北师大版初一下册知识点汇总
北师大版《数学》(七年级下册)知识点总结
北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。
七年级下册数学北师大版知识点总结
七年级下册数学北师大版知识点总结
一、数与式
1、按数轴给出区间,在区间内求有限个数的等差数列和等比数列和中项;
2、利用已知条件解动态系统;
3、两倍求和公式——全部求和公式,并应用;
4、等比数列求和公式的应用;
5、能够把多项式的标准根式换成指数表达式,指数表达式换成标准根式;
6、求多项式根;
二、几何
1、三角形的等份,三角形两边和夹角关系;
2、求J类锐角三角形的角平分线,斜边中点到另两边的距离;
3、极点、极角、极径的概念,求给出三角形的极点和极角;
4、旋转:比喻法、直线点式、方程式;
5、点是否在椭圆内,求椭圆外一点到椭圆上的切线;
6、判断两圆的关系;
7、求给定的圆的切线方程,由两点式求第三点的坐标;
三、弧与面
1、求三角形的外接圆;
2、求圆弧上一点的切线与覆盖圆内一点的切线;
3、球面、圆台面、球磨比较;
4、求圆锥、圆柱的体积;
四、统计
1、求分类数据的众数、比例;
2、求统计量:最大值、最小值、中位数、平均数;
3、应用统计量求特定分类数据及误差;
4、直方图及其应用;
5、图表中图例的意义;
五、概率
1、区间的概念;
2、十架统一概念;
3、概率的概念,求统一概念的概率;
4、随机变量的概念;
5、概率分布的概念及特点;
6、正态分布的概念和应用;。
(word完整版)北师大版七年级数学下册全部知识点归纳(新),推荐文档
第一章:整式的运算「单项式整式(I 多项式f同底数幕的乘法幕的乘方 I 积的乘方幕运算 1同底数幕的除法零指数幕I 负指数幕 f 整式的加减 厂单项式与单项式相乘 单项式与多项式相乘 整式的乘法 < 多项式与多项式相乘J 整式运算'平方差公式乂完全平方公式单项式除以单项式\整式的除法 *•多项式除以单项式一、 单项式1都是数字与字母的乘积的代数式叫做单项式。
2、 单项式的数字因数叫做单项式的系数。
3、 单项式中所有字母的指数和叫做单项式的次数。
4、 单独一个数或一个字母也是单项式。
5、 只含有字母因式的单项式的系数是 1或一1。
6、 单独的一个数字是单项式,它的系数是它本身。
7、 单独的一个非零常数的次数是 0。
8、 单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、 单项式的系数包括它前面的符号。
10、 单项式的系数是带分数时,应化成假分数。
11、 单项式的系数是1或一1时,通常省略数字“ 1”。
12、 单项式的次数仅与字母有关,与单项式的系数无关。
二、 多项式1、 几个单项式的和叫做多项式。
2、 多项式中的每一个单项式叫做多项式的项。
3、 多项式中不含字母的项叫做常数项。
4、 一个多项式有几项,就叫做几项式。
5、 多项式的每一项都包括项前面的符号。
6、 多项式没有系数的概念,但有次数的概念。
7、 多项式中次数最高的项的次数,叫做这个多项式的次数。
三、 整式1、 单项式和多项式统称为整式。
2、 单项式或多项式都是整式。
3、 整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减整 式的 运1整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、 几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、 几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
北师大版七年级数学下册知识点梳理
北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
北师大版七年级数学下册数学各章节知识点总结
北七下知识要点分章梳理第一章:整式的运算单项式式 多项式 同底数幂的乘法 幂的乘方 积的乘方 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式 单项式 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法 多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤: (1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤: (1)代数式化简。
北师大版初一下册数学知识点总结
七年级数学下册全部知识点归纳第一章:整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
北师大七年级数学下册知识点总结
北师大版七年级数学下册知识点总结第一章 整式的运算一、整式1、单项式:表示数与字母的积的代数式。
另外规定单独的一个数或字母也是单项式。
单项式中的数字因数叫做单项式的系数。
注意系数包括前面的符号,系数是1时通常省略,π是系数,72xyz -的系数是72- 单项式的次数是指所有字母的指数的和。
2、多项式:几个单项式的和叫做多项式。
(几次几项式)每一个单项式叫做多项式的项,注意项包括前面的符号。
多项式的次数:多项式中次数最高的项的次数。
项的次数是几就叫做几次项,其中不含字母的项叫做常数项。
3、整式;单项式与多项式统称为整式。
(最明显的特征:分母中不含字母)4、排列多项式:①按某一个字母降幂排列:某一个字母的指数由大到小排列; ②按某一个字母升幂排列:某一个字母的指数由小到大排列。
二、整式的加减:①先去括号; (注意括号前有数字因数)②再合并同类项。
(系数相加,字母与字母指数不变)三、幂的运算性质1、同底数幂相乘:底数不变,指数相加。
m n m n a a a +=•2、幂的乘方:底数不变,指数相乘。
nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。
n n n b a ab =)( 4、零指数幂:任何一个不等于0的数的0次幂等于1。
10=a (0≠a ) 注意00没有意义。
5、负整数指数幂: p p a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减。
m n m n a a a -=÷注意:以上公式的正反两方面的应用。
常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。
五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。
(完整版)北师大版七年级下册数学知识点总结
北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。
p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
北师大版七年级数学下全部知识点归纳
北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。
整 式 多项式: 。
同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。
对顶角的性质:垂线的性质:性质1:过一点有 。
性质2:连接直线外一点 。
平行线的性质:1、平行公里:过 性质2:平行于 平行。
整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。
三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。
任意三角形都有三条角平分线,并且它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。
这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。
北师大版七年级数学下册知识点总结
北师大版七年级数学下册知识点总结一、整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n(m、n 为正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m、n为正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方。
- 法则:积的乘方等于乘方的积。
即(ab)^n=a^n b^n(n为正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。
- 例如:5^5÷5^3 = 5^5 - 3=5^2。
5. 零指数幂。
- 规定:a^0 = 1(a≠0)。
6. 负整数指数幂。
- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。
- 例如:2^-3=(1)/(2^3)=(1)/(8)。
7. 整式的乘法。
- 单项式乘以单项式:系数相乘,同底数幂相乘。
例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。
- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(x + 3)=2x^2+6x。
- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。
8. 整式的除法。
- 单项式除以单项式:系数相除,同底数幂相除。
例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。
- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。
2024年初一下册数学知识点总结北师(3篇)
2024年初一下册数学知识点总结北师第一单元:自然数与整数1. 自然数:0、1、2、3、4、5……,它们可以用来表示物体的数量。
2. 整数:自然数及其相反数与零的集合,包括正整数、负整数和零。
3. 整数的加法:同号相加得更大的数,异号相加得正数减去绝对值较大的数。
4. 整数的减法:a-(-b) = a + b,a-(-b) = a-b。
5. 整数的乘法:正数相乘为正数,负数相乘为负数,0与任何数相乘为0。
6. 整数的除法:除数不为0时,两正数相除为正数,两负数相除为正数,正数除以负数为负数。
7. 素数与合数:只有两个相异因数1和自身的整数是素数,可以被除了1和自身外的其他数整除的整数是合数。
第二单元:有理数1. 有理数:可以表示成两整数之比的数,包括整数、分数和小数。
2. 分数的加法与减法:分母相同,分子相加(减);分母不同,通分后分子相加(减)。
3. 分数的乘法与除法:分子相乘(除),分母相乘(除)。
4. 有理数的相反数与数轴:任何有理数与其相反数的和为0,数轴上,正数在右侧,负数在左侧。
5. 有理数的比较与排序:将有理数转化为分数后比较其大小。
第三单元:代数的基本概念1. 代数:利用字母(变量)表示数的运算。
2. 代数式:由字母、数字和运算符号组成的式子。
3. 项与系数:含有加减号的代数式可以分解成若干项,每一项中字母的指数与系数的乘积称为项的系数。
4. 等式:左右两边的值相等的代数式称为等式。
5. 解方程:通过变换等式的形式找到使等式成立的未知数的值。
第四单元:一次方程与消元法1. 一次方程:未知数的最高次数为1的方程。
2. 解一元一次方程:通过变换等式的形式找到使等式成立的未知数的值。
3. 消元法:通过两个方程的相加、相减或相乘消除其中一个未知数,以求解另一个未知数。
第五单元:图形的认识与运用1. 平面图形:点、线段、直线、射线、角、三角形、矩形、正方形、平行四边形、菱形、梯形、圆等。
2. 两条直线的位置关系:平行、相交、重合。
北师大版七年级数学下册全部知识点归纳
北师大版七年级数学下册全部知识点归纳如下:一、比例与比例关系1.比例的概念及表示方法2.比例的性质:比例恒定、比例的交叉相等、比例中项的乘积等于其他项的乘积3.比例的应用:物体的相似性、航空地图的比例尺等二、利用比例解决问题1.比例数值法:已知两个比例相等,求其中一个比例的值2.比例线段法:利用线段的比例关系解决问题3.比例面积法:利用面积的比例关系解决问题三、数的四则运算1.加法与减法2.乘法与除法3.括号的运算顺序4.分数的加法与减法四、图形的认识与变换1.平面图形的基本要素:点、线、线段、射线、角、平行线、垂直线、四边形等2.平面图形的分类及特点:三角形、四边形、正方形、矩形、平行四边形、菱形、梯形等3.图形的移动:平移、旋转、翻转4.图形的轴对称与中心对称五、数与式1.代数表达式的定义与基本运算:合并同类项、提取公因式、乘法公式、分配律等2.正数、负数与零的概念与表示方法3.数轴的概念与使用方法4.方程的概念与解的方法六、面积与体积1.平面图形的面积:矩形、三角形、平行四边形、正方形等2.立体图形的体积:长方体、正方体、棱柱、棱锥等3.圆的面积与周长七、统计与概率1.数据的整理与分析:频数表、直方图、折线图等2.概率的基本概念与计算方法:可能性、事件、概率的计算公式等3.点阵图与统计问题的探究八、函数与方程1.函数的概念与表示方法:自变量、因变量、函数值等2.函数的图象与性质3.一次函数与一元一次方程九、三角形与三角函数1.三角形的面积与三角形的性质:直角三角形、等腰三角形、等边三角形等2.三角函数的引入与基本概念:正弦、余弦、正切等3.利用三角函数解决实际问题以上是北师大版七年级数学下册的全部知识点。
不同章节的知识点内容可能会有所不同,如有遗漏请谅解。
希望以上内容对您有所帮助!。
2024年北师大版七年级数学下册知识点总结(二篇)
2024年北师大版七年级数学下册知识点总结第一章:方程与不等式1.方程的概念:包含未知数的等式称为方程。
方程的解是使得方程成立的数。
2.解方程:通过变量的运算和移项,求出方程的解。
3.解一元一次方程:如ax+b=0,解得x=-b/a。
4.方程的证明:通过逆向思维,将给定的解代入方程,验证等式是否成立。
5.不等式的概念:含有不等于号的等式称为不等式,如ax>b。
6.解不等式:通过移项,求出不等式的解的范围。
7.不等式的证明:将给定的解代入不等式,验证不等式是否成立。
第二章:数据的收集和整理1.数据的表示:通过表格、图表和线段、折线图等图示进行数据的表示,便于观察和分析。
2.数据的整理:对收集到的数据进行整理,包括分类、排序、求最大值、最小值、众数、中位数等。
3.统计的总体与样本:通过抽取一部分数据作为样本,对总体数据进行概括和判断。
第三章:图形的认识1.点、线、面的概念:几何图形由点、线、面组成。
2.平行线与垂直线:平行线的特点是永不相交,垂直线的特点是相交成直角。
3.多边形:具有多个边的几何图形称为多边形,如三角形、四边形、五边形等。
4.正多边形:具有相等边长和相等内角的多边形。
5.对称图形:具有对称性的图形,可以通过某一条线进行折叠重合。
6.图形的相似性:具有相等比例关系的图形称为相似图形。
7.平移、旋转和翻折:运用平移、旋转和翻折等操作,使得图形位置和形态发生变化。
第四章:四边形1.四边形的概念:具有四个边的图形称为四边形,包括梯形、平行四边形、矩形、菱形、正方形等。
2.梯形:有两个底边,两个腰。
3.平行四边形:具有相对边平行的四边形。
4.矩形:具有四个直角的四边形,对角线相等。
5.菱形:具有四个相等边的四边形,对角线互相垂直。
6.正方形:具有四个相等边且具有对称性的四边形。
第五章:比例与相似1.比例的概念:比例是指两个或多个量之间的比值关系。
比值相等时称为成比例。
2.比例的性质:比例的性质包括交换律、放大和缩小、分配律等。
北师大版七年级下册数学复习提纲(完美版面)
北师大版七年级下册数学复习提纲(完美版面)第一章有理数- 1.1 有理数的概念- 1.1.1 整数的概念和分类- 1.1.2 有理数的概念和表示方法- 1.2 有理数的运算- 1.2.1 加法运算- 1.2.2 减法运算- 1.2.3 乘法运算- 1.2.4 除法运算- 1.3 有理数的比较- 1.3.1 正数和负数的比较- 1.3.2 有理数的大小比较第二章平方根- 2.1 平方根的概念- 2.1.1 平方根的定义和性质- 2.2 平方根的计算- 2.2.1 平方根的估算- 2.2.2 平方根的精确计算- 2.2.3 平方根的应用- 2.3 平方根的运算- 2.3.1 平方根的加法与减法- 2.3.2 平方根的乘法与除法第三章初步认识代数- 3.1 代数的基本概念- 3.1.1 代数的定义和发展- 3.1.2 代数中的字母和数字- 3.2 数学语言及运算法则- 3.2.1 代数式的表示- 3.2.2 代数运算法则- 3.3 字母的应用- 3.3.1 字母的应用问题- 3.3.2 代数式的化简与展开第四章分式与整式- 4.1 分式的概念- 4.1.1 分式的定义和性质- 4.2 分式的运算- 4.2.1 分式的加法与减法- 4.2.2 分式的乘法与除法- 4.3 整式的基本概念- 4.3.1 整式的定义和分类- 4.3.2 整式的加法与减法- 4.3.3 整式的乘法与除法第五章算式的根式表示- 5.1 平方根表达式与算式- 5.1.1 平方根表达式的转化- 5.1.2 平方根表达式的计算- 5.2 立方根表达式与算式- 5.2.1 立方根表达式的转化- 5.2.2 立方根表达式的计算- 5.3 算式的根式表示的应用- 5.3.1 算式的根式表示的实际应用- 5.3.2 表达式化简与问题解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版初一数学定理知识点汇总[七年级下册]第一章 整式一. 整式 ★1. 单项式①由数与字母的 积组成的 代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的 系数是这个单项式的 数字因数,作为单项式的 系数,必须连同数字前面的 性质符号,如果一个单项式只是字母的 积,并非没有系数.③一个单项式中,所有字母的 指数和叫做这个单项式的 次数. ★2.多项式①几个单项式的 和叫做多项式.在多项式中,每个单项式叫做多项式的 项.其中,不含字母的 项叫做常数项.一个多项式中,次数最高项的 次数,叫做这个多项式的 次数.②单项式和多项式都有次数,含有字母的 单项式有系数,多项式没有系数.多项式的 每一项都是单项式,一个多项式的 项数就是这个多项式作为加数的 单项式的 个数.多项式中每一项都有它们各自的 次数,但是它们的 次数不可能都作是为这个多项式的 次数,一个多项式的 次数只有一个,它是所含各项的 次数中最高的 那一项次数. ★3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的 加减¤1. 整式的 加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘. 三. 同底数幂的 乘法★同底数幂的 乘法法则: nm nmaa a +=⋅(m,n 都是正数)是幂的 运算中最基本的 法则,在应用法则运算时,要注意以下几点:①法则使用的 前提条件是:幂的 底数相同而且是相乘时,底数a 可以是一个具体的 数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的 乘法与整式的 加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为pn m pnmaa a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)四.幂的 乘方与积的 乘方 ★1. 幂的 乘方法则:mnn m a a =)((m,n 都是正数)是幂的 乘法法则为基础推导出来的 ,但两者不能混淆.★2. ),()()(都为正数n m a a a mn mn nm ==.★3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a nn n ★4.底数有时形式不同,但可以化成相同。
★5.要注意区别(ab )n 与(a+b )n 意义是不同的 ,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。
★6.积的 乘方法则:积的 乘方,等于把积每一个因式分别乘方,再把所得的 幂相乘,即nnnb a ab =)((n 为正整数)。
★7.幂的 乘方与积乘方法则均可逆向运用。
五. 同底数幂的 除法★1. 同底数幂的 除法法则:同底数幂相除,底数不变,指数相减,即nm nmaa a -=÷ (a ≠0,m 、n 都是正数,且m>n).★2. 在应用时需要注意以下几点:①法则使用的 前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的 数的 0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义.③任何不等于0的 数的 -p 次幂(p 是正整数),等于这个数的 p 的 次幂的 倒数,即p paa1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的 ;当a>0时,a -p 的 值一定是正的 ; 当a<0时,a -p 的 值可能是正也可能是负的 ,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.六. 整式的 乘法★1. 单项式乘法法则:单项式相乘,把它们的 系数、相同字母分别相乘,对于只在一个单项式里含有的 字母,连同它的 指数作为积的 一个因式。
单项式乘法法则在运用时要注意以下几点:①积的 系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的 错误的 是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的 乘法法则;③只在一个单项式里含有的 字母,要连同它的 指数作为积的 一个因式; ④单项式乘法法则对于三个以上的 单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
★2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的 分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的 每一项,再把所得的 积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的 项数相同; ②运算时要注意积的 符号,多项式的 每一项都包括它前面的 符号; ③在混合运算时,要注意运算顺序。
★3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的 每一项乘以另一个多项式的 每一项,再把所得的 积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的 方法是:在没有合并同类项之前,积的 项数应等于原两个多项式项数的 积;②多项式相乘的 结果应注意合并同类项;③对含有同一个字母的 一次项系数是1的 两个一次二项式相乘ab x b a x b x a x +++=++)())((2,其二次项系数为1,一次项系数等于两个因式中常数项的 和,常数项是两个因式中常数项的 积。
对于一次项系数不为1的 两个一次二项式(mx+a )和(nx+b )相乘可以得到ab x ma mb mnx b nx a mx +++=++)())((2 七.平方差公式¤1.平方差公式:两数和与这两数差的 积,等于它们的 平方差, ★即22))((b a b a b a -=-+。
¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的 平方差,即相同项的 平方与相反项的 平方之差。
八.完全平方公式¤1. 完全平方公式:两数和(或差)的 平方,等于它们的 平方和,加上(或减去)它们的 积的 2倍,¤即2222)(b ab a b a +±=±;¤口决:首平方,尾平方,2倍乘积在中央; ¤2.结构特征:①公式左边是二项式的 完全平方;②公式右边共有三项,是二项式中二项的 平方和,再加上或减去这两项乘积的 2倍。
¤3.在运用完全平方公式时,要注意公式右边中间项的 符号,以及避免出现222)(b a b a ±=±这样的 错误。
九.整式的 除法¤1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的 因式,对于只在被除式里含有的 字母,则连同它的 指数作为商的 一个因式; ¤2.多项式除以单项式多项式除以单项式,先把这个多项式的 每一项除以单项式,再把所得的 商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的 项数与原多项式的 项数相同,另外还要特别注意符号。
第二章 平行线与相交线一.台球桌面上的 角★1.互为余角和互为补角的 有关概念与性质如果两个角的 和为90°(或直角),那么这两个角互为余角; 如果两个角的 和为180°(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的 ,而且两个概念强调的 是两个角的 数量关系,与两个角的 相互位置没有关系。
它们的 主要性质:同角或等角的 余角相等; 同角或等角的 补角相等。
二.探索直线平行的 条件★两条直线互相平行的 条件即两条直线互相平行的 判定定理,共有三条: ①同位角相等,两直线平行; ②内错角相等,两直线平行; ③同旁内角互补,两直线平行。
三.平行线的 特征★平行线的 特征即平行线的 性质定理,共有三条: ①两直线平行,同位角相等; ②两直线平行,内错角相等; ③两直线平行,同旁内角互补。
四.用尺规作线段和角 ★1.关于尺规作图尺规作图是指只用圆规和没有刻度的 直尺来作图。
★2.关于尺规的 功能直尺的 功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的 功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第三章 生活中的 数据★1.利用四舍五入法取一个数的 近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的 数字起,到精确到的 数位止,所有的 数字都叫做这个数的 有效数字。
★2.统计工作包括:①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。
第四章 概率★1.随机事件发生与不发生的 可能性不总是各占一半,都为50%。
★2.现实生活中存在着大量的 不确定事件,而概率正是研究不确定事件的 一门学科。
★3.了解必然事件和不可能事件发生的 概率。
必然事件发生的 概率为1,即P (必然事件)=1;不可能事件发生的 概率为0,即P (不可能事件)=0;如果A 为不确定事件,那么0<P(A)<11 2必然发生不可能发生1★4.了解几何概率这类问题的 计算方法事件发生概率=图形面积所有可能结果所组成的成的图形面积事件所有可能结果所组第五章 三角形一.认识三角形1.关于三角形的 概念及其按角的 分类由不在同一直线上的 三条线段首尾顺次相接所组成的 图形叫做三角形。
这里要注意两点:①组成三角形的 三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的 顶点。
三角形按内角的 大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的 关系根据公理“连结两点的 线中,线段最短”可得三角形三边关系的 一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的 另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的 长分别为a 、b 、c 则:①一般地,对于三角形的 某一条边a 来说,一定有|b-c|<a <b+c 成立;反之,只有|b-c|<a <b+c 成立,a 、b 、c 三条线段才能构成三角形;②特殊地,如果已知线段a 最大,只要满足b+c >a ,那么a 、b 、c 三条线段就能构成三角形;如果已知线段a 最小,只要满足|b-c|<a ,那么这三条线段就能构成三角形。