平行四边形基本知识点
《平行四边形》基本知识点总结
《平行四边形》基本知识点总结一.平行四边形:1:定义:两组对边分别平行的四边形是平行四边形.2.性质(1)边:平行四边形两组对边分别平行且相等;(2)角:平行四边形的邻角互补,对角相等;(3)对角线:平行四边形的对角线互相平分;(4)两条平行线间的平行线段相等,平行线间的距离处处相等。
(5)过平行四边形两对角线的交点的直线将平行四边形的面积二等分。
3.判定:(1)边:①(定义法):两组对边分别平行的四边形是平行四边形②两组对边分别相等的四边形是平行四边形③一组平行且相等的四边形是平行四边形(2)角:两组对角分别相等的四边形是平行四边形(3)对角线:对角线互相平分的四边形是平行四边形4:有关面积:(1)如图1:S = AB·CF = AD·CE(2)如图2: S△AOB =S△COB=S△COD= S△AOD(依据:等底等高的两三角形面积相等)(3)如图3:S△ABC =S△CBD,S△AOD= S△COD(依据:等底等高的两三角形面积相等)S△AOB :S△AOD=BO:OD,S△AOD:S△COD=AO:OC,(依据:等高不等底的两三角形面积之比等于对应底之比)5:三角形中位线(1)定义:连接三角形两边中点的线段是三角形的中位线(2)定理:三角形的中位线平行于第三边,并且等于第三边的一半(3)中点四边形:顺次连结四边形各边中点所得的四边形叫中点四边形,它是平行四边形二、矩形:1:定义:有一个角是直角的平行四边形是矩形,2:性质:(1)矩形具备平行四边形的所有性质(2)矩形的四个角都是直角(3)对角线相等;3:判定:(1)(定义法):有一个角是直角的平行四边形是矩形,(2)有三个角是直角的四边形是矩形(3)对角线互相平分且相等的四边形是矩形(4)对角线相等的平行四边形是矩形4:直角三角形两重要性质:(1)在直角三角形中,30°的角所对直角边等于斜边的一半。
(2)直角三角形斜边上的中线等于斜边的一半。
(完整版)平行四边形基本知识点总结
(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。
以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。
性质
1. 对边平行性质:平行四边形的两组对边分别平行。
2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。
3. 内角和性质:平行四边形的内角的和为180度。
4. 外角性质:平行四边形的外角的和为360度。
5. 对边长度性质:平行四边形的对边长度相等。
6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。
7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。
判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。
2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。
特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。
2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。
相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。
2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。
以上是关于平行四边形的基本知识点总结。
通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。
数学平行四边形重要知识点
数学平行四边形重要知识点
平行四边形(Parallelogram),是在同一个二维平面内,由两组平行线段组成的闭合图形。
下面是店铺整理的数学平行四边形重要知识点,欢迎阅览。
1、平行四边形的概念
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。
2、平行四边形的性质
(1)平行四边形的邻角互补,对角相等。
(2)平行四边形的对边平行且相等。
推论:夹在两条平行线间的平行线段相等。
(3)平行四边形的对角线互相平分。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的'交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×高=ah
【数学平行四边形重要知识点】。
平行四边形基础知识点
A BCDADCCB平行四边形知识点总结1、平行四边形(1)定义:两组对边分别平行的四边形叫做平行四边形。
记作ABCD。
(如右图:AB∥CD,AD∥BC)(2)性质:①对边相等②对角相等,邻角互补③对角线互相平分(3)判定:定义:两组对边分别平行的四边形叫做平行四边形。
两组对边分别相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
(4)面积 = 底×高(5)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。
2、矩形(特殊的平行四边形)(1)定义:有一个角是直角的平行四边形叫做矩形。
(2)性质:①四个角都是直角②对角线相等(3)判定:对角线相等的平行四边形是矩形。
有三个角是直角的四边形是矩形。
(4)面积= 长X宽(5)矩形既是轴对称图形又是中心对称图形。
矩形的对称中心是矩形对角线的交点;矩形有两条对称轴,矩形的对称轴是过矩形对边中点的直线;矩形的对称轴过矩形的对称中心。
3、菱形(特殊的平行四边形)(1)定义:有一组邻边相等的平行四边形叫做菱形。
(2)性质:①四条边都想等②两条对角线互相垂直,且每条对角线平分一组对角(3)判定:对角线互相垂直的平行四边形是菱形。
四条边相等的四边形是菱形。
(4)菱形ABCD的对角线是AC、BD,则菱形的面积公式是:S=底×高,S=12AC BD⨯⨯(5)菱形既是中心对称图形又是轴对称图形,菱形的对称中心是菱形对角线的交点,菱形的对称轴是菱形对角线所在的直线,菱形的对称轴过菱形的对称中心。
4、两条平行线之间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离。
5、三角形的中位线定理:平行于三角形的第三边,且等于第三边的一半。
6、直角三角形性质:直角三角形斜边上的中线等于斜边的一半。
1.(2016•徐州)如图,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等边三角形,E 是AC的中点,连接BE并延长,交DC于点F,求证:(1)△ABE≌△CFE;(2)四边形ABFD是平行四边形.2.(2016•梅州)如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD 上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;[来源:学+科+网](2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.3.(2015•扬州)如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.4.(2016•青岛)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点0.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由.。
平行四边形知识点归纳和题型归类
平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。
2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。
3.面积:S = 底 ×高。
4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。
角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。
对角线:有一组对边相等,且互相平分的四边形是平行四边形。
要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。
要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。
3.面积:S = 长 ×宽。
4.判定:有四个角都是直角的平行四边形是矩形。
要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。
要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。
3.面积:S = 对角线之积的一半。
4.判定:有一组对边平行且相等的四边形是菱形。
要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。
3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。
4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。
平行四边形初中知识点
平行四边形初中知识点
一、平行四边形的定义。
1. 两组对边分别平行的四边形叫做平行四边形。
- 用符号“▱”表示平行四边形,例如平行四边形ABCD记作“▱ABCD”。
二、平行四边形的性质。
1. 边的性质。
- 平行四边形的对边平行且相等。
- 即若▱ABCD,则AB = CD,AD = BC;AB∥CD,AD∥BC。
2. 角的性质。
- 平行四边形的对角相等,邻角互补。
- 在▱ABCD中,∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。
3. 对角线的性质。
- 平行四边形的对角线互相平分。
- 若▱ABCD,对角线AC、BD相交于点O,则AO = CO,BO = DO。
三、平行四边形的判定。
1. 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
2. 角的判定。
- 两组对角分别相等的四边形是平行四边形。
3. 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
四、平行四边形的面积。
1. 平行四边形的面积等于底乘以高。
- 若平行四边形的底为a,这条底边上的高为h,则面积S = ah。
- 同底(等底)等高的平行四边形面积相等。
平行四边形知识点
A BC DO 平行四边形的性质和判断知识点:一、平行四边形的性质基本概念1、定义:有两组对边分别平行的四边形叫做平行四边形2、图形语言:3、符号语言平行四边形:平行四边形性质(从边、角、对角线、对称性四个方面学习记忆) 性质:1.(边)两组对边分别平行且相等.2. (角) 两组对角分别相等.邻角互补3.(线)对角线互相平分.4.(对称性)中心对称--对称中心为对角线交点.二、【例题讲解】小明用一根36米长的绳子围成了一个平行四边形的场地,其中一条边AB 长8米,其他三条边各长多少?∠A=60°,求其它各角?∠B 的外角为60°,求这个四边形的各内角的度数。
【轻松试一试】1.如图,AB ∥DE,BC ∥EF,CA ∥FD.图中有几个平行四边形?将它们表示出来,并说明理由.AFD2. 已知如图4.2-8,中,EF ∥DC,试说明图中平行四边形的个数.NMH G F E D CBA图4.2-8角的计算:1、中, BC=2AB, CA ⊥AB,则∠B=______度,∠CAD=______度.DCB A2中,∠A : ∠B=3:2,则∠C=___ 度,∠D=______度.边及周长的计算1、如图,平行四边形的对角线相交于点O ,BC=7㎝,BD=10㎝,AC=6㎝。
求△AOD 的周长。
2平行四边形的周长是100cm, AB:BC=4:1,则AB 的长是_______。
3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.4.用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.平行四边形的判断平行四边形的四个(或五个)判定方法,这些判定的方法是: 从边看: ①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形.从对角线看:对角线互相平分的四边形是平行四边形.(从角看:两组对角分别相等的四边形是平行四边形.)【例题讲解】已知:如图,ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE=DF .分析:证明BE=DF ,可以证明两个三角形全等,也可以证明四边形BEDF 是平行四边形,比较方法,可以看出第二种方法简单. 证明:∵ 四边形ABCD 是平行四边形, ∴ AD ∥CB ,AD=CD . ∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC .∴ DE=BF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形). ∴ BE=DF .例2、已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F .求证:四边形BEDF 是平行四边形.分析:因为BE ⊥AC 于E ,DF ⊥AC 于F ,所以BE ∥DF .需再证明BE=DF ,这需要证明△ABE 与△CDF 全等,由角角边即可.证明:∵ 四边形ABCD 是平行四边形, ∴ AB=CD ,且AB ∥CD . ∴ ∠BAE=∠DCF .∵ BE ⊥AC 于E ,DF ⊥AC 于F ,∴ BE ∥DF ,且∠BEA=∠DFC=90°. ∴ △ABE ≌△CDF (AAS ). ∴ BE=DF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形)例3、 已知:如图3,E 、F 是平行四边形ABCD 对角线AC 上两点,且AE =CF 。
5第五讲平行四边形初步
第五讲平行四边形初步第一部分知识梳理一、平行四边形的性质1.两组对边分别_____ 的四边形叫做平行四边形.它用符号“口“表示,平行四边形ABCD 记作__________ 。
2.平行四边形的两组对边分别_______ 且_____ ;平行四边形的两组对角分别______ : 两邻角______ :平行四边形的对角线_______ :平行四边形的面积=底边长x _________ .3.在L UBCD中,若ZA-Z5=40°,贝lJZA= _________ , ZB= _________ .4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为 ____________ .5.若L UBCD的对角线AC平分ZDAB,则对角线AC与BD的位置关系是_________ ・6.如图,LL坊CD中,CE丄AB,垂足为£,如果ZA = 115°,则ZBCE= ____________ .7. _______________________________________________________________ 如图,在LL拐CD 中,DB=DC、ZA=65。
,CE丄BD 于E,则ZBCE= _____________________二、平行四边形的判定1.平行四边形的判左方法有:从边的条件有:①两组对边__________ 的四边形是平行四边形;②两组对边________ 的四边形是平行四边形;③一组对边_________ 的四边形是平行四边形.从对角线的条件有:④两条对角线__________ 的四边形是平行四边形.从角的条件有:⑤两组对角______ 的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形_____ 是平行四边形.(填“一左"或“不一泄”)第二部分例题与解题思路方法归纳知识点一平行四边形的性质【例题1】如图,在平行四边形ABCD中,E为BC中点,AE的延长线与DC的延长线相交于点F.(1)证明:ZDFA=ZFAB;(2)证明:A ABE^AFCE・K选题意图》此题主要考查平行四边形的性质和判左以及全等三角形的证明,使学生能够灵活运用平行四边形知识解决有关问题.K解题思路3(1)利用平行四边形的两组对边分别平行即可得到两角相等:(2)利用上题证得的结论及平行四边形对边相等即可证明两三角形全等.K参考答案》证明:(1)•••在平行四边形ABCD中,•••DF〃AB,AZDFA=ZFAB;(2) TE为BC中点,•••EC=EB・Z.DFA =乙FABAlztAABE 与A FCE中,厶CEF = Z-BEAfEB = ECAAABE^AFCE.【课堂训练题】1.如图,在口ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F・求证:K参考答案』解:由ABCD是平行四边形得AB〃CD,AZCDE=ZF, ZC=ZEBF・又TE为BC的中点,AADEC^AFEB,:.DC=FB ・又TAB二CD,AAB=BF ・2.如图,在平行四边形ABCD中,ZBAD=32°.分别以BC、CD为边向外作A BCE和A DCF,使BE=BC, DF=DC, ZEBC=ZCDF,延长AB交边EC于点G,点G在E、C两点之间, 连接AE、AF.(1)求证:A ABE^AFDA:K参考答案月证明:(I)在平行四边形ABCD中,AB二DC, 又VDF=DC>A AB=D F・同理EB=AD.在平行四边形ABCD中,ZABC=ZADC,又TZEBOZCDF,AZABE=ZADF.AAABE^AFDA ・(2)VAABE^AFDA, AZAEB=ZDAF ・VZEBG=ZEAB+ZAEB, AZEBG=ZDAF+ZEAB, VAE 丄AF,••• ZEAF=90°.VZBAD=32°,••• ZDAF+ZEAB=90° - 32°=58°.AZEBG=58°.知识点二平行四边形的面积相关【例题2】阅读下而操作过程,回答后而问题:在一次数学实践探究活动中,小强过A、C 两点画直线AC把平行四边形ABCD分割成两个部分(如图(a)),小刚过AB、AC的中点画直线EF,把平行四边形ABCD也分割成两个部分(如图(b));(1) __________________________________________ 这两种分割方法中而积之间的关系为:Si S2, S3 _____________________________________ S4;(2)根据这两位同学的分割方法,你认为把平行四边形分割成满足以上而积关系的直线有条,请在图(c)的平行四边形中画岀一种:(3)由上述实验操作过程,你发现了什么规律?[[选题意图》平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.&解题思路3(1)都是相等关系,因为AC, EF都经过平行四边形的对称中心,故分得的两部分的而积相等;(2)有无数条,因为经过对称中心的直线有无数条:(3)经过平行四边形对称中心的宜线把平行四边形的而积分成相等的两份.g参考答案》解:(1) Si=S2, S3=S4:(2)无数,如图,所以直线过0即可;(3)经过平行四边形对称中心的任意直线,都可以把平行四边形分成满足条件的图形.【课堂训练题】1 •已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的髙DE、DF,且DE = 4齿cm,DF = 5嶺cm、求平行四边形ABCD的面积・K参考答案》解:设AB=x,则BC=18-x,由AB・DE=BC・DF代入数值得:4\/3x = 5\/3 (18・x),解之x=10,所以平行四边形ABCD的面积为40^3.2.如图,在平行四边形ABCD中.EF〃BC, GH〃AB, EF、GH的交点P在BD上。
平行四边形知识点总结
③应用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系。
特殊的平行四边形
知识点 1:矩形
1、矩形的定义: (1)定义:有一个角是直角的平行四边形叫做矩形,也就是长方形。 (2)两要素:四边形是平行四边形;有一个角是直角。两者缺一不可。 (3)矩形的对称性: ①矩形是轴对称图形,有两条对称轴且对复印件轴都是过对边中点的直线。 ②矩形是中心对称图形,对角线的交点为对称中心。
用三角形的面积公式可推得,菱形的面积等于它的对角线之积的一半。
知识点 3 正方形
1、正方形的定义:四条边都相等,四个角都是直角的四边形是正方形,所以,正方形既是矩形,又是 菱形。 2、正方形的性质:正方形既有矩形的性质,又有菱形的性质。 3、正方形的判定方法及应用
(1)正方形的判定 正方形的判定可以概括为以下五条: ①平行四边形+一组邻边相等+一个角为直角=正方形; ②矩形+一组邻边相等=正方形; ③矩形+对角线互相垂直=正方形; ④菱形+一个角为直角=正方形; ⑤菱形+对角线相等=正方形。
(1)性质:平行四边形的两组对角分别相等,邻角互补。 (2)符号语言:∵四边形 ABCD 是平行四边形,∴∠BAD=∠BCD,∠ABC=∠ADC;
∠ABC+∠BAD=180 ,∠ADC+∠BAD=180
2、对角线
(1)、性质:平行四边形的对角线互相平分。
(2)、符号语言:∵四边形 ABCD 是平行四边形,∴ OA OC 1 AC, OB OD 1 BD 。
矩形
四 两组对边 边 形 分别平形
平行四 边形
有一组邻边相等并且有一个角是直角 菱形
正方形
平面几何中的平行四边形定理知识点
平面几何中的平行四边形定理知识点平行四边形是平面几何中的一种常见图形,具有独特的性质和定理。
本文将介绍平行四边形的定义、性质以及与平行四边形相关的定理。
I. 平行四边形的定义和性质平行四边形是指具有两组对边分别平行的四边形。
下面是平行四边形的一些基本性质:1. 对边性质:平行四边形的对边是相等的。
即对边AB和CD相等,对边AD和BC相等。
2. 对角线性质:平行四边形的对角线互相平分。
即对角线AC平分BD。
3. 同位角性质:对边平行的两个平行四边形的对应角相等。
即∠A= ∠C,∠B = ∠D。
4. 逆定理:如果一个四边形的对边相等且对角线互相平分,那么它就是平行四边形。
II. 平行四边形的定理平行四边形定理是指通过平行四边形的各种性质和条件,可以得出一些重要的结论。
下面是一些常见的平行四边形定理:1. 平行四边形对角线定理:如果一个四边形的对角线互相平分且相等,那么它是平行四边形。
即如果AC = BD且AC平分BD,则ABCD 是平行四边形。
2. 平行四边形同位角定理:平行四边形的两组对应角相等。
即如果∠A = ∠C,则ABCD是平行四边形。
3. 平行四边形同旁内角定理:平行四边形的同旁内角互补。
即如果∠A和∠B是同旁内角,则∠A + ∠B = 180°。
4. 平行四边形同交角定理:平行四边形的同交角相等。
即如果∠A 和∠B是同交角,则∠A = ∠B。
5. 平行四边形对角线比定理:平行四边形的对角线按比例分割。
即如果对角线AC与BD交于点O,那么AO:OC = BO:OD。
通过运用这些定理,我们可以解决许多与平行四边形相关的问题,如证明一个四边形是平行四边形、计算平行四边形的角度和边长等。
III. 平行四边形的应用平行四边形的性质和定理在几何学中有着广泛的应用。
以下是一些实际应用场景:1. 建筑设计:在建筑设计中,平行四边形的性质可以用来确定房屋的平面布局,确保各个房间的墙壁平行。
2. 地理测量:在地理测量中,平行四边形的定理可以用来计算地图上两个点之间的最短路径,以及测量不可直接到达的地点的距离。
平行四边形的知识点
平行四边形的知识点
平行四边形的知识点:平行四边形(Parallelogram),是在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。
注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。
平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
1、平行四边形是中心对称图形,对称中心是两对角线的交点;
2、过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形;
3、如果一个四边形是平行四边形,那么这个四边形的邻角互补;
4、如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等;
5、如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等;
6、如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分;
7、平行四边形对角线把平行四边形面积分成四等份;
8、平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
平行四边形的相关知识点总结
平行四边形的相关知识点总结平行四边形的相关知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“ABCD记作,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S底高=ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;② 一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.① 有一组邻边相等且有一个直角的平行四边形② 有一组邻边相等的矩形;③ 对角线互相垂直的矩形.④ 有一个角是直角的菱形⑤ 对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形① 同一底两个底角相等的梯形;② 对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.② 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③ 说明四边形ABCD的'三个角是直角.(2)识别菱形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD的四条相等.(3)识别正方形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③ 先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法① 先说明四边形ABCD为梯形,再说明两腰相等.② 先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③ 先说明四边形ABCD为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.② 设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=③ 设正方形ABCD的一边长为a,则S正方形=a;若正方形的对角线的长为a,则S正方形=④ 设梯形ABCD的上底为a,下底为b,高为h,则S梯形=。
五年级数学知识点:平行四边形知识点
五年级数学知识点:平行四边形知识点在五年级的数学学习中,平行四边形是一个重要的几何图形。
理解平行四边形的相关知识,对于我们解决数学问题和培养空间思维能力都有着很大的帮助。
接下来,就让我们一起深入了解平行四边形的特点、性质以及相关的计算方法。
一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
这是平行四边形最基本的定义,也是我们判断一个四边形是否为平行四边形的首要依据。
比如说,有一个四边形 ABCD,其中 AB 平行于 CD,AD 平行于BC,那么这个四边形 ABCD 就是一个平行四边形。
二、平行四边形的特点1、对边平行且相等平行四边形的两组对边分别平行,而且长度相等。
这是平行四边形非常重要的一个特点。
例如,在平行四边形 ABCD 中,AB 平行且等于 CD,AD 平行且等于 BC。
2、对角相等平行四边形的对角是相等的。
比如,∠A 和∠C 相等,∠B 和∠D 相等。
3、邻角互补相邻的两个角之和为 180 度,即互补。
比如∠A 和∠B 互补,∠C 和∠D 互补。
4、对角线互相平分平行四边形的两条对角线互相平分。
也就是说,对角线 AC 和 BD 相交于点 O,那么 AO = CO,BO = DO。
三、平行四边形的面积平行四边形的面积计算公式是:面积=底×高。
这里的底可以是任意一条边,高则是这条底边对应的垂直距离。
假设平行四边形的底为 a,高为 h,那么它的面积 S = ah。
需要注意的是,计算面积时,高必须是对应的垂直高度,不能是斜边的长度。
例如,有一个平行四边形,底边长为 6 厘米,对应的高为 4 厘米,那么它的面积就是 6×4 = 24 平方厘米。
四、平行四边形的周长平行四边形的周长等于两组对边的长度之和。
假设平行四边形的相邻两边分别为 a 和 b,那么周长 C = 2×(a +b)。
比如,一个平行四边形的相邻两边分别为 5 厘米和 3 厘米,那么它的周长就是 2×(5 + 3) = 16 厘米。
平行四边形知识点归纳
一.定义:两组对边分别平行的四边形叫做平行四边形。
(用字母表示时,一定要按顺时针或逆时针方向注明各顶点,否则是错误的。
)二.判定:1.两组对边分别平行的四边形是平行四边形(定义判定法) ;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形。
6.连接任意四边形各边的中点所得图形是平行四边形。
三.性质:1.平行四边形的两组对边分别相等2.平行四边形的两组对角分别相等3.平行四边形的邻角互补4.平行四边形的对角线互相平分5.平行线间的高距离处处相等6.连接任意平行四边形各边的中点所得图形是平行四边形。
(注意矩形时为菱形,菱形是为矩形,正方形时为正方形)7.过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
8.平行四边形不是轴对称图形,但平行四边形是中心对称图形(对称中心为对角线交点) 。
9.平行四边形中,四边的平方和等于对角线的平方和。
10.平行四边形对角线把平行四边形面积分成四等份。
11.平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
四.辅助线1.连接对角线或平移对角线。
2.过顶点作对边的垂线构成直角三角形。
3.连接对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。
4.连接顶点与对边上一点的线段或延长这条线段,构造等面积三角形。
5.过顶点作对角线的垂线,构成线段平行或三角形全等。
五.关于等腰梯形1.性质( 1 )等腰梯形在同一底上的两个角相等( 2 )等腰梯形的两条对角线相等2.判定( 1 )在同一底上的两个角相等的梯形是等腰梯形( 2 )对角线相等的梯形是等腰梯形3.推论经过梯形一腰的中点与底平行的直线,必平分另一腰4.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半 L = ( a+b )÷25.梯形面积 =中位线×高。
(完整版)平行四边形全章知识点总结
平行四边形【知识脉络】【基础知识】Ⅰ. 平行四边形(1)平行四边形性质1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.2)平行四边形的性质(包括边、角、对角线三方面) : AB DO C边:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等;角:③平行四边形的两组对角分别相等;对角线:④平行四边形的对角线互相平分.【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点.(2)平行四边形判定1)平行四边形的判定(包括边、角、对角线三方面):A B DO CA CB D边:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;角:④两组对角分别相等的四边形是平行四边形;对角线:⑤对角线互相平分的四边形是平行四边形.2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.4)平行线间的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。
两条平行线间的距离处处相等。
Ⅱ. 矩形(1)矩形的性质1)矩形的定义:有一个角是直角的平行四边形叫做矩形.2)矩形的性质:①矩形具有平行四边形的所有性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点.(2)矩形的判定1)矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2)证明一个四边形是矩形的步骤:方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;方法二:若一个四边形中的直角较多,则可证三个角为直角.3)直角三角形斜边中线定理:(如右图)直角三角形斜边上的中线等于斜边的一半.Ⅲ. 菱形(1)菱形的性质1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.2)菱形的性质:①菱形具有平行四边形的所有性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式: 菱形的两条对角线的长分别为b a ,,则ab S 21菱形 (2)菱形的判定1)菱形的判定:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.2)证明一个四边形是菱形的步骤:方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”; 方法二:直接证明“四条边相等”.Ⅳ. 正方形(1)正方形的性质1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.2)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角.3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心.(2)正方形的判定1)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形;②有一组邻边相等的矩形是正方形;③对角线互相垂直的矩形是正方形;④有一个角是直角的菱形是正方形;⑤对角线相等的菱形是正方形;⑥对角线互相垂直平分且相等的四边形是正方形.。
平行四边形全章知识点总结
平行四边形全章知识点总结1.定义:2.性质:(1)相对边相等:平行四边形的相对边长度相等。
(2)相对角相等:平行四边形的相对角度相等。
(3)对角线互相平分:平行四边形的对角线互相平分。
(4)内角和为180度:平行四边形的所有内角的和等于180度。
3.定理:(1)同位角定理:平行线与直线相交时,同位角是相等的。
(2)内错角定理:平行线与直线相交时,内错角是相等的。
(3)平行线定理:如果一个直线与两条平行线相交,那么这两条平行线上对应的角度相等。
(4)平行四边形角度定理:如果一个四边形是平行四边形,那么它的相邻内角补角。
4.证明:(1)证明相对边相等:可以通过利用平行线的性质来证明两对边相等。
(2)证明相对角相等:可以通过同位角定理和内错角定理来证明相对角相等。
(3)证明对角线互相平分:可以通过使用平行线的性质和内错角定理来证明对角线互相平分。
(4)证明内角和为180度:可以通过使用内错角定理和平行线定理来证明内角和为180度。
5.应用:(1)计算平行四边形的面积:平行四边形的面积可以通过底边的长度乘以高来计算。
(2)判断平行四边形:根据边的长度和角度的相等性质,可以判断一个四边形是否为平行四边形。
(3)应用于几何问题:平行四边形常常出现在几何问题中,例如解决面积、长度和角度等问题时。
通过对平行四边形的定义、性质、定理、证明和应用的总结,我们可以更好地理解和应用平行四边形的知识。
掌握平行四边形的相关知识,不仅能够提高我们解决几何问题的能力,还可以在实际生活中应用该知识,并且能够帮助我们理解和应用其他几何形状的知识。
因此,对平行四边形的学习和理解是我们几何学习的重要一步。
四年级数学平行四边形知识点
四年级数学平行四边形知识点四班级数学平行四边形学问点一、垂直与平行1、熟悉平行和垂直①同一平面内的两条直线的位置关系只有两种:相交和不相交。
相交又有成直角的和不成直角的两种状况。
“同一平面”是确定两条直线平行关系的前提,假如不在同一平面内,即便不相交,也不能称为相互平行。
②平行线:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线相互平行。
平行的表示〔方法〕:a//b,读作a平行于b。
生活中平行的例子:窗户相对的框,黑板相对的两条边,大路上的斑马线......③垂直:假如两条直线相交成直角,就说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
垂直的表示方法:ab生活中垂直的例子:三角尺上的两条直角边相互垂直......④三条直线的特别关系:a//b,b//c,那么a//c:在同一平面内,假如两条直线都和第三条直线平行,那么这两条直线相互平行ab,bc,那么a//c:在同一平面内,假如两条直线都和第三条直线垂直,那么这两条直线相互平行。
2、垂线的画法和性质①过直线上和直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的顶点和直线上的已知点重合;从直角的顶点起,沿着另一条直角边画出一条直线,这条直线就是已知直线的垂线。
②过直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的另一条直角边与直线外的一点重合;沿着三角尺的另一条直角边画一条直线③垂线的性质:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
3、平行线的画法及运用①平行线的画法:固定三角尺,沿一条直角边先画一条直线;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;再沿第一步中的直角边画出另一条直线。
②检验两条直线是否平行的方法:把三角尺的一条直角边与其中的一条直线重合;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;假如第一步的三角尺的直角边与另一条直线完全重合,这两条直线就相互平行,假如不完全重合,这两条直线就不平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判定 : 对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形. 3、菱形 : 有一组邻边相等的平行四边形叫做菱形.
菱形具有平行四边形的所有性质; 并且四条边都相等, 对角线互相垂直平分 , 每一条对角线平分一组对角.
判定 : 对角线 互相垂直的平行四边形 是菱形;对角线 互相垂直平分的四边形 是菱形;四条边相等的 四边形 是菱形.
正方形 既是矩形又是菱形. 只有一组对边平行的四边形叫做 梯形 ;不平行的一组对边相等的梯形 等腰梯 形.
平行四边形基本知识点
1、平行四边形:两组对边分别平行的四边形叫做平行四边形.
性质及判定:
平行四边形
对边平行 对边相等 对角相等 对角线互相平分
两组对边平行的四边形 两组对边相等的四边形 两组对角相等的四边形 对角线互相平分的四边形 一组对边平行且相等的四边形
平行四边形
三角形的 中位线 平行于三角形的第三边,且等于第三边的一半. 2、矩形Байду номын сангаас: 有一个角是直角的平行四边形叫做矩形 ( 长方形 ) .