考研高等数学知识点整理(附思维导图)

合集下载

考研数学 知识结构思维导图(数二)

考研数学 知识结构思维导图(数二)

1.分离变量,物以类聚人以群分 2.y'在等式左侧,右侧应写成乘积形式
一阶微分方程的求解
齐次型
y'=f(y/x)
对x求导
1/y'=f(x/y)
对y求导
换元后分离变量,交换x和y的地位
一阶线性型(或可换元为它)
y'+p(x)y=q(x) 伯努利方程
y'+p(x)y=q(x)的特殊形式
伯努利方程可理解为一 阶线性方程的普遍形式
符号函数 抽象函数
复合函数
偏导函数
换元法
一元函数积分换元法 二元函数积分换元法
应用
面积
1.积分变化口诀:后积先定限,限内画直 线,先交先下限,后交写上限;
2.注意对称性得0的应用可以极大地化简计 算
微分方程
可分离变量
y'=f(x).g(y)
分离变量
y'=f(ax+by+c)
换元后再分离变量
一般一层积分不易处理,化成两层积分,在交换 积分次序
分部积分法
换序型
反常积分的计算
研究对象
常规题型取绝对值时取值范围
曲线平移时相关符号不同取值范围所对应的面积
切线综合
函数列综合
题型总结
在平面极坐标系中,如果极径ρ随极角θ的 增加而成比例增加(或减少),这样的动
点所形成的轨迹叫做螺线。
阿基米德螺旋线
数列极限
定义
定义及使用
唯一性 有界性
使用
保号性
为常数
收敛充要条件
归结原则的使用(变量连续化)
直接计算法
定义法(先暂后奏)

(完整word版)考研高等数学知识点总结

(完整word版)考研高等数学知识点总结

高等数学知识点总结导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

(完整版)考研高等数学知识点总结(最新整理)

(完整版)考研高等数学知识点总结(最新整理)

du u dx u dy u dz x y z
全微分的近似计算:z dz f x (x, y)x f y (x, y)y 多元复合函数的求导法:
z f [u(t),v(t)]
dz z u z v dt u t v t
z f [u(x, y),v(x, y)]
z z u z v x u x v x
x2 a2 dx x x2 a2 a2 ln x x2 a2 C
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
2
2
a
sin
x
2u 1u
2
, cos
x
1 1
u u
2 2
, u
tg
x , dx 2
2du 1 u2
1 / 13
一些初等函数:
两个重要极限:
双曲正弦 : shx ex ex 2
当u u(x, y),v v(x, y)时,
du u dx u dy x y
dv v dx v dy x y
隐函数的求导公式:
隐函数F (x,
y)
0, dy dx
Fx Fy
, d 2 y dx 2
x
(
Fx Fy
)+
y
(
Fx Fy
)
dy dx
隐函数F (x, y, z) 0, z Fx , z Fy
x
x
三角函数公式: ·诱导公式:
函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α
sin cos tg ctg
-sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinα

高等数学考研知识点总结

高等数学考研知识点总结

高等数学考研知识点总结
嘿,宝子们!今天咱就来唠唠高等数学考研那些知识点哈!
先来说说函数极限吧!就好比你跑步,你能跑的最远距离就是那个极限呀!比如说,给你个函数 f(x) = (x - 1)/(x - 1),当 x 趋近于 1 的时候,这极限不就等于 1 嘛,这多明显呀!
然后呢,还有导数!导数就像是汽车的速度表,能告诉你函数变化的快慢。

就像曲线y = x²,它的导数就是 2x 呀,这就是告诉你在每个点上变化得有多快!“哎呀,这导数可太重要啦!”
再说说积分呀!积分就像把无数个小碎片拼成一个完整的东西。

比如你要计算一个图形的面积,用积分不就能搞定嘛!“哇塞,积分真的好神奇呀!”
高等数学里还有无穷级数呢!这就好像是一串无穷无尽的糖果,你得好好研究怎么去数清楚呀!像幂级数,那可真是考研的重点呀!
高等数学可不简单,但咱别怕呀!只要咱认真学,肯定能搞定它。

就像爬山一样,虽然过程累,但爬到山顶那一刻,哇,那感觉超棒的!宝子们,
加油呀!咱一定能在高等数学考研的道路上取得胜利!我相信你们都可以的!这就是我的观点,高等数学难,但我们能战胜它!。

考研数学思维导图高等数学篇

考研数学思维导图高等数学篇

= o(α )
如果lim β = ∞,那么就说β是比α低阶的无穷小 α
如果lim β = c ≠ 0,那么就说β与α是同阶无穷小 α
如果
lim
β αk
= c ≠ 0, k
> 0,那么就说β是关于α的k阶无穷小
如果lim β = 1,那么就说β与α是等价无穷小,记作α ~ β α

sin x =
x

1 6
(x) − kx] = lim[ f x→-∞
(x) − kx] = b,则y
=
kx + b是曲线y
=
f
( x)的一条斜渐近线
2/31
数列极限的定义
lim
n→∞
xn =A

∀ε
>
0, ∃N
>
0,当n
>
N 时, 有
xn

A
<
ε
极限性质
是常数 唯一性 有界性 保号性
设数列{xn}收敛,则( )
(A)当 lim sin n→∞
中值定理证明方法(上) .................................................... 10
第十章 重积分...............................................................................25
② 设函数f (x)在闭区间[a,b]上连续,且f (a)与f (b)异号(即f (a) • f (b) < 0),
则在开区间(a,b)内至少有一点 ξ,使f (ξ ) = 0.
③ 设函数f (x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值,f (a) = A, f (b) = B,

高等数学a1思维导图第一章

高等数学a1思维导图第一章

高等数学a1思维导图第一章
高等数学a1的第一章主要讲的是集合的概念。

集合是一组有相
同特点或共同性质的事物的统称,它是数学研究中非常重要的知识点。

集合由不同元素构成,它们构成了某些特定的结构。

集合几何定义,是指将一组有共同特点的元素看作一个整体,形
成一个集合。

例如,将一组字符看作一个字符串。

集合的概念在其他
学科中也有用,比如组合,统计,数论等等,它们可以分为有序集合、无序集合和有穷集合。

图论研究中也有另一种称为子集的概念。

子集是指集合A中包含
在集合B中的所有元素,它们具有集合A特定的性质,是集合A的一
个子集。

必要性原理也常常用在集合论中,它指出集合A和集合B之间可
能存在一定的依赖关系,如果集合A包含某个元素,则集合B也必定
包含该元素。

本章的内容为我们提供了更深刻的理解集合的概念,帮助我们更
好地应用这种思维方式,更有效地解决问题,从而更好地推动数学的
发展。

考研数学一章节知识结构图

考研数学一章节知识结构图

重积分
计算公式 二重积分的极坐标变换面积微元 重积分变量替换 三重积分柱坐标变换,体积微元
d σ= rdrd θ dV = rdrd θ dz
三重积分球坐标变换、体积微元
几何应用 应用 物理应用 多元函数积 分学 平面图形面积、体积 质量、质心、转动惯量
dV = ρ sin ? dρ d? dθ
2
基本概念、性质
8
第九章
常微分方程
基本概念 一阶微分方程 基本类型 变量可分离方程 一阶线性方程 全微分方程 伯努力方程 可化为基本类型 齐次方程 用某些简单的变量代换求解某些微分方程
常 微 分 方 程
解的叠加原理 性质 通解的结构 可降阶的 高 阶微分方程 基本概念 可降阶的类型 二阶,高阶微分方程
基本概念 二阶线性常系数方程 高阶线 性微 分方程 二阶微分方程(含 某些高阶情形) 特殊的二阶线性变系数方程 可化为求解微分方程的情形(含变限积分的方程)
奇偶性与周期函数的导数性质 隐函数与反函数求导法 分阶函数求导法 基本求导法则 含参数方程所确定的函数的求导 对数求导法及幂指数求导法 导 数的 计 算与 高 阶导数 高阶导数
导 数 与 微 分
高阶导数的定义
极大值、极小值
微分 中值 定理 与 导数的应用
几种微分中值定理
( 费马定理、罗尔定理、拉格朗日中值定理、泰勒公定、柯西定理)
17
第三章
多维随机变量及其概率分布
基本概念
多维,二维随机变量 离散型
考研数学一章节知识结构图
第一部分 第一章 高等数学 函数、极限与连续性
函数的概念 反函数、复和函数 函数 常见的几种函数形式(初等函数、分段函数、隐函数、由参数确定的函 数、由变限积分确定的函数,由级数确定的函数) 函数的四种特性:单调性、奇偶性、周期性、有界性

高数基础知识总结与重点概念整理

高数基础知识总结与重点概念整理

高数基础知识总结与重点概念整理
一、导数与微分
导数:描述函数在某一点附近的变化率,是函数值的极限。

可导性:函数在某点可导,当且仅当该点附近存在一个定义恰当的导数。

微分:一个近似值,表示函数在某点附近的小变化所引起的函数值的大致变化。

二、积分
不定积分:求一个函数的原函数(或反导数),即求函数的不定积分。

定积分:对一个区间上函数的值的总和的量度,即求函数的定积分。

微积分基本定理:定积分可化为不定积分的计算。

三、级数
数列:一个数字序列。

无穷级数:无穷多个数的和,即数列的和。

收敛性:无穷级数趋于一个有限的和的性质称为收敛性。

发散性:无穷级数不收敛的性质称为发散性。

四、多元函数
多元函数:定义在多个变量上的函数。

偏导数:多元函数对一个变量的导数。

方向导数:描述函数在某点处沿某一方向的变化率。

梯度:方向导数的最大值,表示函数在某点处沿梯度方向的增长最快的方向。

五、微分方程
微分方程:包含未知函数的导数或微分的方程。

初值问题:给定初始条件的微分方程问题。

通解与特解:满足微分方程的解称为通解,满足特定初始条件的解称为特解。

2023年考研数学高数知识点终极梳理

2023年考研数学高数知识点终极梳理

2023年考研数学高数知识点终极梳理2023年考研数学高数知识点终极梳理作为考生来说,复习肯定要扎扎实实的,押题的话,我们正好改成重点,尤其是到了冲刺阶段,有所侧重的做题型复习也是有必要的,我们经常说要“抓重点”,抓住重点就可以进步复习的效率,要是侧重掌握某些题型、加深印象,这与全面复习掌握根底是不矛盾的。

我们认为押题和有所侧重是在打好根底的情况下侧重,这样才不会走偏,假如一个考生就想押题,让教师告诉你几道题就得高分,这样是不正确的,往往不会成功。

第一章函数、极限与连续1、函数的有界性2、极限的定义〔数列、函数〕3、极限的性质〔有界性、保号性〕4、极限的计算〔重点〕〔四那么运算、等价无穷小交换、洛必达法那么、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理〕5、函数的连续性6、连续点的类型7、渐近线的'计算第二章导数与微分1、导数与微分的定义〔函数可导性、用定义求导数〕2、导数的计算〔“三个法那么一个表”:四那么运算、复合函数、反函数,根本初等函数导数表:“三种类型”:幂指型、隐函数、参数方程;高阶导数〕3、导数的应用〔切线与法线、单调性〔重点〕与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率〔数一、二〕〕第三章中值定理1、闭区间上连续函数的性质〔最值定理、介值定理、零点存在定理〕2、三大微分中值定理〔重点〕〔罗尔、拉格朗日、柯西〕3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算〔变量代换、分部积分〕3、定积分的定义〔几何意义、微元法思想〔数一、二〕〕4、定积分性质〔奇偶函数与周期函数的积分性质、比拟定理〕5、定积分的计算6、定积分的应用〔几何应用:面积、体积、曲线弧长和旋转面的面积〔数一、二〕,物理应用:变力做功、形心质心、液体静压力〕7、变限积分〔求导〕8、广义积分〔收敛性的判断、计算〕第五章空间解析几何〔数一〕1、向量的运算〔加减、数乘、数量积、向量积〕2、直线与平面的方程及其关系3、各种曲面方程〔旋转曲面、柱面、投影曲面、二次曲面〕的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算〔重点〕4、方向导数与梯度5、多元函数的极值〔无条件极值和条件极值〕6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学〔除二重积分外,数一〕1、二重积分的计算〔对称性〔奇偶、轮换〕、极坐标、积分次序的选择〕2、三重积分的计算〔“先一后二”、“先二后一”、球坐标〕3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性〔主要关注不带方向的积分〕4、格林公式〔重点〕〔直接用〔不满足条件时的处理:“补线”、“挖洞”〕,积分与途径无关,二元函数的全微分〕5、高斯公式〔重点〕〔不满足条件时的处理〔类似格林公式〕〕6、斯托克斯公式〔要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线〕7、场论初步〔散度、旋度〕第八章微分方程1、各类微分方程〔可别离变量方程、齐次方程、一阶线性微分方程、伯努利方程〔数一、二〕、全微分方程〔数一〕、可降阶的高阶微分方程〔数一、二〕、高阶线性微分方程、欧拉方程〔数一〕、差分方程〔数三〕〕的求解2、线性微分方程解的性质〔叠加原理、解的构造〕3、应用〔由几何及物理背景列方程〕第九章级数〔数一、数三〕1、收敛级数的性质〔必要条件、线性运算、“加括号”、“有限项”〕2、正项级数的判别法〔比拟、比值、根值,p级数与推广的p级数〕3、交织级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数〔函数展开成傅里叶级数,狄利克雷定理〕。

23考研高数命题点思维导图

23考研高数命题点思维导图
y ′′
3 2
(y ′′ ≠ 0 )
曲率圆表达式
定积分
定积分
实际意义
曲边梯形的面积 变速直线运动的路程
精确定义
b a
f (x)dx
=
lim
n→∞
n i =1
f a +
b
− n
a
i
b
− n
a
定积分的存在性(一元函数的可积性)
存在的充分条件 存在的必要条件
性质
区间长度、线性性、可加性、保号性
可积函数必有界
有理函数的积分: QPnm((xx))dx (n < m ), Pn (x)、Qm (x)分别是 x的n次多项式和 m次多项式
1)将
Qm
(
x
)因式分解;2
)把
Pn (x) Qm (x)
拆成若干最简有理分式
之和
定积分的应用
定积分在几何学上的应用
平面图形的面积
直角坐标 极坐标
旋转体的体积 绕x轴转
体积
有限个无穷小之和是无穷小
无穷小
有界函数与无穷小的乘积是无穷小
运算
运算步骤
无穷小的比较
①化简先行:等价替换(常用的有sinx~x,ln(1+x)~x,1-cosx~1/2x^2 ,e^x-1~x,tanx~x,(1+x)^α-1~αx等)、恒等变形、抓大头)
①有分母,通分;没有分母,创造分母
∞-∞
导数的应用
函数的单调性 曲线的凹凸性 曲线的拐点 函数的极值与最值 曲率(数学三不考)
单调增加 单调减少
f ′(x) > 0 f ′(x) < 0
定义
图形是凹的 图形是凸的

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研高等数学知识点整理(附思
维导图)
被考研高数折磨过的小伙伴一定都知道那种痛苦:
泰勒展开、麦克劳林展开、夹逼定理、定积分不定积分、微分多元微分......
作为成功登陆的一员,我觉得有义务帮对岸的朋友考研一把。

下面这张考研高数知识图我之前用过,希望能给你带来好运。

我不多说了。

一、函数
先明确一些基本概念,比如函数的定义,函数的性质,什么是复合函数,反函数,隐函数。

理解概念很重要!理解概念很重要!理解概念很重要!重要的事情说三遍~
很多问题我们不会做。

其实不是我们解决问题的能力不好,而是我们连基本概念都没搞清楚,自然无从下手,或者说解决问题的方向是偏了!这是我十几年应试的血泪教训!
熟悉基本初等函数,包括幂函数、指数函数、对称函数、三角函数、反三角函数,要把公式和参数适用范围记住;
常用的函数有绝对值函数、符号函数、整数函数、狄利克雷函数、极大值函数、可变积分上限函数(我认为是最变态的)和双曲函数。

二、极限
同样的,先厘清极限的定义
了解数列极限的基本性质:极限的唯一性,收敛数列的有界性和保号性,收敛数列与子数列间的关系
了解函数极限(区别于数列极限)的基本性质:
极限的唯一性,局部有界性和局部保号性(这是和数列极限很大的不同)
无穷小量和无穷大量
极限的四则运算
极限存在的判别方法:单调有界定律和夹迫定律(也有叫夹逼定理的,说的都是一个意思),这两个定律很常见,注意熟练使用
三、函数的连续性
四、导数与微分
基本初等函数的导数公式都得背下来
五、中值定理
这部分很难(可能只是对我来说,我是个坏学生),也是常规考试的重点。

六、函数单调性与凹凸性
这部分也是重点。

七、渐近线与曲率
八、不定积分
和微分一样,基本积分公式也得去记
九、定积分
重点理解定积分的定义和性质(再次强调)
然后去记重要的定理、公式和关系
十、无穷级数
功能扩展很烦人,但是很重要。

大家可能都看过这些表情包。

十一、常微分方程与差分方程
要记公式
十二、空间解析几何与向量代数
理解向量运算,后面的平面方程也就很容易理解了
十三、多元函数微分学
条件极值经常考
十四、重积分
这部分主要注意一点:从里层到外层展开的过程要细心,不然展开到最后发现错了又得重新开始
十五、曲线积分与曲面积分
我当年没考这个,没什么发言权。

图片模糊的话,点击图片“查看原图”,或者你们直接下载源文件,开头的时候已经放过一次了,担心你们忘了,最后再附上源文件↓↓↓
以上知识整理图来源MindMaster思维导图社区,里面也有政治、英语等公共课的考研复习资料,大家也可以自行去搜索↓↓↓
>>>思维导图社区-考研复习资料在线使用。

相关文档
最新文档