函数与方程零点问题考点例题讲解
考点1零点的求法及零点的个数
考点 1零点的求法及零点的个数题型 1:求函数的零点。
[例1]求函数 y x32x2x 2的零点.[ 解题思路 ] 求函数yx 32x 2x 2的零点就是求方程 x 32x 2x 2 0的根[解析]令 x32x2x 2 0,∴ x2 ( x 2) ( x 2) 0∴ (x 2)( x 1)( x 1) 0 ,∴x1或x 1或 x 2即函数yx32x 2x2的零点为 -1 ,1,2。
[ 反思归纳 ]函数的零点不是点,而是函数函数y f ( x) 的图像与x轴交点的横坐标,即零点是一个实数。
题型 2:确定函数零点的个数。
[例2]求函数 f(x)=lnx+2x - 6 的零点个数 .[ 解题思路 ] 求函数 f(x)=lnx+ 2x -6 的零点个数就是求方程 lnx + 2x -6=0 的解的个数[ 解析 ] 方法一:易证 f(x)= lnx+ 2x -6 在定义域(0,)上连续单调递增,又有 f (1) f (4)0,所以函数 f(x)= lnx + 2x-6 只有一个零点。
方法二:求函数 f(x)=lnx +2x- 6 的零点个数即是求方程lnx +2x- 6=0 的解的个数y ln x即求y62x 的交点的个数。
画图可知只有一个。
[ 反思归纳 ]求函数y f ( x)的零点是高考的热点,有两种常用方法:①(代数法)求方程f ( x)0的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数y f ( x)的图像联系起来,并利用函数的性质找出零点。
题型 3:由函数的零点特征确定参数的取值范围[ 例3] (2007 ·广东 ) 已知 a 是实数 , 函数f x2ax22x 3a, 如果函数y f x在区间1,1上有零点,求 a 的取值范围。
[ 解题思路 ] 要求参数 a 的取值范围,就要从函数y f x 在区间1,1 上有零点寻找关于参数 a 的不等式(组),但由于涉及到 a 作为x2的系数,故要对 a 进行讨论[ 解析]若a 0, f ( x)2x 3 ,显然在1,1上没有零点 ,所以a 0.48a 3a8a 224a4, 解得a37令2 a37y f x1,12时,上;①当恰有一个零点在②当f1 f 1a1a50 ,即1 a 5 时,yf x在1,1 上也恰有一个零点。
函数零点的题型总结
函数零点的题型总结例题及解析考点一函数零点存在性定理的应用【例1】已知函数f(x)=(12)x-13x,那么在下列区间中含有函数f(x)零点的是( )(A)(0,13) (B)(13,12)(C)(12,23) (D)(23,1)解析:f(0)=1>0,f(13)=(12)13-(13)13>0,F(12)=(12)12-(12)13<0,f(13)f(12)<0,所以函数f(x)在区间(13,12)内必有零点,选B.【跟踪训练1】已知函数f(x)=2x-log3x,在下列区间中包含f(x)零点的是( )(A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4)解析:由题意,函数f(x)=2x-log3x为单调递减函数,且f(2)= 22-log32=1-log32>0,f(3)= 23-log33=-13<0,所以f(2)·f(3)<0,所以函数f(x)=2x-log3x在区间(2,3)上存在零点,故选C.【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( )(A)[0,1] (B)[-1,0](C)[0,2] (D)[-1,1]解析:f(1)=ln 2>0,当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D;当a=2时,f(12)=ln 32-12<0,所以f(x)在(12,1)上至少有一个零点,舍去C.因此选A.考点二函数零点的个数考查角度1:由函数解析式确定零点个数【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( )(A)5 (B)4 (C)3 (D)2(2)已知f(x)=2xx +x-2x,则y=f(x)的零点个数是( )(A)4 (B)3 (C)2 (D)1解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π2,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B.解析:(2)令2xx +x-2x=0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.考查角度2:根据函数零点个数确定参数范围 【例3】 (1)已知函数f(x)= 24,1,ln 1,1,x x a x x x ⎧-+⎪⎨+≥⎪⎩<若方程f(x)=2有两个解,则实数a 的取值范围是( ) (A)(-∞,2) (B)(-∞,2] (C)(-∞,5) (D)(-∞,5] (2)已知函数f(x)= 3,2,1e ,20x xa x x a x x ⎧--≤-⎪⎪+⎨⎪--⎪⎩<<恰有3个零点,则实数a 的取值范围为( )(A)(-1e ,-13) (B)(-1e ,-21e) (C)[-23,-21e ) (D)[-23,-13)解析:(1)可知x ≥1时,f(x)=2必有一解,x=e,所以只需x<1时f(x)=2有一解即可,即x 2-4x+a=2有解,设g(x)=x 2-4x+a-2,由于该函数的对称轴为直线x=2,故只需g(1)=-3+a-2<0,即a<5,故实数a 的取值范围是(-∞,5).选C. 解析:(2)-1x x +-3a=-111x x +-+-3a=1x x +-1-3a,在(-∞,-2]上单调递减.若a≥0,则e x -a x在(-2,0)上递增,那么零点个数至多有一个,不符合题意,故a<0.故需f(x)当x ≤-2时,-1-3a>0,a<-13,且121-+-1-3a ≤0,a ≥-23,使得第一段有一个零点,故a ∈[-23,-13).对于第二段,e x -a x=e xx a x -,故需g(x)=xe x -a 在区间(-2,0)有两个零点,g ′(x)=(x+1)e x ,故g(x)在(-2,-1)上递减,在(-1,0)上递增,所以(2)0,(1)0,(0)0,g g g -⎧⎪-⎨⎪⎩><>解得-22e >a>-1e.综上所述,a ∈(-1e ,-13).故选A.【题组通关】1.若函数f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( C ) (A)(0,4) (B)(0,+∞)(C)(3,4) (D)(3,+∞)解析:如图,若f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a ∈(3,4),故选C.2.已知偶函数f(x)= 4log,04,(8),48,x x f x x ⎧≤⎪⎨-⎪⎩<<<且f(x-8)=f(x),则函数F(x)=f(x)-12x在区间[-2 018,2 018]的零点个数为( A )(A)2 020 (B)2 016 (C)1 010 (D)1 008解析:依题意,当4<x<8时,f(x)=f(8-x)对称轴为直线x=4,由f(x-8)=f(x)可知,函数f(x)的周期T=8. 令F(x)=0,可得f(x)=12x,求函数F(x)=f(x)-12x的零点个数,即求偶函数f(x)与函数y=12x图象交点个数,当0<x<8时,函数f(x)与函数y=12x图象有4个交点,2 018=252×8+2由f(2)=|log 42|=12>212=14知, 当0<x<2时函数f(x)与函数y=12x图象有2个交点.故函数F(x)的零点个数为(252×4+2)×2=2 020, 故选A.3.已知函数f(x)= 31,1,,1,x xx x ⎧≥⎪⎨⎪⎩<若关于x 的方程f(x)=k 有两个不同零点,则k 的取值范围是 . 解析:作出f(x)=31,1,,1x xx x ⎧≥⎪⎨⎪⎩<的函数图象如图所示.方程f(x)=k 有两个不同零点,即y=k 和f(x)= 31,1,1x x x x ⎧≥⎪⎨⎪⎩<的图象有两个交点,由图可得k 的取值范围是(0,1). 答案:(0,1)【教师备用 巩固训练2】 已知函数f(x)=32233,2,4(56),2,x x x x x x ⎧-+⎪⎨--+≥⎪⎩<则函数f(f(x))的零点个数为( ) (A)6 (B)7 (C)8 (D)9 解析:画出函数的图象,如图所示,令f(x)=t,因为f(f(x))=0则f(t)=0,由图象可知,f(t)=0有四个解,分别为t 1=2,t 2=3,-1<t 3<0,1<t 4<2, 由图象可知,当t 1=2时,f(x)=2有两个根,即函数f(f(x))有2个零点; 由图象可知,当t 2=3时,f(x)=3有一个根,即函数f(f(x))有1个零点;由图象可知,当-1<t 3<0时,f(x)=t 有三个根,即函数f(f(x))有3个零点;由图象可知,当1<t 4<2时,f(x)=t 有两个根,即函数f(f(x))有2个零点;综上所述,函数f(f(x))有8个零点. 考点三 函数零点的性质考查角度1:求零点的代数式的取值或取值范围 【例4】 (1)已知函数f(x)=122log ,022,0,x x x x x ⎧⎪⎨⎪++≤⎩>函数F(x)=f(x)-b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则43x x -2213232x x x x +的取值范围是( )(A)(2,+∞) (B)(174,25716] (C)[2,174) (D)[2,+∞) (2)已知函数f(x)是定义域为R 的偶函数,且满足f(12+x)=f(32-x),当x ∈[-1,0]时,f(x)=-x.若函数F(x)=f(x)+412x x +-,则在区间[-9,10]上的所有零点之和为 . 解析:(1)f(x)=122log ,0,22,0x x x x x ⎧⎪⎨⎪++≤⎩>=122log ,0,(11,0x x x x ⎧⎪⎨⎪++≤⎩>), 由二次函数的对称性可得x 1+x 2=-2,由12log x 3=-12log x 4可得x 3x 4=1,函数F(x)=f(x)-b 有四个不同的零点,等价于y=f(x)的图象与y=b 的图象有四个不同的交点,画出y=f(x)的图象与y=b 的图象,由图可得1<b ≤2,所以1<12log x 3≤2⇒x 3∈[14,12),所以43x x -2123()2x x x +=43x x +23x =231x+23x , 令t=23x ∈[116,14), 所以1t +t ∈(174,25716],故选B. 解析:(2)因为满足f(12+x)=f(32-x), 所以f(x)=f(2-x), 又因函数f(x)为偶函数,所以f(x)=f(-x)=f(2+x),即f(x)=f(2+x),所以T=2,令F(x)=0,f(x)=421x x +-,即求f(x)与y=421x x +-交点横坐标之和.y=421x x +-=12+9221x -, 作出图象如图所示.由图象可知有10个交点,并且关于(12,12)中心对称, 所以其和为102=5. 答案:(1)B (2)5考查角度2:隐性零点的性质 【例5】已知函数f(x)= ln(1),0,11,0,2x x x x +⎧⎪⎨+≤⎪⎩>若m<n,且f(m)=f(n),则n-m 的取值范围为( )(A)[3-2ln 2,2) (B)[3-2ln 2,2] (C)[e-1,2) (D)[e-1,2]解析:作出函数f(x)的图象,如图所示,若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e-1, 则满足0<n ≤e-1, -2<m ≤0,则ln(n+1)=12m+1,即m=2ln(n+1)-2,则n-m=n+2-2ln(n+1), 设h(n)=n+2-2ln(n+1),0<n ≤e-1,则h ′(n)=1-21n +=11n n -+, 当h ′(n)>0,解得1<n ≤e-1,当h ′(n)<0,解得0<n<1,当n=1时,函数h(n)取得最小值h(1)=1+2-2ln(1+1)=3-2ln 2,当n=0时,h(0)=2-2ln 1=2;当n=e-1时,h(e-1)=e-1+2-2ln(e-1+1)=e-1<2,所以3-2ln 2≤h(n)<2,即n-m的取值范围是[3-2ln 2,2),故选A.【题组通关】1.已知a>1,方程12e x+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则21x+22x+2x1x2的取值范围为( A ) (A)(1,+∞) (B)(0,+∞)(C)(12,+∞) (D)(12,1)解析:方程12e x+x-a=0的根,即y=12e x与y=a-x图象交点的横坐标,方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标, 而y=12e x与y=ln 2x的图象关于直线y=x对称,如图所示.所以x1+x2=a,所以21x +22x +2x 1x 2=(x 1+x 2)2=a 2,又a>1,所以21x +22x +2x 1x 2>1,故选A2.已知函数f(x)= 42log ,04,1025,4,x x x x x ⎧≤⎪⎨-+⎪⎩<>若a,b,c,d 是互不相同的正数,且f(a)=f(b)=f(c)=f(d),则abcd 的取值范围是( A ) (A)(24,25) (B)(18,24) (C)(21,24) (D)(18,25)解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.考点四 函数零点的应用【例6】 (1)已知α,β分别满足α·e α=e 2,β(ln β-2)=e 4,则αβ的值为( )(A)e (B)e 2 (C)e 3 (D)e 4 (2)已知f(x)=9x-t ·3x,g(x)=2121x x -+,若存在实数a,b 同时满足g(a)+g(b)=0和f(a)+f(b)=0,则实数t 的取值范围是 . 解析:(1)因为α·e α=e 2,所以e α=2e α, 因为β(ln β-2)=e 4,所以ln β-2=4e β,所以ln β-ln e 2=4e β,所以ln 2e β=4e β=22e e β. 所以α,2e β分别是方程ex=2e x ,ln x=2e x的根,因为点(α,2e α)与点(2e β,4e β)关于直线y=x 对称, 所以α=4e β,所以αβ=e 4.故选D.解析:(2)因为g(-x)=2121x x ---+=1212xx-+=-2121x x -+=-g(x),所以函数g(x)为奇函数, 又g(a)+g(b)=0,所以a=-b. 所以f(a)+f(b)=f(a)+f(-a)=0有解, 即9a -t ·3a +9-a -t ·3-a =0有解, 即t=9933a a aa--++有解.令m=3a+3-a(m ≥2),则9933a aa a--++=22m m-=m-2m ,因为ϕ(m)=m-2m 在[2,+∞)上单调递增,所以ϕ(m)≥ϕ(2)=1.所以t ≥1.故实数t 的取值范围是[1,+∞). 答案:(1)D 答案:(2)[1,+∞)【跟踪训练2】函数f(x)的定义域为D,若满足:①f(x)在D 内是单调函数;②存在[a,b]⊆D 使得f(x)在[a,b]上的值域为[2a ,2b ],则称函数f(x)为“成功函数”.若函数f(x)=log m (m x +2t)(其中m>0,且m ≠1)是“成功函数”,则实数t 的取值范围为( ) (A)(0,+∞) (B)(-∞,18] (C)[18,14) (D)(0,18] 解析:无论m>1还是0<m<1,f(x)=log m (m x +2t)都是R 上的单调增函数,故应有(),2(),2a f a b f b ⎧=⎪⎪⎨⎪=⎪⎩则问题可转化为求f(x)=2x ,即f(x)=log m (m x +2t)=2x,即m x+2t=12x m在R上有两个不相等的实数根的问题,令λ=12x m (λ>0),则m x+2t=12x m可化为2t=λ-λ2=-(λ-12)2+14,结合图形可得t∈(0,18].故选D.。
高中数学-函数零点问题及例题解析
高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
函数的零点与方程的解(经典导学案及练习答案详解)
§2.9函数的零点与方程的解学习目标1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.(√)教材改编题1.(多选)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1234567f(x)-4-2142-1-3在下列区间中,函数f(x)必有零点的区间为()A.(1,2) B.(2,3) C.(5,6) D.(5,7)答案 BCD解析 由所给的函数值表知, f (1)f (2)>0,f (2)f (3)<0,f (5)f (6)<0, f (5)f (7)<0,∴f (x )在区间(2,3),(5,6),(5,7)内各至少有一个零点.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________.答案 -2,e解析 ⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________. 答案 (3,6)解析 设f (x )=2x +x , ∴f (x )在(1,2)上单调递增, 又f (1)=3,f (2)=6, ∴3<k <6.题型一 函数零点所在区间的判定例1 (1)(多选)(2022·菏泽质检)函数f (x )=e x -x -2在下列哪个区间内必有零点( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 AD解析 f (-2)=1e 2>0,f (-1)=1e -1<0,f (0)=-1<0,f (1)=e -3<0, f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0, 所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 答案 D解析 f (x )的定义域为{x |x >0}, f ′(x )=13-1x =x -33x,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增, 又f ⎝⎛⎭⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝⎛⎭⎫1e ,1内无零点.又f (e)=e3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1 (1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)答案 C解析 设f (x )=log 3x -3+x , 当x →0时,f (x )→-∞,f (1)=-2, 又∵f (2)=log 32-1<0, f (3)=log 33-3+3=1>0, 故f (2)·f (3)<0,故方程log 3x =3-x 在区间(2,3)上有解,即利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是(2,3).(2)已知2<a <3<b <4,函数y =log a x 与y =-x +b 的交点为(x 0,y 0),且x 0∈(n ,n +1),n ∈N *,则n =________. 答案 2解析 依题意x 0为方程log a x =-x +b 的解, 即为函数f (x )=log a x +x -b 的零点, ∵2<a <3<b <4,∴f (x )在(0,+∞)上单调递增, 又f (2)=log a 2+2-b <0, f (3)=log a 3+3-b >0, ∴x 0∈(2,3),即n =2. 题型二 函数零点个数的判定例2 (1)(2022·绍兴模拟)若函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且x ∈[-1,1]时,f (x )=1-x 2,已知函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0,则函数h (x )=f (x )-g (x )在区间[-6,6]内的零点个数为( )A .14B .13C .12D .11 答案 C解析 因为f (x +1)=-f (x ),所以函数y =f (x )(x ∈R )是周期为2函数, 因为x ∈[-1,1]时,f (x )=1-x 2,所以作出它的图象,则y =f (x )的图象如图所示.(注意拓展它的区间)再作出函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0的图象,容易得出交点为12个.(2)函数f (x )=36-x 2·cos x 的零点个数为______. 答案 6解析 令36-x 2≥0,解得-6≤x ≤6, ∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0, 由36-x 2=0得x =±6, 由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2.故f (x )共有6个零点. 教师备选函数f (x )=2x |log 2x |-1的零点个数为( ) A .0 B .1 C .2 D .4 答案 C解析 令f (x )=0,得|log 2x |=⎝⎛⎭⎫12x ,分别作出y =|log 2x |与y =⎝⎛⎭⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝⎛⎭⎫12x的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点; (2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2 (1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为( ) A .6 B .7 C .8 D .9 答案 B解析 令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0, 因为函数的最小正周期为2, 所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为( ) A .3 B .7 C .5 D .6 答案 B解析 根据题意,令2f 2(x )-3f (x )+1=0, 得f (x )=1或f (x )=12.作出f (x )的简图:由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为 7. 题型三 函数零点的应用命题点1 根据函数零点个数求参数例3 (2022·武汉模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤0,1x ,x >0,若关于x 的方程f (x )-a (x +3)=0有四个不同的实根,则实数a 的取值范围是( ) A .(-∞,4-23) B .(4+23,+∞) C .[0,4-23] D .(0,4-23)答案 D解析 画出f (x )的函数图象,设y =a (x +3),该直线恒过点(-3,0), 结合函数图象,若y =a (x +3)与y =-x 2-2x 相切,联立得x 2+(a +2)x +3a =0, Δ=(a +2)2-12a =0, 得a =4-23(a =4+23舍), 若f (x )=a (x +3)有四个不同的实数根, 则0<a <4-2 3.命题点2 根据函数零点范围求参数例4 (2022·北京顺义区模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫0,43 C .(-∞,0) D.⎝⎛⎭⎫43,+∞ 答案 B解析 由f (x )=3x -1+ax x =0,可得a =3x -1x,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时, g (x )=3x -1x <3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)上的值域为⎝⎛⎭⎫0,43. 因此实数a 的取值范围是⎝⎛⎭⎫0,43. 教师备选1.函数f (x )=xx +2-kx 2有两个零点,则实数k 的值为________.答案 -1解析 由f (x )=xx +2-kx 2=x ⎝⎛⎭⎫1x +2-kx ,函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0.即方程1x +2-kx =0有且只有一个非零实根.显然k ≠0,即1k=x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k>-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k=-1,即k =-1时满足条件. 当1k <-1时,函数y =x 2+2x 的图象与直线y =1k无交点,不满足条件. 2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________. 答案 ⎝⎛⎭⎫14,12解析 依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0, 解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围. (2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3 (1)(多选)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 可取的值可能是( ) A .0 B.13 C.12 D .1答案 BCD解析 函数g (x )=f (x )-b 有三个零点等价于函数y =f (x )的图象与直线y =b 有三个不同的交点, 当x ≤0时,f (x )=(x +1)e x , 则f ′(x )=e x +(x +1)e x =(x +2)e x ,所以f (x )在(-∞,-2)上单调递减,在(-2,0]上单调递增,且f (-2)=-1e 2,f (0)=1,x →-∞时,f (x )→0,从而可得f (x )的图象如图所示,通过图象可知,若函数y =f (x )的图象与直线y =b 有三个不同的交点,则b ∈(0,1]. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为( )A.⎝⎛⎭⎫-53,0 B.⎝⎛⎭⎫-∞,-53∪(0,+∞) C.⎝⎛⎦⎤-∞,-53∪(0,+∞) D.⎣⎡⎭⎫-53,0 答案 D解析 由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧f (1)<0,f (3)≥0,即⎩⎪⎨⎪⎧m <0,m +53≥0,解得-53≤m <0.因此,实数m 的取值范围是⎣⎡⎭⎫-53,0.课时精练1.函数f (x )=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 由题意知,f (x )=x 3-⎝⎛⎭⎫12x -2,f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,2 C.⎝⎛⎭⎫2,52 D.⎝⎛⎭⎫52,3 答案 A解析 取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32, 因为f ⎝⎛⎭⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝⎛⎭⎫1,32. 3.(2022·武汉质检)若函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 答案 D解析 由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有实数解,即a =x +1x 在⎝⎛⎭⎫12,3上有解, 设t =x +1x,x ∈⎝⎛⎭⎫12,3, 则t 的取值范围是⎣⎡⎭⎫2,103. 所以实数a 的取值范围是⎣⎡⎭⎫2,103. 4.若函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为( ) A .[-3,0)B .[-1,0)C .[0,1)D .[-3,+∞)答案 A 解析 因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.5.(2022·重庆质检)已知函数f (x )=⎝⎛⎭⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是( )A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案 B解析 f (x )=⎝⎛⎭⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.6.(2022·北京西城区模拟)若偶函数f (x )(x ∈R )满足f (x +2)=f (x )且x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的根的个数是( )A .2B .3C .4D .多于4答案 C解析 f (x )=log 3|x |的解的个数,等价于y =f (x )的图象与函数y =log 3|x |的图象的交点个数,因为函数f (x )满足f (x +2)=f (x ),所以周期T =2,当x ∈[0,1]时,f (x )=x ,且f (x )为偶函数,在同一平面直角坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是( )A .1B .2C .4D .6答案 ABC解析 由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π], 在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y =k 与y =f (x )的图象交点个数可能为0,1,2,3,4.8.(多选)(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .g (x )=x 2-x -3C .f (x )=12x +1D .f (x )=|log 2x |-1答案 BCD解析 选项A ,若f (x 0)=x 0,则02x =0,该方程无解,故A 中函数不是“不动点”函数;选项B ,若g (x 0)=x 0,则x 20-2x 0-3=0,解得x 0=3或x 0=-1,故B 中函数是“不动点”函数;选项C ,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故C 中函数是“不动点”函数; 选项D ,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故D 中函数是“不动点”函数.9.若函数f (x )=x 3+ax 2+bx +c 是奇函数,且有三个不同的零点,写出一个符合条件的函数:f (x )=________.答案 x 3-x (答案不唯一)解析 f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案 (1,2)解析 画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案 ⎣⎡⎭⎫2e 2,1e 解析 ∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e2, f (x )=ln x (x >1),f ′(x )=1x, 设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e. 则直线y =ax 的斜率a ∈⎣⎡⎭⎫2e 2,1e .12.(2022·济南质检)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2=________. 答案 1解析 x 1,x 2分别是函数y =e x ,函数y =ln x 与函数y =1x的图象的交点A ,B 的横坐标,所以A ⎝⎛⎭⎫x 1,1x 1,B ⎝⎛⎭⎫x 2,1x 2两点关于y =x 对称,因此x 1x 2=1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案 B解析 令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案 12 解析 当x ≤0时,x +1=0,x =-1,由f (x )=-1,可得x +1=-1或log 2x =-1,∴x =-2或x =12;当x >0时,log 2x =0,x =1,由f (x )=1,可得x +1=1或log 2x =1,∴x =0或x =2;∴函数y =f (f (x ))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.若关于x 的方程|x |x +4=kx 2有四个不同的实数解,则k 的取值范围为() A .(0,1) B.⎝⎛⎭⎫14,1C.⎝⎛⎭⎫14,+∞ D .(1,+∞)答案 C解析 因为|x |x +4=kx 2有四个实数解,显然,x =0是方程的一个解,下面只考虑x ≠0时有三个实数解即可.若x >0,原方程等价于1=kx (x +4),显然k ≠0,则1k =x (x +4).要使该方程有解,必须k >0,则1k +4=(x +2)2,此时x >0,方程有且必有一解;所以当x <0时必须有两解,当x <0时,原方程等价于-1=kx (x +4),即-1k=x (x +4)(x <0且x ≠-4),要使该方程有两解, 必须-4<-1k<0, 所以k >14. 所以实数k 的取值范围为⎝⎛⎭⎫14,+∞. 16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案 ⎝⎛⎦⎤1e ,4e 2解析 由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝⎛⎦⎤1e ,4e 2.。
高考数学-函数零点问题及例题解析
1函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:二分法:对于在区间对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二的零点所在的区间一分为二,,使区间的两个端点逐步逼近零点使区间的两个端点逐步逼近零点,,进而得到零点的近似值的方法叫做二分法值的方法叫做二分法; ;二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间在区间[a,b][a,b][a,b]上的图象是连续不断的一上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(在区间(a,b a,b a,b)内有零点,即存在)内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点间上是否有零点(或方程在某个区间上是否有根)(或方程在某个区间上是否有根)(或方程在某个区间上是否有根)时,时,一定要注意该定理是函数存在零点的充分不必要条件:如分不必要条件:如例、函数x x x f 2)1ln()(-+=的零点所在的大致区间是(的零点所在的大致区间是() (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
函数的零点与解析式问题及例题解析
函数的零点与解析式问题及例题解析引言函数的零点和解析式问题是数学中常见的重要概念。
本文将介绍函数的零点和解析式问题的基本概念,以及通过例题解析来帮助读者理解和应用这些概念。
函数的零点函数的零点指的是函数取值为零的点。
具体而言,对于一个函数f(x),如果存在一个实数a,使得f(a)=0,则a称为函数f的零点。
函数的零点在数学和实际问题中具有重要的意义。
一个函数可以有多个零点,也可以没有零点。
通过求解函数的零点可以帮助我们揭示函数的性质和解决实际问题。
常见的求解函数零点的方法包括零点定理、代数方法和数值方法。
解析式问题解析式问题是指通过已知的解析式来分析函数的性质和求解特定问题。
解析式是描述函数的一种抽象表达形式,通常使用符号和变量表示。
通过对解析式进行数学推导和计算可以得到函数的各种性质,例如函数的导数、极值点等。
解析式问题的求解通常需要运用数学方法和技巧,包括代数运算、函数性质的研究和推理、微积分等。
解析式问题在数学建模、物理学、工程学等领域具有广泛的应用,可以解决实际问题并提供深入的数学分析。
例题解析下面通过一些例题来具体说明函数的零点和解析式问题的应用。
例题1:已知函数f(x) = x^2 - 4x + 3,求函数f的零点。
解答:要求函数f的零点,即求解方程x^2 - 4x + 3 = 0的解。
通过因式分解或使用求根公式,可以得到方程的两个解为x=1和x=3。
因此,函数f的零点为1和3。
例题2:已知函数f(x) = sin(x),求函数f的极值点。
解答:要求函数f的极值点,即找到函数f取得最大值和最小值的点。
对于函数f(x) = sin(x),我们知道sin(x)的最大值为1,最小值为-1。
因此函数f的极值点为x=kπ,其中k为整数。
通过以上例题的解析,我们可以看到函数的零点和解析式问题与数学的相关概念和方法紧密相连,对于理解函数的性质和解决实际问题具有重要意义。
总结通过本文的介绍,我们了解了函数的零点和解析式问题的基本概念。
高中数学-函数的零点问题及例题分析
高中数学-函数的零点问题及例题分析1. 引言函数是数学中一个非常重要的概念,它在数学和实际问题中发挥着重要的作用。
函数的零点问题是函数中一个常见且重要的问题,它与方程的解有着紧密的联系。
本文将介绍函数的零点问题,并通过一些例题分析来加深理解。
2. 函数的定义与性质回顾函数是一个将一个集合的元素映射到另一个集合的元素的规则。
函数通常用符号表示,如$f(x)$,其中$x$是自变量,$f(x)$是对应的函数值。
函数的零点指的是函数取零值的点,即满足$f(x)=0$的$x$值。
函数的零点问题与方程的解问题紧密相关。
对于一元函数,函数的零点就是方程$f(x)=0$的解。
因此,解方程可以转化为求函数的零点。
函数的零点可以通过图像、图表或数值计算等方法来确定。
下面将通过几个例题来进一步分析。
3. 例题分析3.1 例题一已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点。
解析:要求函数$f(x)$的零点,即求解方程$2x^2-3x+1=0$。
我们可以使用配方法、求根公式或因式分解等方法来解这个二次方程,最终可以得到$x=1$和$x=\frac{1}{2}$两个解。
3.2 例题二已知函数$g(x)=\sqrt{x+3}-2$,求函数$g(x)$的零点。
解析:要求函数$g(x)$的零点,即求解方程$\sqrt{x+3}-2=0$。
为了消除平方根,我们可以将方程两边平方,得到$x+3=4$,然后解得$x=1$。
因此,函数$g(x)$的零点为$x=1$。
3.3 例题三已知函数$h(x)=\frac{1}{x-2}$,求函数$h(x)$的零点。
解析:函数$h(x)$在$x=2$处不存在定义,因此不存在零点。
4. 总结本文介绍了函数的零点问题及其与方程的解之间的联系。
函数的零点是函数取零值的点,可以通过解相应的方程来求得。
通过例题分析,我们进一步了解了求函数零点的具体方法。
在实际问题中,函数的零点问题有时对于确定某个变量的取值非常重要,因此对于函数的零点问题的理解和掌握是非常有益的。
函数的零点与方程的解(基础知识+基本题型)(含解析)
4.5.1函数的零点与方程的解(基础知识+基本题型)知识点一 函数的零点1.函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.2.函数零点与方程的根之间的关系方程()0f x =有零点⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.由此可知,求()0f x =的实数根,就是确定函数()y f x =的零点,一般地,对于不能用公式求根的方程()0f x =来说,我们可以将它与函数()y f x =联系起来,利用函数的性质找出零点,从而求出方程的根. 提示:(1)并不是所有的函数都有零点,如函数1()f x x=就没有零点. (2)方程不同实数根的个数⇔函数图象与x 轴交点的个数⇔函数零点的个数.(3)函数的零点不是点:我们把使()0f x =的实数x 叫做函数()y f x =的零点,因此,函数的零点不是点,是函数()y f x =的图象与x 轴交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.知识点二 函数零点存在性定理1. 零点存在性定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也是方程()0f x =的根.2. 零点存在性定理的适用条件(1)判断零点是否存在是存在闭区间[,]a b 上进行的.(2)函数()y f x =在[,]a b 上的图象应是连续无间断的一条曲线.(3)()()0f a f b ⋅<是关键条件,即两端点的函数值必须异号.(4)如果函数()y f x =在两端点处的函数值(),()f a f b 异号,则函数()y f x =的图象至少穿过x 轴一次,即方程()0f x =在区间(,)a b 内至少有一个实根c .3. 零点存在性定理的使用范围(1)此定理只能判断出零点的存在性,而不能判断出零点的个数。
高考常考题- 函数的零点问题(含解析)
函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
函数与导数之零点问题(解析版)
函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。
方程的根与函数的零点题型及解析
方程的根与函数的零点题型及解析1.求下列函数的零点1fx=x3+1;2fx=;3y=﹣x2+3x+4;4y=x2+4x+4.分析:根据函数零点的定义解fx=0,即可得到结论.解:1由fx=x3+1=0得x=﹣1,即函数的零点为﹣1;2由fx==0得x2+2x+1=0得x+12=0,得x=﹣1,即函数的零点为﹣1.3由y=﹣x2+3x+4=0,可得x﹣4x+1=0,所以函数的零点为4,﹣1;4y=x2+4x+4,可得x+22=0,所以函数的零点为﹣2.2.①求函数fx=2x+x﹣3的零点的个数;②求函数fx=log2x﹣x+2的零点的个数;③求函数的零点个数是多少分析:①由题意可判断fx是定义域上的增函数,从而求零点的个数;②由题意可得,函数y=log2x的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数y=lnx的图象与函数y=的图象只有一个交点,可得函数fx=lnx-1/x的零点个数.解:①∵函数fx=2x+x﹣3单调递增,又∵f1=0,故函数fx=2x+x﹣3有且只有一个零点②函数fx=log2x﹣x+2的零点的个数,即函数y=log2x的图象和直线y=x﹣2的交点个数,如图所示:故函数y=log2x的图象红色部分和直线y=x﹣2蓝色部分的交点个数为2,即函数fx=log2x﹣x+2的零点的个数为2;③函数fx=lnx-1/x的零点个数就是函数y=lnx的图象与函数y=1/x的图象的交点的个数,由函数y=lnx的图象与函数y=1/x的图象只有一个交点,如图所示,可得函数fx=lnx-1/x的零点个数是13.①已知方程x2﹣3x+a=0在区间2,3内有一个零点,求实数a的取值范围②已知a是实数,函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,求a的取值.③已知函数fx=x2﹣2ax+4在区间1,2上有且只有一个零点,求a的取值范围分析:①由已知,函数fx在区间2,3内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可;②若函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,则f0<0,f1>0,f2>0,f4<0,解得答案;③若函数fx=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数fx=x2﹣2ax+4有两个零点,进而f1f2<0,解得答案解:①若函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,则f0<0,f1>0,f2>0,f4<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈4,19/4;②∵令fx=x2﹣3x+a,它的对称轴为x=3/2,∴函数fx在区间2,3单调递增,∵方程x2﹣3x+a=0在区间2,3内有一个零点,∴函数fx在区间2,3内与x轴有一个交点,根据零点存在性定理得出:f2<0,f3>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数fx=x2﹣2ax+4只有一个零点,则△=4a2﹣16=0,解得:a=±2,此时函数的零点为±2不在区间1,2上,即函数fx=x2﹣2ax+4有两个零点,则f1f2<0,即5﹣2a8﹣4a<0,解得:a∈2,5/24.已知函数fx的图象是连续不断的,观察下表:函数fx在区间﹣2,2上的零点至少有几个分析:看区间端点值,只要在区间两端点处函数值异号,由零点存在性定理即可解决问题.解:由题中表得,f﹣2<0,f﹣1>0,f0<0,f1<0,f2>0,由零点存在性定理可得fx在区间﹣2,﹣1,﹣1,0,1,2上个有一个零点,故函数fx在区间﹣2,2上的零点至少有3个5.已知y=fx是定义在R上的函数,下列命题正确的是A.若fx在区间a,b上的图象是一条连续不断的曲线,且在a,b内有零点,则有fafb<0B.若fx在区间a,b上的图象是一条连续不断的曲线,且有fafb>0,则其在a,b内没有零点C.若fx在区间a,b上的图象是一条连续不断的曲线,且有fa fb<0,则其在a,b内有零点D.如果函数fx在区间a,b上的图象是一条连续不断的曲线,且有fafb<0,则其在a,b内有零点分析:据函数零点的定义,函数零点的判定定理,运用特殊函数判断即可.解:①y=x2,在﹣1,1内有零点,但是f﹣1f1>0,故A不正确,②y=x2,f﹣1f1>0,在﹣1,1内有零点,故B不正确,③若fx在区间a,b上的图象是一条连续不断的曲线,fa=﹣1,fb=1,在a,b恒成立有fx>0,可知满足fafb<0,但是其在a,b内没有零点.故C不正确.所以ABC不正确,故选D6.若y=fx在区间a,b上的图象为连续不断的一条曲线,则下列说法正确的是A.若fafb<0,不存在实数c∈a,b,使得fc=0;B.若fafb<0,存在且只存在一个实数c∈a,b,使得fc=0;C.若fafb>0,不存在实数c∈a,b,使得fc=0;D.若fafb>0,有可能存在实数c∈a,b,使得fc=0分析:画满足条件的函数图象排除不正确的选项解:首先,设函数y=fx在区间a,b上的图象如左图:图中满足fa·fb<0,有可能存在实数c ∈a,b使得fc=0,故A,B错误;其次,设函数y=fx在区间a,b上的图象如右图:图中满足fa·fb>0,有可能存在实数c∈a,b使得fc=0,故C错误;D正确.7.已知函数fx=mx2﹣3x+1的图象上其零点至少有一个在原点右侧,求实数m的取值范围分析:根据题意,二次函数的图象与x轴的交点至少有一个在原点的右侧,有两种情况,一是只有一个在右侧,二是两个都在右侧,分类讨论即可.解:1当m=0时,fx=﹣3x+1,直线与x轴的交点为1/3,0,即函数的零点为1/3,在原点右侧,符合题意;2当m≠0时,∵f0=1,∴抛物线过点0,1;若m<0时,fx的开口向下,如图所示;∴二次函数的两个零点必然是一个在原点右侧,一个在原点左侧,满足题意;若m>0,fx的开口向上,如图所示,要使函数的零点在原点右侧,当且仅当△=9﹣4m≥0,且>0即可,如图所示,解得0<m≤;综上,m的取值范围是﹣∞,9/48.函数y=fx的图象在a,b内是连续的曲线,若fafb>0,则函数y=fx在区间a,b内A.只有一个零点B.至少有一个零点C.无零点D.无法确定分析:可列举适当的函数图象,看图象与x轴的交点个数,将选项逐个排除,即可得到正确答案.解:如图1,有fafb>0,但函数y=fx的图象与x轴无交点,所以fx在区间a,b内无零点,可排除A,B,如图2,有fafb>0,但函数y=fx的图象与x轴只有一个交点,所以fx在区间a,b内有且只有一个零点,可排除C,综上知,函数y=fx在区间a,b内的零点个数无法确定.故答案为D9.若二次函数fx=x2+mx+3+2m1若函数fx有两个零点,其中一个零点小于0,另一零点大于5,求m的取值范围;2fx在区间1,7上有最大值22,求m的取值范围.分析:1利用二次函数的性质,函数的零点,列出不等式,即可求解m的范围.2利用二次函数的对称轴以及函数的最值,列出不等式求解即可.解:1二次函数fx=x2+mx+3+2m,开口向上,由图象可知则m<﹣4即m∈﹣∞,﹣4;2由题意可知或可得m=-10/3。
函数的零点与解析问题及例题分析
函数的零点与解析问题及例题分析1. 函数的零点函数的零点指的是函数取值为零的点,即满足$f(x) = 0$的$x$值。
求函数的零点是许多数学问题中的基本任务。
求函数的零点方法很多,常见的包括二分法、牛顿法、割线法等。
下面以二分法为例来说明求函数零点的过程。
例题1::已知函数$f(x) = \sin(x)$,求$f(x)$的零点。
解析过程如下:1. 首先确定一个区间$[a, b]$,使得$f(a)$和$f(b)$异号。
2. 将区间中点记作$c$,计算$f(c)$的值。
3. 如果$f(c)$为零,则$c$是$f(x)$的零点;否则,根据$f(c)$和$f(a)$(或$f(b)$)的符号确定新的区间。
4. 重复步骤2和3,直到找到一个足够接近零点的解。
2. 解析问题解析问题是指在数学运算中的一些特殊情况,如分母为零、根号内为负数等。
解析问题的存在可能导致函数无法取值或无法计算。
解析问题的判定和处理与具体的数学表达式有关。
以下是一些常见的例子:- 分母为零:当函数中出现分母为零的情况时,其解析问题是分母为零的$x$值,并且在该点处函数无法取值。
- 根号内为负数:当函数中出现根号内为负数的情况时,其解析问题是根号内为负数的$x$值,并且在该点处函数无法计算。
解析问题在数学问题的解决中需要注意,可以通过数值计算的方法来规避这些问题。
3. 例题分析例题2::已知函数$f(x) = \frac{1}{x^2 - 4}$,求$f(x)$的定义域。
解析过程如下:由于分母为$x^2 - 4$,我们需要排除使分母为零的情况。
即解方程$x^2 - 4 = 0$,求得$x = \pm 2$。
因此,函数$f(x)$的定义域为$(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$。
以上是关于函数的零点与解析问题的简要分析和例题讲解。
希望对您有所帮助!。
第23讲 零点问题之三个零点(解析版)
第23讲 零点问题之三个零点1.已知函数1()()f x a lnx x=+,a R ∈.(1)求()f x 的极值;(2)若方程2()20f x lnx x -++=有三个解,求实数a 的取值范围. 【解答】解:(1)()f x 的定义域为(0,)+∞, 2211(1)()()a x f x a x x x -'=-=, 当0a >时,()f x 在(0,1)上递减,在(1,)+∞上递增, 所以()f x 在1x =处取得极小值a , 当0a =时,()0f x =,所以无极值,当0a <时,()f x 在(0,1)上递增,在(1,)+∞上递减, 所以()f x 在1x =处取得极大值a .(2)设()2()2h x f x lnx x =-++,即2()(21)2ah x a lnx x x=-+++, 22212(1)(2)()1(0)a a x x a h x x x x x --+'=-+=>. ①若0a ,则当(0,1)x ∈时,()0h x '<,()h x 单调递减,当(1,)x ∈+∞时,()0h x '>,()h x 单调递增,()h x 至多有两个零点. ②若12a =-,则(0,)x ∈+∞,()0h x '(仅h '(1)0)=,()h x 单调递增,()h x 至多有一个零点. ③若102a -<<,则021a <-<,当(0,2)x a ∈-或(1,)x ∈+∞时,()0h x '>,()h x 单调递增; 当(2,1)x a ∈-时,()0h x '<,()h x 单调递减, 要使()h x 有三个零点,必须有(2)0(1)0h a h ->⎧⎨<⎩成立.由h (1)0<,得32a <-,这与102a -<<矛盾,所以()h x 不可能有三个零点.④若12a <-,则21a ->.当(0,1)x ∈或(2,)x a ∈-+∞时,()0h x '>,()h x 单调递增;当(1,2)x a ∈-时,()0h x '<,()h x 单调递减,要使()h x 有三个零点,必须有(1)0(2)0h h a >⎧⎨-<⎩成立,由h (1)0>,得32a >-,由(2)(21)[(2)1]0h a a ln a -=---<及12a <-,得2ea <-,∴322e a -<<-.并且,当322ea -<<-时,201e -<<,22e a >-, 22222()42(2)4(2)4150h e e a e e e e e ---=++-<+--<+-<, 22222222()2(2)3(2)6370h e e a e e e e e e ---=++>-+=-->->. 综上,使()h x 有三个零点的a 的取值范围为3(,)22e --.2.已知函数()(1)1f x xlnx a x =-++,a R ∈. (1)求函数()f x 的单调区间和极值 (2)若方程()1(21)(1)20f x a a x x x-+++++=有三个解,求实数a 的取值范围. 【解答】解:(1)函数的定义域(0,)+∞,()f x lnx a '=-,当a x e >时,()0f x '>,函数单调递增,当0a x e <<时,()0f x '<,函数单调递减, 故当a x e =时,函数取得极小值()1a a f e e =-,没有极大值, (2由)()1(21)(1)20f x a a x x x-+++++=整理可得2(12)(1)(1)a xlnx x -+=+, 令1y xlnx =+,则10y lnx '=+=可得1x e=, 易得当1x e >时,函数单调递增,当1x e<时,函数单调递减, 故1x e =时,函数取得最小值110e->即10y xlnx =+>, 故原方程可转化为2(1)121x a xlnx +-=+,令2(1)()1x g x xlnx +=+,则2(1)(1)(1)()(1)x lnx x g x xlnx +--'=+,因为0x >,易得当x e >或01x <<时,()0g x '>,函数单调递增,当1x e <<时,()0g x '<,函数单调递减, 故当1x =时,函数取得极大值g (1)4=,当x e =时,函数取得极小值g (e )1e =+, 由题意可得,12y a =-与()3g x 个交点,则1124e a +<-<,解可得,322e a <<, 故a 的范围3(,)22e.3.已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.【解答】解:(1)32()f x x kx k =-+.2()3f x x k '=-,0k 时,()0f x ',()f x 在R 递增,0k >时,令()0f x '>,解得:x >x < 令()0f x '<,解得:x <()f x ∴在(,-∞递增,在(递减,在)+∞递增, 综上,0k 时,()f x 在R 递增, 0k >时,()f x在(,-∞递增,在(递减,在,)+∞递增; (2)由(1)得:0k >,()f x f =极小值,()f x f ⎛= ⎝极大值,若()f x 有三个零点,只需00(0k f f ⎧⎪>⎪⎪<⎨⎪⎪>⎪⎩,解得:4027k <<,故4(0,)27k ∈. 4.已知函数2()(2)x f x e a x =--,0a >,()f x '为()f x 的导函数. (1)讨论()f x 的单调性,设()f x '的最小值为m ,并求证:2m e ; (2)若()f x 有三个零点,求a 的取值范围. 【解答】解:(1)函数2()(2)x f x e a x =--,0a >,()2(2)()x f x e a x g x '=--=,()2x g x e a '=-,令()20x g x e a '=-=,解得0(2)x ln a =.可得函数()g x 在0(,)x -∞上单调递减,在0(x ,)+∞上单调递增. 0()()((2))22((2)2)62(2)min g x g x g ln a a a ln a a aln a ∴===--=-,①令62(2)0a aln a -,化为:(2)3ln a ,解得32e a .302e a ∴<时,()0f x ',函数()f x 在R 上单调递增. 令62(2)0a aln a -<,化为:(2)3ln a >,解得32e a >.x →-∞时,()f x '→+∞;x →+∞时,()f x '→+∞.∴存在122x x <<,使得12()()0f x f x '='=.可得:函数()f x 在1(,)x -∞单调递增,在1(x ,2)x 上单调递减,在2(x ,)+∞上单调递增.综上可得:302e a <时,函数()f x 在R 上单调递增.32e a >时.函数()f x 在1(,)x -∞单调递增,在1(x ,2)x 上单调递减,在2(x ,)+∞上单调递增.其中12()()0f x f x '='=.②由上面可得:0(2)x ln a =时,()f x '取得最小值,62(2)m a aln a ∴=-,令20a t =>. ()3u t t tlnt =-,令()3120u t lnt lnt '=--=-=,解得2t e =.22222()3m u e e e lne e ∴=-=. 2m e ∴.(2)函数2()(2)x f x e a x =--,0a >, f (2)20e =≠,2∴不是函数()f x 的零点. 由2()(2)0xf x e a x =--=,化为:2(2)(2)xe a x x =≠-.令2()(2)(2)x e G x x x =≠-,可得3(4)()(2)x e x G x x -'=-. 可得函数()G x 在(,2)-∞上单调递增,在(2,4)上单调递减,在(4,)+∞上单调递增.G (4)44e =.画出图象:可得44e a >.a ∴的取值范围是4(4e ,)+∞.5.已知函数2()2x f x xe ax ax =--. (1)讨论()f x 的单调性;(2)若()f x 恰有三个零点,求a 的取值范围.【解答】解:(1)函数2()2x f x xe ax ax =--,定义域为R ,()22(1)2(1)(1)(2)x x x x f x e xe ax a e x a x x e a '=+--=+-+=+-,①当0a 时,20x e a ->,当1x <-时,()0f x '<,当1x >-时,()0f x '>, 所以()f x 在(,1)-∞-上单调递减,在(1,)-+∞上单调递增; ②当0a >时,由()0f x '=,解得1x =-或(2)x ln a =, (ⅰ)当12a e=时,()f x 在R 上单调递增; (ⅱ)当102a e<<时,当(2)x ln a <,则()0f x '>,当(2)1ln a x <<-时,()0f x '>,当1x >-时,()0f x '>, 所以()f x 在(-∞,(2))ln a 上单调递增,在((2)ln a ,1)-上单调递减,在(1,)-+∞上单调递增; (ⅲ)当12a e>时,当1x <-时,()0f x '>,当1(2)x ln a -<<时,()0f x '<,当(2)x ln a >时,()0f x '>, 所以()f x 在(,1)-∞-上单调递增,在(1-,(2))ln a 上单调递减,在((2)ln a ,)+∞上单调递增. 综上所述,当0a 时,()f x 在(,1)-∞-上单调递减,在(1,)-+∞上单调递增; 当102a e<<时,()f x 在(-∞,(2))ln a 上单调递增,在((2)ln a ,1)-上单调递减,在(1,)-+∞上单调递增; 当12a e=时,()f x 在R 上单调递增; 当12a e>时,()f x 在(,1)-∞-上单调递增,在(1-,(2))ln a 上单调递减,在((2)ln a ,)+∞上单调递增. (2)函数2()2(2)x x f x xe ax ax x e ax a =--=--, 则(0)0f =,即()f x 有一个零点0,令()2x g x e ax a =--,要使()f x 有三个零点,只需要()2x g x e ax a =--有两个不为0的零点, 若()2x g x e ax a =--的零点为0,即0(0)20g e a =-=,解得12a =, 此时1()12x g x e x =--有两个零点,但有一个零点是0,此时()f x 只有两个零点,故12a ≠;又()x g x e a '=-,①当0a 时,()0x g x e a '=->,则()g x 在R 上单调递增,故()g x 至多有一个零点,不合题意; ②当0a >且12a ≠时,()g x 在(,)lna -∞上单调递减,在(,)lna +∞上单调递增, 故()()2(1)min g x g lna a alna a a lna ==--=-+, (ⅰ)当10ae<时,()()0min g x g lna =,故()g x 至多有一个零点,不合题意,舍去; (ⅱ)当1a e>且12a ≠时,()()0min g x g lna =<,因为2(2)0g e --=>,所以()g x 在(,)lna -∞上有唯一零点, 由(1)知,当2x >时,20x e x -->,则当4x >且2(2)x ln a >时,2(2)222()(2)(2)(2)202x x ln a xg x e e a x e a x a =⋅-+>⋅+-+=>, 所以()g x 在(,)lna +∞上有唯一零点,从而()g x 在R 上有两个零点,此时()f x 有三个零点. 综上所述,()f x 恰有三个零点时a 的取值范围是111(,)(,)22e +∞. 6.已知函数32()(2)8473tf x x t x x t =-++--+.(1)当0t >时,讨论()f x 的单调性; (2)已知函数()g x lnx =,记函数()()|()()|()22f xg x f x g x m x +-=-,若函数()m x 有三个零点,求实数t 的取值范围.【解答】解:(1)2()2(2)8(2)(4)f x tx t x x tx '=-++-=---, 令()0f x '=,得1242,x x t==, 当2t =时,故函数()f x 在R 上单调递减;当2t >时,12x x >,故函数()f x 在4(,),(2,)t -∞+∞上递减,在4(,2)t 上递增;当02t <<时,12x x <,故函数()f x 在4(,2),(,)t-∞+∞上递减,在4(2,)t 上递增.(2)由已知在(0,)+∞有且仅有1x =一个零点,①当0t =时,2()287f x x x =-+,由()0f x =,得2(1,)x =±+∞, 此时()m x 有三个零点;②当0t <时,()(2)(4)f x x tx '=---,得1242,0x x t==<, 故函数()f x 在在(0,2)上递减,在(2,)+∞上递增, 10(0)740,(1)103f t f t =->=->, ∴当1x 时,()()m x g x =,故()y m x =在(0,1]上仅有一个零点,若函数有()y m x =有三个零点, 则需满足8(2)103t f =--<,解得308t -<<; ③当0t >时,()i 若2t =,则()f x 为单调函数,所以函数()y m x =至多有2个零点,不合题意,舍, ()ii 若,故()f x 在(0,)+∞至多有1一个零点,所以函数()y m x =至多有2个零点,不合题意,舍, ()iii 当f (1)0<,即310t >时,函数()y m x =至多有2个零点,不合题意,舍, 当f (1)0=,即310t =时,3224132()471603f x f t t t t t ⎛⎫⎛⎫==-+-+> ⎪ ⎪⎝⎭⎝⎭极大值,函数()y m x =恰有3个零点,符合题意, 当f (1)0>,即3010t <<时,3224132()471603f x f t t t t t ⎛⎫⎛⎫==-+-+> ⎪ ⎪⎝⎭⎝⎭极大值,令32323()4716(0)310t t t t t ϕ=-+-+<<,则23()121416()010t t t ϕϕ'=-+-<'<, 故()t ϕ在3(0,)10单调递减,3()()010t ϕϕ>>,即4()0f t>, 此时函数()y m x =有4个零点,不合题意,舍; 综上,实数t 的取值范围是33[,0]108⎧⎫-⎨⎬⎩⎭.7.已知函数()f x lnx =-(Ⅰ)讨论()f x 的单调性;(Ⅱ)存在正实数k 使得函数()1()g x kx f x =-+有三个零点,求实数a 的取值范围.【解答】解:(Ⅰ)1()0)f x x x '==>,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分) ①当0a 时,()0f x '>恒成立,则()f x 在(0,)+∞上单调递增;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分) ②当0a >时,()0f x '=得:24x a=. 当24(0,)x a ∈时,()0f x '>,()f x 单调递增, 当24(,)x a ∈+∞时,()0f x '<,()f x 单调递减,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分) 综上,0a 时,()f x 的增区间为(0,)+∞. 0a >时,()f x 的增区间为24(0,)a,减区间为24(,)a +∞.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分)(Ⅱ)由题易知()1g x kx lnx =+-,即10kx lnx +-=有三个解,a=,即a =+设21()lnx h x kx x x=+-,2223()0kx lnx h x x -+'==,可得2230kx lnx -+=,即223lnx k x -=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分) 设3()lnt M t t -=,则24()0lnt M t t-'==,得4t e =.4(0,)t e ∈时,()0M t '>,()M t 单调递增,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)4(t e ∈,)+∞ 时,()0M t '<,()M t 单调递减(同时注意x →+∞时,441()0)()()M t M t M e e>=, 当41ke时,()0h x 恒成立,此时a R ∈均符合条件; 当410k e <<时,3lnt k t-=由两个根不妨设为1t ,2t 且4120t e t <<<.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)223lnx k x-=有两根,不妨设为1x ,2x 则12x x ==2120x e x <<<; 容易分析出()h x 在1(0,)x ,2(x ,)+∞单调递增,1(x ,2)x 单调递减, 则当410k e <<时2(()min a h x ∈,1())max h x .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分) 这里需要求1()h x 和2()h x 的取值范围.由上面分析可得211230kx lnx -+=,则111123lnx kx x x =-. 111111111111122244131()lnx lnx lnx lnx h x kx x x x x x x x -=+-=-+-=,210x e <<. 设44()lnx N x x -=,20x e <<,24(2)()lnx N x x-'=;易知()N x 在20x e <<上单调递增, 224()()N x N e e <=,则124()h x e<.∴24a e .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分) 同理22244()lnx h x x -=,22x e >.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分)由上面分析44()lnx N x x-=在2(e ,)+∞单调递减,且x →+∞时,()0N x →, 2()0h x ∴>.0a ∴>.综上:24(0,)a e ∈.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分) 8.设函数3()f x x bx c =++,曲线()y f x =在点1(2,1())2f 处的切线与y 轴垂直.(1)求b ;(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【解答】(1)解:由3()f x x bx c =++,得2()3f x x b '=+, 211()3()022f b ∴'=⨯+=,即34b =-;(2)证明:法一、设0x 为()f x 的一个零点,根据题意,30003()04f x x x c =-+=,且0||1x ,则30034c x x =-+,且0||1x ,令33()(11)4c x x x x =-+-,2311()33()()422c x x x x ∴'=-+=-+-, 当(1x ∈-,11)(22-⋃,1)时,()0c x '<,当1(2x ∈-,1)2时,()0c x '>可知()c x 在1(1,)2--,1(2,1)上单调递减,在1(2-,1)2上单调递增.又1(1)4c -=,c (1)14=-,11()24c -=-,11()24c =, ∴1144c-. 设1x 为()f x 的零点,则必有31113()04f x x x c =-+=,即311131444c x x -=-+, ∴321111321111431(1)(21)0431(1)(21)0x x x x x x x x ⎧--=-+⎪⎨-+=+-⎪⎩,得111x -, 即1||1x .()f x ∴所有零点的绝对值都不大于1. 法二、由(1)可得,33()4f x x x c =-+.2311()33()()422f x x x x '=-=+-, 可得当(x ∈-∞,11)(22-⋃,)+∞时,()0f x '>,当1(2x ∈-,1)2时,()0f x '<,则()f x 在1(,)2-∞-,1(2,)+∞上单调递增,在1(2-,1)2上单调递减.且1(1)4f c -=-,11()24f c -=+,11()24f c =-,f (1)14c =+, 若()f x 的所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或f (1)0<. 即14c >或14c <-. 当14c >时,1(1)04f c -=->,11()024f c -=+>,11()024f c =->,f (1)104c =+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理可知,()f x 在(4,1)c --上存在唯一一个零点. 即()f x 在(,1)-∞-上存在唯一零点,在(1,)+∞上不存在零点. 此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c <-时,1(1)04f c -=-<,11()024f c -=+<,11()024f c =-<,f (1)104c =+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理可知,()f x 在(1,4)c -上存在唯一一个零点. 即()f x 在(1,)+∞上存在唯一零点,在(,1)-∞上不存在零点. 此时()f x 不存在绝对值不大于1的零点,与题设矛盾. 综上,()f x 所有零点的绝对值都不大于1. 9.已知函数3211()32a f x ax x xb +=-++.(1)试讨论()f x 的单调性;(2)设(ab c c =是与a 无关的常数,0)a ≠,当函数()f x 有三个不同的零点时,a 的取值范围恰好是(-∞,1)(0-⋃,1)(47⋃,)+∞,求c 的值.【解答】解:(1)2()(1)1(1)(1)f x ax a x ax x '=-++=--, 当0a =时,()1f x x '=-,则在(,1)-∞上,()0f x '>,()f x 单调递增;在(1,)+∞上,()0f x '<,()f x 单调递减; 当1a =时,2()(1)0f x x '=-,()f x 单调递增; 当0a <,即11a<时,则在1(,1)a 上,()0f x '>,()f x 单调递增;在1(,)a-∞和(1,)+∞上,()0f x '<,()f x 单调递减; 当01a <<,即11a>时,则在1(1,)a 上,()0f x '<,()f x 单调递减;在(,1)-∞和1(,)a+∞上,()0f x '>,()f x 单调递增;当1a >,即11a<时,则在1(,1)a 上,()0f x '<,()f x 单调递减;在1(,)a-∞和(1,)+∞上,()0f x '>,()f x 单调递增; 综上,当0a =时,()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减; 当1a =时,()f x 单调递增;当0a <时,()f x 在1(,1)a 上单调递增,在1(,)a-∞和(1,)+∞上单调递减;当01a <<时,()f x 在(,1)-∞和1(,)a+∞上单调递增,在1(1,)a 上单调递减;当1a >时,()f x 在1(,)a -∞和(1,)+∞上单调递增,在1(,1)a上单调递减. (2)当0a ≠,1时,函数有两个极值221631()6a b a f a a +-=和236(1)6a a abf a -+=,若函数()f x 有三个不同的零点1()(1)0f f a⇔<,即223(631)(36)036a b a a a ab a +--+<,因为ab c =,所以32(631)(36)0a ac a a a c +--+<恒成立, 又因为a 的取值范围恰好是1(,1)(0,)(4,)7-∞-+∞,所以令g (a )32(631)(36)a ac a a a c =+--+, 恰有三个零点11,,47-,若1a =-时,(1)(23)(23)0g c c -=-+-=,即23c =±;当23c =时,g (a )32(71)(34)0a a a a =--+< 323(71)(34)(71)(4)(1)0a a a a a a a a ⇔---=--+>,a 的取值范围是1(,1)(0,)(4,)7-∞-+∞符合题意;当23c =-时,g (a )32(1)(34)0a a a a =----<,即32(1)(34)0a a a a +-+<,a 的取值范围是(1,0)-矛盾, 所以23c =. 10.已知函数2()|2|f x x ax ax =---,(0)a >. (Ⅰ)若(0,2)a ∈,解不等式()0f x <;(Ⅱ)设1x ,2x ,3x ,4x 是函数()1y f x =+的四个不同的零点,问是否存在实数a ,使得其中三个零点成等差数列?若存在,求出所有a 的值;若不存在,说明理由. 【解答】解:(Ⅰ)函数2()|2|f x x ax ax =---,(0)a >. 22222,()22,x ax x af x x x a ⎧-+⎪⎪=⎨⎪-<⎪⎩;讨论:(1)当2x a<时,()0f x <,即:220x -<得:x <若22a,即:02a<时,不等式解集为:{|x x <<;若2a <2a <时,不等式解集为:2{|}x x a<; (2)当2xa时,()0f x <,即:2220x ax -+<, 若△2480a =-,即:02a <时,()0f x <无解,若△2480a=->2a <时, 由()0f x <,得:a x a << 又因为:2a a>,2aa=<,∴不等式解集为:2{|x x aa<+;综上:(1)、(2)可知:当02a<时,不等式的解集为:{|x x<<;2a<时,不等式的解集为:{|x x a<+;(Ⅱ)存在74a=使得其中三个零点成等差数列;因为:22223,()121,x ax xaf xx xa⎧-+⎪⎪+=⎨⎪-<⎪⎩,函数()1y f x=+有四个不同的零点,所以:△24120a=->且21a>,∴2a<;不妨设:1234x x x x<<<,则:11x=-,21x=,①若1x,2x,3x,成等差数列,则:33x=,此时2a=,41x=,不合题意②若1x,2x,4x,成等差数列,同①知不合题意③若1x,3x,4x,成等差数列,则:3434212x xx x a=-+⎧⎨+=⎩,所以:3213ax-=,22121()23033a aa---⨯+=,24140a a+-=;74a=-或2a=均舍去④若2x,3x,4x,成等差数列,则:3434212x xx x a=+⎧⎨+=⎩,3213ax+=,22121()23033a aa++-⨯+=,24140a a+-=;所以:74a =或2a =-(舍去) 综上可知:存在74a =符合题意. 11.设函数221()(2)()2(1)2f x x x lnx a x a x a =-+-+-+.()I 讨论()f x 的单调性;(Ⅱ)当2a <-时,讨论()f x 的零点个数.【解答】解:()()2(1)()(0)I f x x lnx a x '=-+>.①当0a =时,()2(1)f x x lnx '=-,当01x <<时,()0f x '>, 当1x >时,()0f x '>,当1x =时,()0f x '=.()f x ∴在(0,)+∞递增 ②当0a >时,令()0f x '=,得121,a x x e -==,此时1a e -<. 易知()f x 在(0,)a e -递增,(a e -,1)递减,(1,)+∞递增③当0a <时,1a e ->.易知()f x 在(0,1)递增,(1,)a e -递减,(a e -,)+∞递增(Ⅱ)当2a <-时,由()I 知()f x 在(0,1)上递增,(1,)a e -上递减,(a e -,)+∞上递增, 且13(1)2(1)022f a a a =-+-+=>,将a x e -=代入()f x , 得22211()()(2)()()2(1)(2)2222a f x f e x x a a x a x a x a a -==--+-+-+=--++<-,()0a f e -∴<,下面证明当(0,1)x ∈时存在0x ,使0()0f x <.首先,由不等式1lnx x <-,∴11111x n x x x -<-=,∴1x lnx x --<,∴1xlnx x->.考虑到22(2)0x x x x -=-<,2222211113()(2)()2(1)(2)()2(1)()(1)2222x f x x x lnx a x a x a x x a x a x a a x x -∴=-+-+-=<-+-+-+=+-+.再令213()(1)022a x +-+=,可解出一个根为1x =,2a <-,∴30121a -<<+,∴011<-,就取001(0,1)x x =∈. 则有0()0f x <.由零点存在定理及函数()f x 在(0,1)上的单调性,可知()f x 在(0,1)上有唯一的一个零点.由f (1)0>,()0a f e -<,及()f x 的单调性,可知()f x 在(1,)a e -上有唯一零点. 下面证明在(ax e-∈,)+∞上,存在1x ,使1()0f x >,就取121a x e-+=,则1a x e ->,∴2211111111()(2)()()2(1)22a f x x x a a x a x a x a e a -=--++-+-+=+>+,由不等式1x e x >+,则(1)0a e a a a -+>-++>,即1()0f x >. 根据零点存在定理及函数单调性知()f x 在(a e -,)+∞有一个零点. 综上可知,()f x 当2a <-时,共有3个零点. 12.已知函数()2()f x xlna x a lnx =-+.(1)当a e =时,求曲线()y f x =在1x =处的切线方程; (2)讨论函数()f x 的零点个数.【解答】解:(1)当a e =时,()2()f x x x e lnx =-+,导数为()21x e ef x lnx lnx x x+'=--=--, 可得曲线()y f x =在1x =处的切线的斜率为111ln e e --=-, 切点为(1,2),则方程为2(1)(1)y e x -=--,即为(1)1y e x e =-++. (2)显然0a >,函数()f x 的定义域为(0,)+∞,()2x a f x lna lnx x +'=--,令()()2x a g x f x lna lnx x +='=--,则21()a g x x x'=-+, 当0x a <<时,()0g x '>,当x a >时,()0g x '<, 所以()g x 在(0,)a 上单调递增,在(,)a +∞上单调递减, 则()g x 有最大值且()max g x g =(a )2lna =-. 当20lna -,即20a e <时,g (a )0,于是()0g x ,即()0f x ',()f x 在(0,)+∞上单调递减,且f (a )0=,则()f x 只有一个零点.当20lna ->,即2a e >时,g (a )0>,g (1)21lna a =--,令h (a )221()lna a a e =-->,则h '(a )2210aa a-=-=<, 所以h (a )在2(e ,)+∞.上单调递减,h (a )224130e e <--=-<,即g (1)0<.又g (a )0>,()g x 在(0,)a 上单调递增,所以存在1(1,)x a ∈,使得1()0g x =, 当10x x <<时,()0g x <,当1x x a <<时,()0g x >, 即当10x x <<时,()0f x '<,当x x a <<时,()0f x '>.另一方面,222222()20a a a ag a lna lna a a++=--=-<,又g (a )0>且()g x 在(,)a +∞上单调递减,所以存在22(,)x a a ∈,使得2()0g x =, 当2a x x <<时,()0g x >,当2x x >时,()0g x <, 即当2a x x <<时,()0f x '>,当2x x >时,()0f x '<,因此,当10x x <<时,()0f x '<,当12x x x <<时,()0f x '>,当2x x >时,()0f x '<, 即()f x 在1(0,)x 上单调递减,在1(x ,2)x 上单调递增,在2(x ,)+∞上单调递减.由于f (a )0=,且12x a x <<,所以()f x 在1(x ,2)x 上有唯一零点,且1()0f x <,2()0f x >, 又f (1)20lna =>,所以()f x 在1(1,)x 上有唯一零点,即()f x 在1(0,)x 上有唯一零点,又2222()2()20f a a lna a a lna alna =-+=-<,所以()f x 在2(x ,2)a 上有唯一零点,即()f x 在2(x ,)+∞上有唯一零点,故当2a e >时,函数()f x 有三个零点.综上,当20a e <时,函数()f x 有一个零点;当2a e >时,函数()f x 有三个零点. 13.已知函数3221()3(0)3f x x ax a x b a =--+>.(1)若函数()f x 在0x =处的切线方程为32y x =-+,求实数a ,b ;(2)若函数()f x 有三个零点,求3ba 的取值范围. 【解答】解:(1)由3221()33f x x ax a x b =--+,得22()23f x x ax a '=--,∴函数()f x 在点(0,)b 处的切线斜率为2(0)3f a '=-, ∴切线方程为23(0)y b a x -=--,即23y a x b =-+,又函数()f x 在0x =处的切线方程为32y x =-+, ∴2332a b ⎧-=-⎨=⎩,解得12a b =⎧⎨=⎩;(2)已知3221()33f x x ax a x b =--+,则22()23f x x ax a '=--,令22()230f x x ax a '=--=,即(3)()0x a x a -+=, 0a >,∴可得当(x ∈-∞,)(3a a -⋃,)+∞时,()0f x '>,当(,3)x a a ∈-时,()0f x '<,∴函数()f x 在(,)a -∞-单调递增,(,3)a a -单调递减,(3,)a +∞单调递增,()f x ∴的极大值为()f a -,极小值为(3)f a , 要想函数()f x 有三个零点,则()0(3)0f a f a ->⎧⎨<⎩,即33333313031279903a a ab a a a b ⎧--++>⎪⎪⎨⎪⋅--+<⎪⎩,解得3593b a -<<.14.已知函数()f x ,对x ∀,y R ∈,都有2()()230f x y f y x xy x +---+=恒成立,且f (2)1=-. (1)求()f x 的解析式; (2)若函数()()f x h x x=,2()(|21|)5|21|x x m G x h m =-+--有三个零点,求m 的取值范围.【解答】解:(1)函数()f x ,对x ∀,y R ∈,都有2()()230f x y f y x xy x +---+=恒成立, 令2x =,0y =,则f (2)(0)20f -+=, 又f (2)1=-,所以(0)1f =, 令0y =,则2()(0)30f x f x x --+=, 所以2()31f x x x =-+; (2)函数()1()3f x h x x x x==+-, 令|21|x t -=,由题意0t ≠,所以0t >,当1t ,方程|21|x t =-有一根, 当01t <<,方程有两根, 令212()(|21|)5350|21|x xm mG x h m t m t t=-+-=+-+-=-, 所以方程2(35)210t m t m -+++=有两不等实根,且101t <<,21t >或101t <<,21t =, 记2()(35)21h x t m t m =-+++, 所以()h x 的零点情况:①当101t <<,21t >时,(0)210()1310h m h m =+>⎧⎨=--<⎩,解得13m >-;②当101t <<,21t =时,35012(0)210(1)310m h m h m +⎧<<⎪⎪=+>⎨⎪=--=⎪⎩,解得13m =-.综上所述,m 的取值范围为1[,)3-+∞.15.已知()2x f x e ax b =-+,1()()1222x x x x F x f x e e bx =-+-+. (Ⅰ)讨论()f x 在区间[0,1]上的单调性;(Ⅱ)若211()1)242a F =-,且()F x 在[0,1]上有三个零点,求实数a 的取值范围.【解答】解:(Ⅰ)()2x f x e a '=-,01x ,当20a -,即0a ,()0f x '>在[0,1]恒成立,所以()f x 在[0,1]上单调递增, 当20a -<,即0a >,令()0f x '=,解得2x ln a =, 若102a <时,则()0f x '>在[0,1]恒成立,所以()f x 在[0,1]上单调递增, 若122ea <<时,则当[0x ∈,2)ln a 时,()0f x '<,当(2x ln a ∈,1]时,()0f x '>, 所以,()f x 在[0,2)ln a 上单调递减,在(2ln a ,1]上单调递增, 当2ea时,()0f x '<在[0,1]恒成立,所以()f x 在[0,1]上单调递减, 综上可知,当12a时,()f x 在[0,1]上单调递增,当122ea <<时,()f x 在[0,2)ln a 上单调递减,在(2ln a ,1]上单调递增, 当2ea时,()f x 在[0,1]上单调递减; (Ⅱ)由题意可知,1()()121222x x x x x F x f x e e bx ax bx e =-+-+=-+-+,则211()11)24242a b a F =-+-=-,整理得1b a e =+-,所以22()1(1)1x x F x e ax bx e ax a e x =-+-=-++--,因为(0)0F =,F (1)110e a a e =-++--=,()F x 在[0,1]上有三个零点, 所以()F x 在(0,1)只有一个零点,且不单调,()21()x F x e ax a e f x '=-++-=, 由(Ⅰ)可知: 当12a时,()F x '在[0,1]上单调递增,(0)20F a e '=+-<,F '(1)10a =->, 所以存在0(0,1)x ∈,使得0()0F x '=,所以()F x 在0(0,)x 上单调递减,在0(x ,1)上单调递增, 此时()F x 在[0,1]上有两个零点,不符合题意; 2ea时,()F x '在[0,1]上单调递减,同理可得()F x 在[0,1]上有两个零点,不符合题意; 当122ea <<时,()F x '在[0,2)ln a 上单调递减,在(2ln a ,1]上单调递增, (2)22213221F ln a a aln a a e a aln a e '=-++-=-+-,令h (a )3221a aln a e =-+-,h '(a )32221220ln a ln a =--=-=,得a ,当12a <<h '(a )0>,2ea <<时,h '(a )0<,()10max h a e -<,即(2)222132210F ln a a aln a a e a aln a e '=-++-=-+-<,又(0)2F a e '=+-,F '(1)1a =-,()F x 在(0,1)只有一个零点,只需2010a e a +->⎧⎨->⎩, 21e a ∴-<<,又122ea <<,所以a 的取值范围为:21e a -<<.16.已知二次函数()y f x =的图象与直线6y =-只有一个交点,满足(0)2f =-,且函数(2)f x -是偶函数,()()f x g x x=. (1)求二次函数()y f x =的解析式;(2)若对任意[1x ∈,2],[4t ∈-,4],2()g x m tm -+恒成立,求实数m 的范围; (3)若函数2(||3)11||3y g x k x =++⋅-+恰好三个零点,求k 的值及该函数的零点. 【解答】解:(1)因为(2)f x -是偶函数,所以(2)(2)f x f x -=--, 所以()f x 的图象关于2x =-对称,又二次函数()y f x =的图象与直线6y =-只有一个交点, 设2()(2)6f x a x =+-,又因(0)462f a =-=-解得1a =, 所以22()(2)642f x x x x =+-=+-. (2)由(1)得2()4g x x x=-+ 因为()g x 在区间[1,2]单调递增 所以()3min g x =,所以23m tm -+即230m tm -+ 所以2430m m -+且2430m m ++, 所以3m 或3m -,所以m 的取值范围为(-∞,3][3-,)+∞. (3)令||33n x =+,由得2()110g n k n +⋅-=得224110kn n n-++-=即27220n n k n -+-=, 因为函数2(||3)11||3y g x k x =++⋅-+有三个零点所以27220n n k -+-=的一个零点为3? 所以7k =,当7k =时,由27120n n -+=得13n =,24n =, 当13n =时,0x =;当24n =时,1x =±;所以7k=,所以函数的零点为0,1±.。
专题03 函数与方程和零点问题与嵌套函数(解析版)
专题03 函数与方程和零点问题与嵌套函数一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结【题型】一、零点存在定理法判断函数零点所在区间例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( )A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<-,()23ln 3ln 31031f =-=->-, 所以()()230f f <,所以函数的零点所在的区间是()2,3. 故选:B例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈ B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈【答案】D【分析】先由()2()log 20f f x x -=求出2()16log f x x =+,再由()()17f a f a +'=得到21log 10ln 2a a --=,结合单调性和零点存在定理进行判断即可. 【详解】不妨设2()log f x x m -=,则()20f m =,所以2log 2016m m m +=⇒=,得2()16log f x x =+,1()ln 2f x x '=,因为()()17f a f a +'=,所以21log 10ln 2a a --=.令21()log 1ln 2g a a a =--,易得()g a 在(0,)+∞上单调递增,因为227ln118(3)log 3103ln 23ln 2g -=--=>,52531255ln 2ln 25ln 21ln 42410244(2.5)log 2.5102.5ln 25ln 25ln 25ln 25ln 2g ⎛⎫--- ⎪-⎝⎭=--===<<, 由零点存在定理知:(2.5,3)a ∈. 故选:D .例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t -取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭【答案】D【分析】由已知条件构造函数()e ln ah a a =-,利用导数求出最值,由零点存在性定理验证001e 0a a -=的根的范围即可. 【详解】令()()f s g t a ==,即e ln 0t s a ==>, ∴ln t a =,e a s =, ∴e ln (0)a s t a a -=->,令()e ln ah a a =-,则()1e a h a a'=-,令()1e am a a =-,则()21e a m a a '=+, ∴()m a 在()0,∞+上单调递增,且()1e 10m =->,1202m ⎛⎫=< ⎪⎝⎭∴存在唯一0a a =使得()0h a '=,当00a a <<时,1e a a <, ()0h a '<,当0a a >时,1e aa>, ()0h a '>,∴()0()min h h a a =,即s t -取得最小值时,0()f s a a ==,由零点的存在定理验证01e 0aa -=的根的范围,当012a =时,001e 0a a -<,当0ln2a =时,001e 0aa ->,故01(,ln 2)2a ∈, 故选:D .例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( )A .101x <<B .2101xx e << C .()101f x << D .()1ln 2,a ∈-+∞【答案】ACD 【分析】函数()()2e0-=->x af x x a 有两个极值点1x 和2x ,令()0f x '=,则e2e =xa x判断函数()e x g x x =的单调性,由题知()e xg x x=与2e =a y 有两个交点,借助图像求出a 的取值范围,判断D ;再根据零点存在性定理判断A ;又根据11e 2-=x ax ,求出()1f x 的取值范围,判断C ;由()()1200f x f x ⎧'=='⎪⎨⎪⎩,得2112e e x xx x =,由于101x <<,21x >,所以12e 1>x x ,从而判断B.【详解】已知()2e -=-x a f x x ,则()e 2-'=-x af x x ,令()0f x '=,则e2e =xa x考虑函数()e xg x x =,则()()2e 1x x g x x-'=, 当(),0x ∈-∞时,()0g x '<,即()g x 在(),0∞-上单调递减; 当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减; 当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增; 故()g x 的图象大致如图:依题意,若()f x 有两个极值点,则2e e >a ,即1ln 2a >-,因此选项D 正确; 由图易知,101x <<,21x >,故选项A 正确; 又11e 2-=x ax ,故()()122211111e 211-=-=-=--x a f x x x x x ,因为101x <<,所以()101f x <<,故选项C 正确; 因为()()1200f x f x ⎧'=='⎪⎨⎪⎩,即1212e 2e 2x a x a x x --⎧=⎨=⎩,故1212e e =x x x x ,即2112e e x xx x =. 由于101x <<,21x >,所以12e 1>x x ,从而21e 1>xx ,故选项B 错误.故答案为:ACD.【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ∴()f x 的图象关于直线1x =对称 ∴()f x 在区间(2,)+∞单调递减 ∴()f x 的极大值为0 ∴()f x 有3个零点 其中所有正确结论的编号为( ) A .∴∴ B .∴∴ C .∴∴∴ D .∴∴∴【答案】D【分析】根据给定函数,计算(2)-f x 判断∴;探讨()f x 在(2,)+∞上单调性判断∴;探讨()f x 在(0,1)和(1,2)上单调性判断∴;求出()f x 的零点判断∴作答.【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于∴,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,∴正确;对于∴,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,∴不正确; 对于∴,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,∴正确;对于∴,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,∴正确, 所以所有正确结论的编号为∴∴∴. 故选:D【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+ C .()e 2x y f x =- D .()e 2x y f x =-+【答案】B【分析】根据()f x 是奇函数可得()()f x f x -=-,因为0x 是()2e =-xy f x 的一个零点,代入得()002e xf x =,利用这个等式对A 、B 、C 、D 四个选项进行一一判断可得答案.【详解】()f x 是奇函数,()()f x f x ∴-=-且0x 是()2e =-xy f x 的一个零点, 所以()002e xf x =,把0x -分别代入下面四个选项,对于A ,()()0020e e 222-=-x x f x ,不一定为0,故A 错误;对于B ,()()0000e 2e x xf x f x ---+=-0012e e 20x x -+=-⋅⋅+=,所以0x -是函数()e 2x y f x =+的零点,故B 正确;对于C ,()000224e 2e ---=--=-x f x ,故C 不正确;对于D ,()0000e 22e e +24--+==x x x f x ,故D 不正确;故选:B.例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个C .3个D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3 故选:C例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______. 【答案】13【分析】根据函数周期性和奇偶性的性质,进行递推即可. 【详解】()f x 是定义在R 上的以3为周期的奇函数,()()3f x f x ∴+=,且()()f x f x -=-,则()00f =,则()()()()()()36600330f f f f f f ==-==-=-=,,()20f =,()()()()514050f f f f ∴=-=-=-=,, ()10f =,()40f =,()20f -=,方程的解至少有0,3,6,6-,3-,2,5,5-,2-,1-,1,4,4-,共13个. 故答案为:13【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个【答案】D【分析】设()t f x =,求导分析()33f x x x =-的最值与极值,画出图形,再分析()f t c =与()t f x =的根的范围与个数即可【详解】设()t f x =,则由()()0h x f f x c =-=⎡⎤⎣⎦, 得()f f x c =⎡⎤⎣⎦,即()f t c =,()t f x = 又()()()233311f x x x x '=-=-+, 由0fx得1x <-或1x >,此时函数单调递增,由()0f x '<得11x -<<,此时函数单调递减,即函数在=1x -处取得极大值()()()311312f -=--⨯-=,函数在1x =处取得极小值()311312f =-⨯=-,又由()()()322322f -=--⨯-=-,()322322f =-⨯=可得图象:若()f t c =,()2,2c ∈-,则方程有三个解, 满足121t -<<-,211t -<<,312t <<, 则当121t -<<-时,方程()t f x =,有3个根, 当211t -<<时,方程()t f x =,有3个根, 当312t <<时,方程()t f x =,有3个根,此时共有9个根,若()f t c =,2c =,则方程有两个解, 满足11t =-,22t =,则当11t =-时,方程()t f x =,有3个根, 当22t =,有2个根, 此时共有5个根,同理()f t c =,2c =-,也共有5个根 故选:D .例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∴[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1 B .2C .3D .4【答案】D【分析】由题意知,f (x )是周期为2的偶函数,将函数零点转化为求两个函数图象交点的个数即可,作出图象观察得出结论.【详解】由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 故选:D.例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1xx f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7【答案】B【分析】令()t f x =,()0g x =,则()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,得到10t =,212t <<,再分别作出函数()y f x =和直线y t =的图象,得到方程()0f x =和方程()2t f x =的根的个数,进而得到函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数. 【详解】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-, 分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t , 则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根, 当()2t f x =时,函数()y f x =和直线2y t =有三个交点, 即方程()2t f x =有三个不相等的根,综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:B.例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∴[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【答案】2n ﹣1##12-+n【分析】数形结合,画出y =f (x )在区间[0,n ]上的图象,根据y =knx 与y =f (x )的图象交点分析即可.【详解】由题意,画出y =f (x )在区间[0,1]上的图象, 又对任意的[1,n ],都成立f (x )=f (x ﹣1)+1.可理解为区间[n ﹣1,n ]的图象由区间[n ﹣2,n ﹣1]的图象向右平移一个单位所得, 即可画出y =f (x )在区间[0,n ]上的图象,如图所示,故若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解, 则y =knx 与y =f (x )在区间[n ﹣1,n ]上的图象相切,且易得y =f (x )的图象在y =x 与区间[0,1],[1,2],[2,3],∴[n ﹣1,n ]上的公切线之间, 故y =knx 与y =f (x )在区间[0,1],[1,2],[2,3],∴[n ﹣1,n ]上均有2个交点, 故关于x 的方程f (x )=knx 的实数解的个数为2(n ﹣1)+1=2n ﹣1个. 故答案为:2n ﹣1.【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( ) A .8 B .9 C .10 D .11【答案】B【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣,且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果. 例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<- 【答案】C【分析】A 根据函数奇偶性的定义即可判断()f x 的奇偶性;B 利用放缩法,当0x >易证()1f x >,由奇函数的对称性知0x <时()1f x <-,即可知()f x 与sin y x =的交点情况;C :由()2f x =变形可得112713xx⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭,设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭只需判断()1g x =解得个数即可;D 根据函数解析式求出()()2,1f f --比较大小即可. 【详解】A :()f x 定义域为{|0}x x ≠且()()()()()()333391log log 91log 91log 9191120x x x x x f x f x x x x x -⎛⎫+ ⎪+++⎝⎭-+=-+-=--=-,故()f x 为奇函数,错误;B :当0x >时有()3log 91211xf x x>-=-=,又()f x 为奇函数,则当0x <时,()1f x <-,即在R 上()f x ∈()(),11,-∞-⋃+∞,则()f x 的图象与sin y x =没有交点,错误, C :若()2f x =,则有()3log 9112x x+-=,即()3log 913x x +=,变形得9127x x+=,即112713x x⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭, 设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 为减函数且其值域为0,,则()1g x =有且只有一个解,即()f x 的图象与2y =只有一个交点,正确,D :()()2333182log 1log 2log 918181211222f -⎛⎫⎛⎫++ ⎪+ ⎪⎝⎭-=-=--=- ⎪- ⎪⎝⎭3182log 29=-⨯3log =-,而()333110101log 11log 1log 993f ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪⎝⎭⎝⎭,则有()()21f f ->-,错误.故选:C.【点睛】关键点点睛:A 利用奇偶性定义判断函数的奇偶性,B 放缩法及奇函数的对称性,结合正弦函数的性质判断交点情况,C 将交点问题,通过恒等变形转化为方程是否有解的问题,D 通过函数解析式求函数值,进而比较大小.例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( )A .函数()f x 是R 上的单调递增函数B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+ 【答案】BD【分析】对于AC ,举例判断,对于B ,利用取整函数和零点的定义判断即可,对于D ,定义{}[]a a a -=这样一个函数,就会有{}10a >≥,然后结合高斯函数的定义判断即可 【详解】对于A ,(1.1)1f =,(1.2)1f =,(1.1)(1.2)f f =,()f x ∴在R 上不是单调增函数,所以A 错.对于B ,由()[]f x x =,可得1()x f x x -<≤,所以1()33x xg x -<≤,若函数()g x 要有零点,则1033x x -<≤,得[0,3)x ∈,因为()g x 要想为0,必须23x 也为整数,在这个范围内,只有30,2x x ==两个点,所以B 正确, 对于C ,(1.1)1f =,( 1.1)2(1.1)f f -=-≠-,()f x ∴不是奇函数,所以C 错, 对于D ,如果我们定义{}[]a a a -=这样一个函数,就会有{}10a >≥,同时有{}{}{}{}()([][])[[][]]f a b f a b a b a b a b +=+++=+++,当{}{}1a b +≥时,会有()[][]()()f a b a b f a f b +=+=+,当{}{}01a b <+<时,()[][]()()f a b a b f a f b +>+=+,所以D 正确,故选:BD.【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14【答案】D【分析】通过a 是否为0,然后求解函数的零点即可.【详解】解:当0a =时,函数()1f x x =--仅有一个零点,满足题意;当0a ≠时,函数2()1f x ax x =--仅有一个零点,可得140a ∆=+=,解得14a =-.故选:D例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)【答案】A【分析】解方程22()(23)()30-++=f x a f x a 得()f x a =或3()2f x =,根据a 的取值分类讨论即可.【详解】方程22()(23)()30-++=f x a f x a ,解得()f x a =或3()2f x =, 若32a =,13,132()12()1,12x x f x x -⎧=⎪⎪==⎨⎪+≠⎪⎩, 解得1x =或0或2,不符合题意,所以32a ≠, 由3()2f x =,可得原方程有3个不等实根1x =或0或2; 所以只要|1|1()12x a -+=有2个不等实根即可.由|1|0x ->可得|1|10()12x -<<,即有12a <<,综上可得33(1,)(,2)22a ⋃∈.故选:A .例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D【分析】画出()f x 的图像,结合函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,结合图像列不等式来求得m 的取值范围.【详解】当0x ≤时,()f x 是开口向下的二次函数,对称轴为2x =-,()()24831,03f f -=-+-==-.由243=0x x ---解得=1x -或3x =-. 由此画出()f x 的图像如下图所示,依题意,函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点, 令()t f x =,则21y t mt =++,根据图像可知,函数21y t mt =++在区间[)3,1-上有两个不相等的实数根,则()222Δ403310110312m m m m ⎧=->⎪--+≥⎪⎪⎨++>⎪⎪-<-<⎪⎩,解得1023m <≤,所以m 的取值范围是102,3⎛⎤ ⎥⎝⎦.故选:D例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦【答案】A【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点. 当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.∴当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意; ∴当12,0t t >时:1. 若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2. 若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<; 综上可得101t <<或1423t ≤<. 又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭【答案】BC【分析】A 根据()f x 的周期性判断区间单调性;B 利用周期性求得()() 202230f f =-=即可判断;C 转化为y b =与()y f x =的交点问题,应用数形结合法及对称性求零点的和;D 根据函数图象求得1y kx =+与()y f x =交点个数为2或3时的临界值,即可得范围. 【详解】A :由题意,当3x ≥-时()f x 以3为周期的函数,故()f x 在[7,9]上的单调性与()f x 在[-2,0]上的单调性相同,而当0x <时()23924x x f ⎛⎫=-++ ⎪⎝⎭,∴()f x 在[-2,0]上不单调,错误;B :()22f -=,()() 202230f f =-=,故()()2 20222f f -+=,正确;C :作出()y f x =的函数图象如图所示:由于()y f x b =-在(),6-∞上有6个零点,故直线y b =与()y f x =在(),6-∞上有6个交点,不妨设1i i x x +<,i =1,2,3,4,5,由图象知:1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴513392229222i i x ==-⨯+⨯+⨯=∑,正确;D :若直线1y kx =+经过(3,0),则13k =-,若直线1y kx =+与()230y x x x =--<相切,则消元可得:()2103x k x ++=+,令Δ0=可得()2340k +-=,解得k =-1或k =-5(舍),若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性得:k =1. 因为()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =有3个交点, ∴113k -<<-或k =1,错误,故选:BC .例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【答案】2⎫⎪⎪⎝⎭【分析】根据开区间上连续函数的最值点必为导函数的零点,然后求导,数形结合,根据零点存在性定理建立不等式即可求解【详解】因为()()()22e 222e 2x xf x x x a x x a '=-++-+=-++,且函数()f x 在区间(),1a a +上存在最大值, 故只需()22h x x a =-++满足()()>0+1<0h a h a ⎧⎪⎨⎪⎩,所以()22++2>0+1++2<0a a a a --⎧⎪⎨⎪⎩,2a <<.故答案为:2⎫⎪⎪⎝⎭【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4 B .(]3.5,4 C .(]3,4 D .[)3,4【答案】A【分析】由已知得出函数()f x 是周期函数,周期为2,函数()F x 的零点个数转化为函数()f x 的图象与sin()y x π=的图象的交点个数,作出函数的图象(其中()f x 的图象由奇偶性与周期性结合作出),然后分析交点个数得出参数范围. 【详解】由(2)()0f x f x -+=得(2)()f x f x +=--,又()f x 是奇函数,所以(2)()()f x f x f x +=--=,即()f x 是周期函数,周期为2,sin()y x π=也是周期函数,且最小正周期是22ππ=,由奇偶性和周期性作出函数()f x 的图象,再作出sin()y x π=的图象,如图,函数()()sin()F x f x x π=-的零点个数即为函数()y f x =的图象与函数sin()y x π=的图象交点个数,()f x 是R 上的奇函数,所以(0)0f =,从而20()f k =,Z k ∈,易知它们在[1,1)-上有4个交点,从而在[1,3)上也有4个交点,而4x =时,点(4,0)是一个交点,所以4m <,在(0,1)上,2()log f x x =-,11()1sin 22f π==,即1(,1)2是(0,1)上交点,从而在(1,0)-上交点上交点为1(,1)2--,由周期性在(3,4)上两函数图象交点为7(,1)2-,所以72m ≥. 综上,724m ≤<.故选:A .例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】运用代入法,结合余弦型函数的性质、函数零点的定义进行求解即可. 【详解】因为()2cos()1f x x ωϕ=+-经过(0,0)点, 所以12cos 10cos 2ϕϕ-=⇒=,因为0πϕ<<,所以π3ϕ=,即π()2cos()13f x x ω=+-,令ππ1()2cos()10cos()332f x x x ωω=+-=⇒+=,因为π()0,x ∈,所以πππ(,π)333x ωω+∈+,因为()f x 在(0,π)上只有一个零点0x ,所以有5πππ43327ππ3π33ωωω⎧<+⎪⎪⇒<≤⎨⎪≤+⎪⎩,所以ω的最大值为2, 故选:C例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】求出函数()f x 的导数,利用导数的几何意义求出ϕ,再由零点信息列出不等式,求解作答.【详解】依题意,()2sin()f x x ωωϕ'=-+,则(0)2sin f ωϕ'=-=,即sin ϕ=,而π02ϕ<<,解得π3ϕ=, 因此,π()2cos()13f x x ω=+-,由()0f x =得:π1cos()32x ω+=,又π()0,x ∈,有πππ(,π)333x ωω+∈+,因()f x 在(0,π)上只有一个零点0x ,于是得5ππ7ππ333ω<+≤,解得423ω<≤, 所以ω的最大值为2. 故选:C例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】根据函数的奇偶性求出函数在[2,0]-上的解析式,将问题转化为函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,结合图形即可得出结果.【详解】由题意知,函数()f x 为偶函数,且(2)(2)f x f x -=+,令2x x →+,则(22)()(4)()f x f x f x f x --=-=+=, 所以函数()f x 是以4为周期的函数. 当[2,0]x ∈-时,[0,2]x -∈,所以()x f x --=,即当[2,0]x ∈-时()x f x -=,因为函数()()(1)m g x f x x =-+在[0,10]上有5个零点, 所以方程()(1)0m f x x -+=在[0,10]上有5个根,即函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,如图,当[0,2]x ∈时,()xf x =,()121e 2x f x '=,()102f '=,设()(1)mp x x =+,则()1(1)m p x m x -'=+,()0p m '=,当12m ≤,()()00p f '≤', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+只有一个零点,此时,若要使图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点, 则()()11010mf +≤,11log e m ≤,所以110log e m <≤; 当12m >时,()()00p f '>', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+有两个零点, 所以()()166mf +<且()()11010mf +>,即7e 11e m m ⎧<⎨>⎩,解得71log e 2m <<,故m 的取值范围为(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭.故选:B.例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃【答案】C【分析】根据已知条件画出函数()f x 的图象,将函数()()g x f x kx k =-+恰好有两个零点转化为函数()f x 与直线()1y k x =-图象恰有两个交点即可求解.【详解】由题意知,画出函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩的简图,如图所示由()()g x f x kx k =-+恰好有两个零点转化为()f x 与直线()1y k x =-有两个不同的交点, 由图知,当直线经过点()()1,0,0,1-两点的斜率为10101k --==-,则1k >. 所以实数k 的取值范围为()1,+∞. 故选:C.例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭【答案】ACD【分析】根据零点的定义判断A ,利用导数分析函数的单调性,作出函数()f x 的图象,根据图象判断其余选项.【详解】由()0f x =得:0x =,即0x =,故函数()f x 有唯一零点0x = 由题可知:(),0e e ,0e xx xxx x f x x x ⎧≥⎪⎪==⎨⎪-<⎪⎩ 设()e ex x xg x x -==⋅,x ∈R ,则()()1x g x x e -'=-⋅, 由()()1e 0x g x x -⋅'=-≥得:1x ≤;由()()1e 0xg x x -⋅'=-≤得;1x ≥;故()g x 在(],1-∞上单调递增﹐在[)1,+∞上单调递减,作出()y g x =图象,并将0x <的部分图象关于x 轴对称可得()y f x =的图象如下:观察图象可得函数()y f x =的单调递减区间为(),0∞-,()1,+∞,B 错, 函数()y f x =在1x =时有极大值1e,C 对,方程()f x a =有三个不同的根,则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭,D 对,故选:ACD.【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23【答案】C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案. 【详解】22()4f x x x m '=-+,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤- 又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -== 故选:C .例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】分离参变量得211a x x ⎛⎫<- ⎪⎝⎭恒成立,只用2min11a x x ⎡⎤⎛⎫<-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解.【详解】当13x ≤≤时,由210ax x -<+恒成立可得,211a x x⎛⎫<- ⎪⎝⎭恒成立, 令2211111()()24f x x x x ⎛⎫=-=-- ⎪⎝⎭,1113,,13x x ⎡⎤≤≤∴∈⎢⎥⎣⎦,∴当111,123x ⎡⎤=∈⎢⎥⎣⎦,即当2x =时, ()f x 取得最小值为()()min124f x f ==-, 因为211a x x⎛⎫<- ⎪⎝⎭恒成立,所以()min a f x <,即14a <-.故选:B .例30.(2023·全国·高三专题练习)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( )A .6e B.(2e +C.(2e +D .2e【答案】AB【分析】本题的含义是不等式左边的最大值小于等于右边的最小值,t 是常数, 因此先要算出左边的最大值和右边的最小值,再计算不等式即可. 【详解】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增, 所以对[0,)x ∀∈+∞,()()102f x f ≥=; ()()42e x g x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=- ,当1x >时,()'0g x < ;当01x <<时,()'0g x > ,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减, ∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t的取值范围为()2e,⎡+∞⎣; 6e与(2e均在区间()2e,⎡+∞⎣内,(2e +与2e均不在区间()2e,⎡+∞⎣内; 故选:AB .【题型】八、一元二次不等式能成立问题31.(2023·全国·高三专题练习)已知命题:R p x ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( ) A .1,4⎛⎤-∞ ⎥⎝⎦B .1,)4-∞( C .11,42⎛⎫ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】由题意得到20x x a -+≤有解,进而由根的判别式列出不等式,求出实数a 的取值范围.【详解】若p ⌝是真命题,由题意知不等式20x x a -+≤有解,140a ∴∆=-≥,解得:14a ≤. 因此,实数a 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦.故选:A例32.(2023·全国·高三专题练习)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.【答案】)+∞【分析】利用不等式的基本性质分离参数,利用函数的单调性求相应最值即可得到结论. 【详解】由2210x x λ-+<可得,221x x λ>+,因为1,22x ⎡⎤∈⎢⎥⎣⎦,所以12x x λ>+,根据题意,min 12x x λ⎛⎫+ ⎪⎝⎭>即可,设()12f x x x =+,易知()f x在12⎛ ⎝⎭单调递减,在2⎫⎪⎪⎝⎭单调递增,所以()min f x f ==⎝⎭所以λ>故答案为:)+∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与方程考纲解读 1.求常见函数的零点;2.判断基本初等函数零点所在区间;3.判断二次函数零点个数及分布;4.根据函数零点与方程根的关系求参数范围;5.根据具体函数的图象,能够用二分法求相应方程的近似解.[基础梳理]1.函数的零点 (1)函数零点的定义对于函数y =f (x ),把使f (x )=0的实数x 叫作函数y =f (x )的零点. (2)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系(x 0),(x 0)(x 0) 无交点 1.函数f (x )=lg x +x -3的零点个数为( ) A .0 B .1 C .2 D .3答案:B2.函数f (x )=e x -1+4x -4的零点所在区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)答案:B3.函数f (x )=ln x -2x 的零点所在的大致范围是( )A .(1,2)B .(2,3) C.⎝⎛⎭⎫1e ,1和(3,4) D .(4,+∞) 答案:B4.用二分法求f (x )=2x +3x -7的零点的近似解,若第一次零点区间为(1,2),则第二次的零点区间为________.答案:(1,1.5)5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1x 的零点为__________.答案:-1[考点例题]考点一 判定函数零点区间|方法突破[例1] (1)函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)[解析] f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2x >0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln 1=1,f (3)=23-ln 2=2-3ln 23=2-ln 83.∵8=22≈2.828>e ,∴8>e 2,即ln 8>2,即f (3)<0.又f (4)=12-ln 3<0,∴f (x )在(2,3)内存在一个零点.[答案] B(2)已知函数f (x )=2x +x ,g (x )=log 3x +x ,h (x )=x -1x的零点依次为a ,b ,c ,则( ) A .a <b <c B .c <b <a C .c <a <bD .b <a <c[解析] 在同一坐标系下分别画出函数y =2x ,y =log 3x ,y =-1x的图象,如图,观察它们与y =-x 的交点可知a <b <c .[答案] A判断函数零点所在区间的方法法 断对应函数值的正负; 图象法画出函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断容易画出函数的图象[方法提升][跟踪训练]1.设f (x )=e x +x -4,则函数f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)解析:f (x )=e x +x -4单调递增,仅有一个零点,又f (1)=e -3<0,f (2)=e 2-2>0, 故函数f (x )的零点位于区间(1,2).故选C. 答案:C2.(2018·西安五校联考)函数y =ln(x +1)与y =1x 的图象交点的横坐标所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析: 在同一个坐标系中,分别作出y =ln(x +1)与y =1x 的图象如图,y =1x 过点P (1,1),当x =1时,ln 2<1,y =1x 过点⎝⎛⎭⎫2,12,当x =2时,ln 3>1.设y =ln(x +1)与y =1x 的交点为Q (x Q ,y Q ),则1<x Q<2.答案:B考点二 函数的零点个数|方法突破[例2] (1)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )]+1的零点的个数是( )A .4B .3C .2D .1(2)(2018·郑州质检)已知函数f (x )=⎝⎛⎭⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( ) A .1 B .2 C .3D .4(3)函数f (x )=⎩⎪⎨⎪⎧2-|x | x ≤2(x -2)2 x >2的零点个数为__________.[解析] (1)(直接法)由f [f (x )]+1=0得f [f (x )]=-1,由f (-2)=f ⎝⎛⎭⎫12=-1得f (x )=-2或f (x )=12. 若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f [f (x )]+1的零点的个数是4,故选A.(2)(转化法)函数f (x )=⎝⎛⎭⎫12x-cos x =0的零点个数为⎝⎛⎭⎫12x =cos x 的根的个数,即函数h (x )=⎝⎛⎭⎫12x与g (x )=cos x 的图象的交点个数.如图所示,在区间[0,2π]上交点个数为3,故选C.(3)(图象法)作函数y =⎩⎪⎨⎪⎧2-|x | (x ≤2)(x -2)2 (x >2)的图象如图所示,可以看出图象与x 轴有且只有2个交点.故函数零点个数为2. [答案] (1)A (2)C (3)2 [方法提升]函数零点个数的判断方法方法 解读适合题型 直接法 令f (x )=0,如果能求出解,则有几个不同的解就有几个零点基本初等函数图象法画出函数f (x )的图象,函数f (x )的图象与x 轴的交点个数即为函数f (x )的零点个数 分段函数、绝对值函数转化法将函数f (x )拆成两个常见函数h (x )和g (x )的差,从而f (x )=0⇔h (x )-g (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数即为函数y =h (x )与函数y =g (x )的图象的交点个数复杂函数[母题变式]1.将本例(1)改为已知函数f (x )=⎩⎪⎨⎪⎧kx +1,x ≤0,log 2x ,x >0.下列是关于函数y =f [f (x )]+1的零点个数的四个判断:①当k >0时,有3个零点;②当k <0时,有2个零点;③当k >0时,有4个零点;④当k <0时,有1个零点.则正确的是( )A .①④B .②③C .①②D .③④解析: (图象法)令f [f (x )]+1=0,得f [f (x )]=-1.当k >0时,在平面直角坐标系下画出函数f (x )的大致图象及直线y =-1,注意到直线y =-1与函数f (x )的图象有2个交点,设其横坐标分别是t 1,t 2,则t 1<0,0<t 2<1;再画出直线y =t 1与y =t 2,结合图象可知,直线y =t 1与函数f (x )的图象有2个不同的交点,直线y =t 2与函数f (x )的图象有2个不同的交点,因此此时函数y =f [f (x )]+1有4个零点.同理,当k <0时,函数y =f [f (x )]+1有1个零点,结合各选项知,选D.答案:D2.将本例(1)改为求f (x )的零点个数. 解析:函数f (x )的图象如图所示,由图象知,函数f (x )有2个零点.3.将本例(2)改为求函数f (x )=2x -cos x 在(-π,0) 上的零点个数. 解析:令y 1=2x ,y 2=cos x . 如图所示:x ∈(-π,0),两个图象只有一个交点, 即函数f (x )只有一个零点.考点三 函数零点的应用|模型突破角度1 已知函数零点或方程根的个数求参数[例3] (2018·宁德模拟)已知函数f (x )=⎩⎪⎨⎪⎧kx +3,x ≥0,⎝⎛⎭⎫12x ,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k 的取值范围是( )A .[0,+∞)B .[1,3] C.⎝⎛⎦⎤-1,-13 D.⎣⎡⎦⎤-1,-13 [解析] ∵f (f (x ))-2=0,∴f (f (x ))=2, ∴f (x )=-1或f (x )=-1k(k ≠0).(1)当k =0时,作出f (x )的函数图象如图所示:由图象可知f (x )=-1无解,∴k =0不符合题意; (2)当k >0时,作出f (x )的函数图象如图所示:由图象可知f (x )=-1无解且f (x )=-1k 无解,即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出f (x )的函数图象如图所示:由图象可知f (x )=-1有1个实根, ∵f (f (x ))-2=0有3个实根, ∴f (x )=-1k 有2个实根,∴1<-1k ≤3,解得-1<k ≤-13.综上,k 的取值范围是⎝⎛⎦⎤-1,-13.故选C. [答案] C [模型解法]角度2 已知函数在某区间上有零点求参数[例4] (1)(2018·安庆模拟)函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 (2)(2018·南阳模拟)设函数f (x )=log 2(2x +1),g (x )=log 2(2x -1),若关于x 的函数F (x )=g (x )-f (x )-m 在[1,2]上有零点,求m 的取值范围.[解析] (1)由x 2-ax +1=0得a =x +1x ,其中x ∈⎝⎛⎭⎫12,3. ∵函数y =x +1x 在⎝⎛⎭⎫12,1上为减函数,在(1,3)为增函数, ∴y min =2,y max =103. ∴a ∈⎣⎡⎭⎫2,103. (2)令F (x )=0, 即g (x )-f (x )-m =0. 所以m =g (x )-f (x ) =log 2(2x -1)-log 2(2x +1) =log 22x -12x +1=log 2⎝⎛⎭⎫1-22x +1. 因为1≤x ≤2,所以3≤2x +1≤5.所以25≤22x +1≤23,13≤1-22x +1≤35.所以log 213≤log 2⎝⎛⎭⎫1-22x +1≤log 235,即log 213≤m ≤log 235.所以m 的取值范围是⎣⎡⎦⎤log 213,log 235. [答案] (1)D[模型解法][高考类题]1.(2017·高考全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =( )A .-12B.13 C.12D .1解析:由f (x )=x 2-2x +a (e x -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (e x -1+e -x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e-1+1)=0,解得a =12.故选C.答案:C2.(2017·高考山东卷)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2]∪[23,+∞)D .(0,2]∪[3,+∞)解析:①当0<m ≤1时,在同一平面直角坐标系中作出函数y =(mx -1)2与y =x +m 的图象,如图.易知此时两函数图象在x ∈[0,1]上有且只有一个交点;②当m >1时,在同一平面直角坐标系中作出函数y =(mx -1)2与y =x +m 的图象,如图.要满足题意,则(m -1)2≥1+m ,解得m ≥3或m ≤0(舍去),∴m ≥3. 综上,正实数m 的取值范围为(0,1]∪[3,+∞). 答案:B[真题感悟]1.[考点二](2015·高考安徽卷)下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln xD .y =x 2+1解析:y =cos x 是偶函数,且存在零点;y =sin x 是奇函数;y =ln x 既不是奇函数又不是偶函数;y =x 2+1是偶函数,但不存在零点.故选A.答案:A2.[考点一](2014·高考北京卷)已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4),故选C.答案:C3.[考点三](2014·高考山东卷)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,2)D .(2,+∞)解析: 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.答案:B4.[考点三](2015·高考天津卷)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A.⎝⎛⎭⎫74,+∞ B.⎝⎛⎭⎫-∞,74 C.⎝⎛⎭⎫0,74 D.⎝⎛⎭⎫74,2解析:函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同的实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点.又y =f (x )+f (2-x )=⎩⎪⎨⎪⎧x 2+x +2,x <02,0≤x ≤2x 2-5x +8,x >2,作出该函数的图象如图所示,由图可得,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,故函数y =f (x )-g (x )恰有4个零点时,b 的取值范围是⎝⎛⎭⎫74,2.答案:D5.[考点二](2015·高考湖北卷)函数f (x )=4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为__________.解析: 因为f (x )=4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|=2(1+cosx)·sin x-2sin x-|ln(x+1)|=sin 2x-|ln(x+1)|,所以函数f(x)的零点个数为函数y=sin 2x与y =|ln(x+1)|图象的交点的个数.函数y=sin 2x与y=|ln(x+1)|的图象如图所示,由图知,两函数图象有2个交点,所以函数f(x)有2个零点.答案:2。