。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生的学习积极性。
2.培养学生勇于探索、善于合作的精神,增强学生的团队意识。
4.注重分层教学,针对不同学生的学习需要,提供个性化的指导和支持。
-设想实施:对基础薄弱的学生提供额外的辅导,对学有余力的学生提供拓展练习,以满足不同学生的学习需求。
5.强化课堂小结和课后反思,帮助学生巩固知识,形成知识网络。
-设想实施:每节课结束时,引导学生进行自我小结,回顾学习内容和收获,教师及时给予评价和鼓励。
3.培养学生严谨、认真的学习态度,养成独立思考和解决问题的习惯。
4.通过数学知识的学习,使学生认识到数学在现实生活中的应用价值,增强学生的学以致用意识。
教学设计:
1.导入:通过复习同底数幂的乘法,引导学生发现同底数幂的除法规律。
2.新课:讲解同底数幂的除法法则,通过例题和练习,让学生掌握该法则。
3.课堂练习:设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.利用信息技术辅助教学,如多媒体演示、网络资源等,增强学生对知识点的直观感受。
北师大版七年级数学教案下册全套.doc
【北师大版】七年级下册数学教案全套【七年级下教案|全套】目录第一章整式的运算 (1)1.1整式 (2)1.2 整式的加减(1) (6)1.2整式的加减(2) (9)1.3 同底数幂的乘法(一) (11)1.4幂的乘方与积的乘方(1) (16)1.4 积的乘方 (19)1.5同底数幂的除法 (21)1.6 单项式的乘法 (23)1.6整式的乘法(2) (26)1.6 整式的乘法(3)——多项式乘以多项式 (29)1.7平方差公式(1)(P29~P30) (31)1.7 平方差公式(二) (33)1.8完全平方公式(1) (37)1.8完全平方公式(2) (39)1.9整式的除法(1)(P39~P41) (41)1.9 多项式除以单项式 (43)第二章平行线与相交线 (48)2.1台球桌面上的角 (48)2.2探索直线平行的条件(1) (51)2.2探索直线平行的条件(2) (53)2.3 平行线的性质(1) (55)2.4用尺规作线段和角(1) (60)2.4 用尺规作角 (63)第三章生活中的数据 (67)3.2 近似数与有效数字 (69)3.3世界新生儿图(1) (72)3.3世界新生儿图(2)(P88~P89) (75)第四章概率 (77)4.1 游戏公平吗(1) (77)4.1游戏公平吗(2) (79)4.2摸到红球的概率 (81)4.3停留在黑砖上的概率 (84)第五章三角形 (87)5.1认识三角形(1) (87)5.2 认识三角形(2) (89)5.1认识三角形(3) (95)5.1 认识三角形(4) (98)5、2图形的全等 (100)5、3图案设计 (102)5.4全等三角形 (104)5.5探索三角形全等的条件(1) (108)5.5探索三角形全等的条件(2) (111)5.5《边角边》第1课时 (116)5.6作三角形 (120)5.7利用三角形全等测距离 (124)5.8探索直角三角形全等的条件 (127)第六章变量之间的关系 (132)6、1小车下滑的时间 (132)6.2变化中的三角形 (135)6.3 温度的变化 (137)6.4速度的变化 (139)第七章生活中的轴对称 (144)7、1轴对称现象 (144)7.2简单的轴对称图形 (146)7.2简单的轴对称图形 (150)7.3探索轴对称的性质 (153)7.4利用轴对称设计图案 (155)7.5 镜子改变了什么 (159)7.6镶边与剪纸 (162)北师大版实验教科书七年级下册第一章整式的运算一、值得讨论的问题:1、符号感的含义是什么?如何培养学生的符号感?符号感主要表现在“能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表示的问题”。
同底数幂的除法(第1课时)教学课件北师大版中学数学七年级(下)
1 1
1
1
6
-1
-1-6
=
(2)3 ÷3 = 6 =
=3
3 3 3 36 37
只要m,n都是整数,
1
就有am÷an=am-n成立
2
0
-2
=(8)
(3)(-8) ÷(-8) = 1
2
(8)
-3
-5
随堂训练
1.下列说法正确的是 ( D )
A.(π-3.14)0没有意义
B.任何数的0次幂都等于1
C.(8×106)÷(2×109)=4×103
D.若(x+4)0=1,则x≠-4
A
3.下面的计算对不对?如果不对,请改正.
(1)a a a ;
5
5
解:不正确,改正:a5 a a 4;
10
(-xy)
4 4
(2)
=
x
y .
6
(-xy)
10
( - xy)
4
4 4
解:不正确,改正:
xy
(1)怎样列式?
1012÷109
(2)视察这个算式,它有何特点?
我们视察可以发现,1012 和109这两个幂的底数相
同,是同底的幂的情势.
我们把1012 ÷109这种情势的运算叫作同底数幂的除法.
知识讲授
同底数幂的除法
根据同底数幂的乘法法则进行计算:
24×26= 210
52×53= 55
a2×a5= a7
x
y .
6
( - xy)
4.计算:
(1)x8÷x2 ;
(2) a4 ÷a ;
(3)(ab) 5÷(ab)2;(4)(-)7÷(-)
新北师大版七年级数学下册全册教案(打印版)
1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。
过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
情感、态度、价值观:提高学生学习数学的兴趣。
教学重点和难点:幂的运算性质.教学过程:一、实例导入:二、温故:2.,指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、知新:1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·a n=a m+n.3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则:同底数幂相乘,底数不变,指数相加。
注意:强调幂的底数必须相同,相乘时指数才能相加.四、巩固:例1计算:(1) (-3)7×(-3)6;(2)(1/111)3×(1/111).(3) -x3·x5(4)b2m·b2m+1..例2、光在真空中的速度约为3×108米/秒,泰阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?五、拓展:1、计算:(1)105·106;(2)a7·a3;(3)y3·y2;(4)b5·b; (5)a6·a6;(6)x5·x5.2、计算:(1)y12·y6;(2)x10·x;(3)x3·x9;(4)10·102·104;(5)y4·y3·y2·y;(6)x5·x6·x3.六、课堂小结:1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.5.若底数是多项式时,要把底数看成一个整体进行计算。
北师大版七年级下册1.3.2同底数幂的除法---用科学记数法表示较小的数(教案)
-通过具体例题和练习题,反复强调同底数幂的除法法则和科学记数法的运用,帮助学生加深记忆。
-设计具有实际背景的问题,引导学生将问题抽象为数学模型,并运用所学知识解决。
-在教学中注重启发式教学,鼓励学生提问和思考,及时纠正学生容易出现的错误,提高其对知识点的理解程度。
五、教学反思
今天在教授同底数幂的除法以及科学记数法表示较小的数这一章节时,我发现学生们对这两个概念的理解程度有所不同。有些学生能迅速掌握法则和转换方法,但也有一些学生在实际运用中感到困惑。这让我意识到,在今后的教学中,我需要更加关注以下几个方面:
首先,对于同底数幂的除法法则,我应通过更多具体的实例来帮助学生加深记忆,让他们在实际计算中能够熟练运用。同时,针对学生容易出现的错误,如指数相减的错误,我可以设计一些针对性的练习题,帮助他们巩固知识点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“科学记数法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.应用同底数幂的除法法则将较小的数转换为科学记数法:通过实例演示,让学生掌握如何将较小的数表示为科学记数法,并运用同底数幂的除法法则进行计算。
4.习题练习:布置相关习题,巩固学生对同底数幂的除法和科学记数法的理解和应用。
本节课内容旨在帮助学生掌握同底数幂的除法,并能够运用科学记数法表示较小的数,提高学生的数学运算能力和数学思维。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
七年级数学下册1.5同底数幂的除法教案北师大版【教案】
1.5同底数幂的除法班级 ________姓名 ________一、学习目标与要求:1、认识同底数幂除法的运算性质,并解决一些实质问题2、理解零指数幂和负指数幂的意义3.在进一步领会幂的意义的过程中,发展推理能力和有条理的表达能力;提升察看、归纳、类比、归纳等能力二、要点与难点:要点:认识同底数幂除法的运算性质;理解零指数幂和负指数幂的意义难点:理解零指数幂和负指数幂的意义三、学习过程:复习稳固: 1、回首积的乘方法例:____________________________________2、计算:( 1)( 3a)3(2)(mn2 ) a3、已知(a n b m 1 )3a9b18,则m=_________,n=____________(谈谈你的方法)探究发现:一、探究同底数幂除法的性质1、你可否用从前学过的知识解决下边的问题(要求:能说出你的计算方法的道理)(1)108105(2)10m10 n(3)( 3)m( 3)n2、你可否计算出a m a n=________________3、察看上边你的计算,你能得出什么猜想?_____________________________________4、此刻你认识同底数幂除法的性质了吗?(在下边写出来)同底数幂除法法例:同底数幂相除,底数_______________,指数 ________________专心爱心专心二、稳固与练习例 1 计算(请利用同底数幂的除法的性质进行计算,并归纳计算的注意事项或许技巧)(1) a7a4(2)(x)6( x)3(3) ( xy)4( xy)(4)b2m 2b2稳固练习: 1. 计算:(1) (3)6 ( 3)2 (2) ( x)7 ( x) (3) 62m 1 6m 22(4) 5n 153 n 1(5)(ab)5( ab)2(6)(m n)8( n m)32.下边的计算能否正确?若有错误请更正(1) a6 a a6 (2) b6 b3 b2(3) a10 a9 a (4) ( bc )4 ( bc) 2 b2c2三、探究零指数幂和负整数指数幂(要求:经过学习弄清什么是零指数幂和负整数指数幂,它们的意义是什么)1. 依据已有知识看一看下边这些数的关系:16=24、8=2( ) 、4=2( ) 、 2=2( )了吗?按这个规律持续探究新知1=2( ) 、1=2( ) 、1=2( ) 、1=2(),你找到规律,你发现什么248了?把你的发现说给其余同学听!2.计算:a2a2假如用同底数幂除法法例,其结果等于_________;依据你已有的知识,你认专心爱心专心为还有其余结果吗?________________ 于是,你能获得什么结论:______________________.计算:5254假如用同底数幂乘法法例,结果等于__________;你还可以计算出其余结果吗?______,你有能获得什么结论:____________________经过上边的探究,能够知道:a0=_______________()a p=______________()3.运用上边结论,将以下个数化成小数或分数(1) 10-3(2)708 2(3)1.6 10 4(4)空气的密度是 1.293 10 3克/厘米3,用小数把它表示出来学习小结:谈一谈本节课你的收获专心爱心专心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5 同底数幂的除法
教学目标:1.了解同底数幂除法的运算性质,并解决一些实际问题。
2.理解零指数幂和负指数幂的意义。
3.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能
力;提高学生观察、归纳、类比、概括等能力。
4.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素
养。
教学重点:会进行同底数幂的除法运算。
教学难点:同底数幂的除法法则的总结及运用。
教学方法:尝试练习法,讨论法,归纳法。
教学过程:
一、情境引入
活动内容:一种液体每升含有 1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死 109 个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?
二、了解同底数幂除法的运算及应用
活动内容:活动1先让学生作“做一做”:
计算下列各式,并说明理由(m>n )
;1010)1(58÷ ;1010)2(n m ÷ ;)3()3)(3(n m -÷-
从中归纳出同底数幂除法的运算性质。
从上面的练习中你发现了什么规律? 。
猜一猜:()n m n m a a a n m >都是正整数,且,,0≠=÷。
三、同底数幂除法运算的应用
活动内容:例1计算:
;)1(47a a ÷ ;)())(2(36x x -÷- );())(3(4xy xy ÷
;)4(222b b m ÷+ ;)())(5(38m n n m -÷- .)())(6(24m m -÷-
例2:地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。
例如用里克特震级表示地震是8级,说明地震的强度是7
10。
1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。
加利福尼亚地震强度是荷兰地震强度的多少倍?
(学生先想一想,再进行小组讨论,互相补充完善,并派代表回答) 四、探索零指数幂和负整数指数幂的意义
活动内容:想一想:
10000=104 , 16=24
1000=10(), 8=2()
100=10() , 4=2()
10=10(), 2=2()
猜一猜:
1=10() 1=2()
0.1=10() 2
1 =2()
0.01=10() 4
1=2()
0.001=10() 8
1 =2()
例3 计算:用小数或分数分别表示下列各数:
五、练习与提高
活动内容:(一)基础题
1.下列计算中错误的有( )
5210)1(a a a =÷ 55)2(a a a a =÷
235)())(3(a a a -=-÷- 33)4(0=
A.1个
B.2个
C.3个
D.4个
2.计算()()2232a a -÷的结果正确的是( )
A.2a -
B.2a
C.-a
D.a
3.用科学记数法表示下列各数:
(1)0.000876 (2)-0.0000001
(二)能力题
4.计算:(1)()())2(2224y x x y y x -÷-÷-
(2)()()[]()()989y x x y y x y x --÷-÷-+
5.计算=÷÷3927m m
6.若b a y x ==3,3,求的y x -23的值
六、课堂小结
活动内容:师生互相交流本节课的内容以及应用和需要注意的问题。
七、布置作业课本P 24 习题1.7 知识技能 第1,2题
教学反思
4
203106.1)3(;87)2(10)1(---⨯⨯。