高考数学复习考点知识专题讲解讲义10---基本不等式
高考数学复习专题 基本不等式 (文 精讲)
专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6B .8 2C .5D .9高频考点二 利用基本不等式解决实际问题【例2】【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.,,,,,,,,【方法技巧】利用基本不等式解决实际问题的三个注意点 (1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】(2020·山西省大同模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km /h )(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y-+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【答案】23+2【解析】∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【答案】92【解析】(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy ,∵x >0,y >0且x +2y =4, ∴4=x +2y ≥22xy ,∴xy ≤2,∴1xy ≥12,∴2+5xy ≥2+52=92.【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6 B .8 2 C .5 D .9【答案】A【答案】∵a >0,b >0,且2a +b =ab -1, ∴a =b +1b -2>0,∴b >2,∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6.当且仅当2(b -2)=3b -2,即b =2+62时取等号.∴a +2b 的最小值为5+26,故选A 。
基本不等式知识点
基本不等式知识点基本不等式知识点探究导语:基本不等式作为数学中的一个重要知识点,广泛应用于数学中的各个领域。
掌握基本不等式的性质和运用方法,对于学生提高数学素养具有重要意义。
本文将就基本不等式的定义、证明、应用以及一些特殊情况进行介绍,帮助读者更好地理解和掌握这一知识点。
一. 基本不等式的定义基本不等式是指对于一般的实数x和y,有以下不等式成立:1. 数字不等式:若x > y,则有 x+a > y+a,其中a为任意实数。
2. 绝对值不等式:若x > a,则有 |x| > |a|,其中a为任意实数。
二. 基本不等式的证明基本不等式的证明可通过数学归纳法进行。
以数字不等式为例,我们可以将其分为两个步骤进行证明:1. 首先证明当a > 0时,x > y推出x+a > y+a。
根据a > 0,可知存在实数b,使得a = b^2。
将x、y分别加上b^2,得到 (x + b^2) - (y +b^2) > 0,即(x - y) + b^2 > 0。
由于b^2 > 0,因此(x - y) + b^2 > 0,即x + b^2 > y + b^2,即x+a > y+a。
2. 其次证明当a < 0时,x > y推出x+a > y+a。
与前一步骤相似,我们令a = -b^2,b为任意实数。
同样可以得到 (x - y) + (-b^2) > 0,即 (x + (-b^2)) - (y + (-b^2)) > 0,即x + (- b^2) > y + (- b^2),即x+a > y+a。
三. 基本不等式的应用基本不等式在数学中有广泛的应用,尤其在代数和不等式解题中常被使用。
以下列举几个典型的应用情况:1. 求绝对值不等式的解集:通过运用绝对值不等式可以求解关于绝对值的不等式,例如 |2x + 1| > 3,可以转化为2x + 1 > 3或2x + 1 < -3的形式,然后求出解集即可。
高考数学专题--基本不等式求最值的常用方法(解析版)
高考数学专题--基本不等式求最值的常用方法(解析版)直线ab经过点M可得1+a*log(m)=b,化简得a*log(m)=b-1将a*log(m)代入第一个式子得到11/b+log(m)的最小值令t=log(m),则有11/b+t的最小值,根据部分“1”代换可得11/b+t=(1+1/b)*b+(t-1)的最小值,当且仅当b=2时取“=”,此时a=log(2)即为最小值。
已知$x>0$,$y>0$,且$x+y=1$,求$\frac{y^4}{x^2y^2}$的最小值。
解析:$\frac{y^4}{x^2y^2}=y^2+\frac{y^4}{x^2}\geq2\sqrt{y^2\cdot\frac{y^4}{x^2}}=2y^2$,所以最小值为$2$,当且仅当$x=y=\frac{1}{2}$时取等号。
已知正数$x$,$y$,且$x+y=4$,求$\frac{4}{x+2y+1}$的最小值。
解析:令$m=x+2$,$n=y+1$,则$x+2+y+1=m+n=5$,$\frac{4}{x+2y+1}=\frac{4}{m+n-2}\geq\frac{4}{4}=1$,所以最小值为$1$,当且仅当$x=2$,$y=1$时取等号。
已知$x>y>0$,且$x+y\leq 3$,求$\frac{3x+y}{2x+by+1}$的最小值。
解析:令$m=2x+y$,$n=y+1$,则$x=\frac{m-2n}{3}$,$y=n-1$,$x>y$可得$\frac{m-2n}{3}>n-1$,即$m>5n-3$。
所以$\frac{3x+y}{2x+by+1}=\frac{3m-6n+n}{2m+bn+1}=\frac{3}{2}\cdot\frac{m}{m+\frac{bn+1}{2}-n}\geq\frac{3}{2}\cdot\frac{5}{3}=2.5$,所以最小值为$2.5$,当且仅当$m=5n-3$时取等号,即$x=2$,$y=1$。
(完整版)高考数学-基本不等式(知识点归纳)
高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
基本不等式知识点
基本不等式知识点基本不等式是数学中的重要概念,它可以帮助我们判断数值大小关系,是各种不等式的基础。
在本文中,我们将介绍基本不等式的相关知识点,包括基本不等式的定义、证明方法、应用以及一些例题分析等方面。
1. 基本不等式的定义基本不等式也称为“平均数不等式”,它是数学中一个基本但又重要的不等式。
对于任意的正数 a1、a2、…、an,有以下不等式成立:(a1 + a2 + … + an) / n ≥ (a1 * a2 * … * an)1/n其中n表示正整数。
基本不等式描述了一组数的算术平均数和它们的几何平均数之间的关系。
可以看出,算术平均数大于等于几何平均数,且当且仅当所有数相等时等号成立。
2. 基本不等式的证明方法基本不等式的证明方法有很多种,下面列举一种简单易懂的证明方法。
首先,对于所有正数x,y,由均值不等式可得:(x + y) / 2 ≥ √(xy)⇒ x + y ≥ 2√(xy)接着,考虑一个序列a1,a2,……,an,它们的乘积为p。
对于每一对(aj,ak),有:aj + ak ≥ 2√(ajak)即:a1 + a2 ≥ 2√(a1a2)a1 + a2 + a3 ≥ 3√(a1a2a3)a1 + a2 + … + an ≥ n√(a1a2…an)我们可以将上述不等式相乘,得到:(a1 + a2) * (a3 + a4) * … * (an-1 + an) ≥ 2n/2* √(a1a2) * 2n/2 * √(a3a4) * … * 2n/2 * √(an-1an) 即:(a1 + a2 + … + an) / n ≥ (a1 * a2 * … * an)1/n故基本不等式得证。
3. 基本不等式的应用基本不等式在数学中应用广泛,以下列举几个经典的例子。
(1)一种常见的问题是,给定一个定值的周长,什么形状的图形可以使面积最大。
答案是正方形,因为在所有形状中,正方形的面积和周长之比最大,这个比值为4π。
高三基本不等式知识点
高三基本不等式知识点不等式是数学领域中重要的概念之一,它们在求解实际问题和证明数学定理中起着重要的作用。
高三是学习不等式的重要阶段,基本不等式是其中的基石。
本文旨在介绍高三基本不等式的知识点,帮助同学们更好地理解和运用这一概念。
一、基本不等式的定义基本不等式是不等式理论的基础,它为不等式的推导和运用奠定了基础。
在高三阶段,我们主要学习的基本不等式包括以下几个:1. 乘法不等式:对于实数a和b,当a大于0时,有a \cdot b > b;当a小于0时,有a \cdot b < b。
这个不等式指明了正数与负数的相对大小关系。
2. 加法不等式:对于实数a、b、c,如果a > b,则a + c > b + c。
这个不等式说明了不等式方程可以通过同加、同减等方式来对不等式进行处理。
3. 平方不等式:对于实数a,如果a > 0,则有a^2 > 0。
这个不等式告诉我们,正数的平方也是正数。
4. 倒数不等式:对于正实数a和b,如果a < b,则\frac{1}{a} > \frac{1}{b}。
这个不等式是有关倒数的大小比较。
二、基本不等式的运用基本不等式不仅仅是理论概念,还可以应用于解决实际问题和证明数学定理。
下面是一些常见的基本不等式的运用:1. 利用乘法不等式,可以推导出分式不等式的性质。
例如,在求解不等式\frac{1}{x+2} > \frac{2}{3}时,可以通过乘法不等式将其转化为x+2 < \frac{3}{2}的形式。
2. 平方不等式在求解二次函数不等式时起着重要的作用。
例如,当求解不等式x^2 - 4x > 0时,可以将其转化为(x - 2)(x + 2) > 0的形式,进而得到x > 2或x < -2的解集。
3. 不等式的证明中,基本不等式常常用于构造等式。
通过适当的变形和推导,可以将不等式转化为等式,从而得到证明过程。
高考数学一轮复习讲义(新高考版) 第2章 第3讲 基本不等式
第3讲 基本不等式一、知识梳理 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b ,ab a ,b 的几何平均数.[点拨] 应用基本不等式求最值要注意:“一正、二定、三相等”.忽略某个条件,就会出错.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)[点拨] 在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 二、教材衍化1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C .xy ≤⎝⎛⎭⎫x +y 22=⎝⎛⎭⎫1822=81,当且仅当x =y =9时等号成立,故选C . 2.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝⎛⎭⎫x +y 22=25,当且仅当x =y =5时取等号.答案:25 m 2一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝⎛⎭⎫a +b 22成立的条件是ab >0.( )(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( )(4)若a >0,则a 3+1a 2的最小值是2a .( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏常见误区| (1)忽视不等式成立的条件a >0且b >0; (2)忽视定值存在; (3)忽视等号成立的条件. 1.若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2解析:选D .因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.2.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5. 当且仅当x -1=4x -1,即x =3时等号成立.答案:53.设0<x <1,则函数y =2x (1-x )的最大值为________. 解析:y =2x (1-x )≤2⎝⎛⎭⎫x +1-x 22=12.当且仅当x =1-x ,即x =12时,等号成立.答案:12考点一 利用基本不等式求最值(基础型) 复习指导| 探索并了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题.核心素养:逻辑推理 角度一 通过配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎡⎦⎤3x +(4-3x )22=43, 当且仅当3x =4-3x , 即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2(5-4x )15-4x+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. 【答案】 (1)23(2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提.角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 【解析】 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫1+a +b a ⎝⎛⎭⎫1+a +b b =⎝⎛⎭⎫2+b a · ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立. 答案:4【迁移探究2】 (变条件)若本例条件变为:已知a >0,b >0,4a +b =4,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.解析:由4a +b =4得a +b4=1,⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b=⎝ ⎛⎭⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎫1+a +b 4b =⎝⎛⎭⎫2+b 4a ⎝⎛⎭⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号. 答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( )A .223B .23C .33D .233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x26x .由⎩⎨⎧x >0y >0即⎩⎨⎧x >01-x 26x>0解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.1.(2020·辽宁大连第一次(3月)双基测试)已知正实数a ,b 满足a +b =(ab )32,则ab 的最小值为( )A .1B . 2C .2D .4解析:选C .(ab )32=a +b ≥2ab =2(ab )12,所以ab ≥2,当且仅当a =b =2时取等号,故ab 的最小值为2,故选C .2.已知x ,y 为正实数,则4x x +3y +3y x 的最小值为( )A .53B .103C .32D .3解析:选D .由题意得x >0,y >0,4x x +3y +3y x =4xx +3y +x +3y x -1≥24x x +3y ·x +3yx-1=4-1=3(当且仅当x =3y 时等号成立).3.已知x >0,y >0,且x +16y =xy ,则x +y 的最小值为________. 解析:已知x >0,y >0,且x +16y =xy .即16x +1y =1,则x +y =(x +y )·⎝⎛⎭⎫16x +1y =16+1+16y x +x y≥17+2 16y x ·xy=25,当且仅当x =4y =20时等号成立,所以x +y 的最小值为25. 答案:25考点二 利用基本不等式解决实际问题(应用型) 复习指导| 利用基本不等式解决实际问题,关键是把实际问题抽象出数学模型,列出函数关系,然后利用基本不等式求最值.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x-200=200, 当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.应用基本不等式解决实际问题的基本步骤(1)理解题意,设出变量,建立相应的函数关系式,把实际问题抽象为函数的最值问题; (2)在定义域内,利用基本不等式求出函数的最值; (3)还原为实际问题,写出答案.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计),则泳池的长设计为多少米时,可使总造价最低.解:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝⎛⎭⎫2x +2×200x +100×200x+60×200=800×⎝⎛⎭⎫x +225x +12 000≥1 600x ·225x +12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立.即泳池的长设计为15米时,可使总造价最低.[基础题组练]1.(2020·安徽省六校联考)若正实数x ,y 满足x +y =2,则1xy 的最小值为( )A .1B .2C .3D .4解析:选A .因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞)D .(-∞,-2] 解析:选D .因为1=2x +2y ≥22x ·2y =22x +y ,(当且仅当2x =2y =12,即x =y =-1时等号成立)所以2x +y ≤12,所以2x +y ≤14,得x +y ≤-2.3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4解析:选C .因为1a +2b =ab ,所以a >0,b >0,由ab =1a +2b≥21a ×2b=22ab, 所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2.4.(多选)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2ab B .1a +1b >1abC .b a +ab≥2D .a 2+b 2≥2ab解析:选CD .因为ab >0,所以b a >0,a b >0,所以b a +ab≥2b a ·ab=2,当且仅当a =b 时取等号.所以选项C 正确,又a ,b ∈R ,所以(a -b )2≥0,即a 2+b 2≥2ab 一定成立.5.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 3解析:选C .因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y=2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )·⎝⎛⎭⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x3y=4,当且仅当x =3y =12时取等号,所以1x +13y的最小值为4.故选C .6.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.所以x +y 的最小值为2 2.答案:2 27.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.(2020·湖南岳阳期末改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为________,1a +2b的最小值为________. 解析:因为a >0,b >0,且a +2b -4=0,所以a +2b =4,所以ab =12a ·2b ≤12×⎝⎛⎭⎫a +2b 22=2,当且仅当a =2b ,即a =2,b =1时等号成立,所以ab 的最大值为2,因为1a +2b =⎝⎛⎭⎫1a +2b ·a +2b4=14(5+2b a +2a b )≥14⎝⎛⎭⎫5+2·2b a ·2a b =94,当且仅当a =b 时等号成立,所以1a +2b 的最小值为94. 答案:2 949.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32.当x <32时,有3-2x >0,所以3-2x 2+83-2x ≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以2-x >0,所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,所以当x =1时,函数y =x (4-2x )的最大值为 2. 10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12,y =6时等号成立,所以x +y 的最小值为18.[综合题组练]1.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A .16 B .9 C .4D .2解析:选C .在(1,+∞)上,x +a x -1=(x -1)+a x -1+1≥2 (x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5,所以a ≥4. 2.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A .3 B .5 C .7D .9解析:选C .因为x >0,y >0.且1x +1+1y =12,所以x +1+y =2⎝⎛⎭⎫1x +1+1y (x +1+y )=2(1+1+y x +1+x +1y )≥2(2+2y x +1·x +1y )=8,当且仅当yx +1=x +1y ,即x =3,y =4时取等号,所以x +y ≥7,故x +y 的最小值为7,故选C .3.已知正实数x ,y 满足x +y =1,①则x 2+y 2的最小值为________;②若1x +4y ≥a 恒成立,则实数a 的取值范围是________.解析:因为x +y =1,所以xy ≤⎝⎛⎭⎫x +y 22=14,所以x 2+y 2=(x +y )2-2xy ≥1-14×2=12,所以x 2+y 2的最小值为12.若a ≤1x +4y 恒成立,则a 小于等于⎝⎛⎭⎫1x +4y 的最小值,因为1x +4y =⎝⎛⎭⎫1x +4y (x +y )=5+y x +4x y ≥5+2y x ×4x y =9,所以1x +4y的最小值为9,所以a ≤9,故实数a 的取值范围是(-∞,9]. 答案:12(-∞,9]4.(2020·洛阳市统考)已知x >0,y >0,且1x +2y =1,则xy +x +y 的最小值为________.解析:因为1x +2y =1,所以2x +y =xy ,所以xy +x +y =3x +2y ,因为3x +2y =(3x +2y )·(1x +2y )=7+6x y +2yx,且x >0,y >0,所以3x +2y ≥7+43,所以xy +x +y 的最小值为7+4 3. 答案:7+4 3教案、讲义、课件、试卷、PPT 模板、实用文案,请关注【春暖文案】,进店下载。
高考数学复习历年压轴题归类专题讲解: 基本不等式(原卷版)
高考数学复习历年压轴题归类专题讲解基本不等式(原卷版)1.已知定义在R 上的函数()13y f x =+-是奇函数,当()1,x ∈+∞时,()131f x x x '≥+--,则不等式()()3ln 10f x x -+>⎡⎤⎣⎦的解集为( ) A .()1,+∞ B .()()1,0,e -⋃+∞ C .()()0,1,e +∞ D .()()1,01,-⋃+∞2.已知实数,x y 满足221x xy y -+=,则x y +的最大值为( )A .1B .2C .3D .43.点(),M x y 在曲线22:4210C x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若a ,b R +∈,则111a b ++的最小值为( ) A .1 B .2 C .3 D .44.已知抛物线C 方程为24x y =,F 为其焦点,过点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,则AP BQ ⋅的取值范围为( )A .1,2⎛⎫+∞ ⎪⎝⎭B .[)2,+∞C .()2,+∞D .[)0,25.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且7cos 8A =.M 为ABC 内部的一点,且0aMA bMB cMC ++=,若AM xAB yAC =+,则x y +的最大值为( )A .45B .54C .56D .126.对函数()f x ,如果存在00x ≠使得()()00f x f x =--,则称()()00,x f x 与()()00,x f x --为函数图像的一组奇对称点.若()x f x e a =-(e 为自然数的底数)存在奇对称点,则实数a 的取值范围是( )A .(),1-∞B .1,C .(),e +∞D .[)1,+∞7.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,其中B 为钝角,且满足2b =,sin cos2b A b A =,若点D 与点B 在AC 的两侧,且A ,B ,C ,D 四点共圆,则四边形ABCD 面积的最大值为( )A .32+B .CD .8.抛物线y =2x 2上有一动弦AB ,中点为M ,且弦AB 的长度为3,则点M 的纵坐标的最小值为( )A .118B .54C .32D .19.设0a >,0b >,是lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A .B .3C .4D .910.在ABC ∆中,点P 满足3BP PC =,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ=,()0,0AN AC μλμ=>>,则λμ+的最小值为( )A .1+B 1C .32D .5211.已知正实数,m n ,设a m n =+,b 若以,a b 为某个三角形的两边长,设其第三条边长为c ,且c 满足2c k mn =⋅,则实数k 的取值范围为( )A .()1,6B .()2,36C .()4,20D .()4,3612.如图所示,点()00,P x y ,(),M m n 是椭圆()2222:10x y C a b a b+=>>上不同的两点,过M 作MN 垂直于x 轴交椭圆于另外一点N ,直线MP ,NP 分别交x 轴于点E ,F ,若c =OE OF +的最小值为( )A .a c -B .2aC .2bD .a c +13.如图,椭圆22:143x y C +=,P 是直线4x =-上一点,过点P 作椭圆C 的两条切线PA ,PB ,直线AB 与OP 交于点M ,则sin PMB ∠的最小值是( )A .7B .65C .10D .214.若实数a ,b 满足22ln(2)l 422n a b a b +≥+-,则( )A .14a b +=B .124a b -=C .23a b +>D .241a b -<15.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,()()sin sin sin sin a c A C b B a B +-+=,24b a +=,点D 在边AB 上,且2AD DB =,则线段CD 长度的最小值为( )A .BC .3D .216.已知有相同焦点1F 、2F 的椭圆()2211x y a a +=>和双曲线()2210x y m m-=>,则椭圆与双曲线的离心率之积的范围为( )A .()1,+∞B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭17.已知四面体ABCD 中,棱AD ,BC 所在直线所成角为60︒,且1AD =, 2BC =,60ACD ∠=︒,面BAD 和面ACD 所成的锐二面角为α,面BAC 和面ACD 所成的锐二面角为β,当四面体ABCD 的体积取得最大值时( ).A .αβ=B .αβ<C .αβ>D .不能确定18.已知斜率为(0k k >的直线l 与椭圆2214x y +=交于()11,A x y ,()22,B x y 两点,O 为坐标原点,设直线OA ,OB 的斜率分别为1k ,2k ,且满足212k k k =,设OAB 的面积为S ,以OA ,OB 为直径的圆的面积分别为1S ,2S ,则12S S S+的最小值为( )A .52πB .56πC .54πD .58π 19.若非零向量,m n 满足||||1m e m e n e n e --⋅=--⋅=(e 为单位向量),且m n ⊥,则||m n -的最小值是( )A .1B .2C .4D .820.抛物线()220y px p =>的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足3AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MNAB 的最大值是( )A .1BCD .221.若曲线()ln y x a =+的一条切线为y ex b =-(e 为自然对数的底数),其中,a b 为正实数,则11ea b+的取值范围是( ) A .[)2,e B .(],4e C .[)2,+∞ D .[),e +∞22.在正方形ABCD 中,已知2AB =,(01)BE BC λλ=≤≤,(01)DF DC μμ=≤≤,||||||BE DF EF +=,若AE AF x ⋅≥,则x 的取值范围为( )A .(1)]-∞B .(1))-∞C .(1)]-∞D .(1))-∞23.已知三棱锥A BCD -的所有顶点都在球O 的球面上,AD ⊥平面,120ABC BAC ︒∠=,2AD =,若球O 的表面积为20π,则三棱锥A BCD -的体积的最大值为( )A .BCD .24.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b+++=+,若c 为最大边,则a b c+的取值范围是( )A .1⎛ ⎝⎭B .(C .1⎛ ⎝⎦D . 25.设,m n 分别是方程4xe x a +=和log 4(1)a x e x a +=>的根,则13143m n +++的最小值是( )A .1321B .1219C .1D .81326.已知F 为抛物线24y x =的焦点,点,A B 都是抛物线上的点且位于x 轴的两侧,若15OA OB =(O 为原点),则ABO ∆和AFO ∆的面积之和的最小值为()A .BCD .1827.若直线l :212x y b a a b +=++经过第一象限内的点11(,)P a b ,则ab 的最大值为( )A .76 B .4-C .5-D .6-28.定义,,a a b a b b a b ≥⎧⊗=⎨<⎩,已知函数21()2sin f x x =-,21()2cos g x x =-,则函数()()()F x f x g x =⊗的最小值为( )A .23B .1C .43D .229.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()S A C b c +=-,则1tan 2tan()C B C +-的最小值为( )A .B .2C .1D .30.已知数列{}n a 是各项均为正数的等比数列,n S 为数列{}n a 的前n 项和,若2233S a S +=-,则423a a +的最小值为( )A .9B .12C .16D .18。
第2节 基本不等式--2025年高考数学复习讲义及练习解析
第二节基本不等式1.基本不等式:ab ≤a +b 2.(1)基本不等式成立的条件:01a >0,b >0.(2)等号成立的条件:当且仅当02a =b 时,等号成立.(3)其中03a +b2叫做正数a ,b 的算术平均数,04ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 205≥2ab (a ,b ∈R ).(2)b a +ab 06≥2(a ,b同号).(3)(a ,b ∈R ).(a ,b ∈R ).以上不等式等号成立的条件均为09a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当10x =y 时,和x +y 有最小值112P .(简记:积定和最小)(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当12x =y 时,积xy 有最大值1314S 2.(简记:和定积最大)注意:(1)利用基本不等式求最值应满足三个条件“一正、二定、三相等”,其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)形如y =x +ax (a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.1.连续使用基本不等式求最值要求每次等号成立的条件要一致.2.若a >0,b >0,则21a +1b ≤ab ≤a +b2≤a 2+b 22,当且仅当a =b 时,等号成立.3.常见求最值的模型模型一:mx +nx≥2mn (m >0,n >0,x >0),当且仅当x =nm时,等号成立;模型二:mx +n x -a =m (x -a )+nx -a +ma ≥2mn +ma (m >0,n >0,x >a ),当且仅当x -a =n m时,等号成立;模型三:xax 2+bx +c =1ax +b +c x ≤12ac +b(a >0,c >0,x >0),当且仅当x =ca时,等号成立;模型四:x (n -mx )=mx (n -mx )m ≤1m ·>0,n >0,0<x 当且仅当x =n 2m时,等号成立.4.三个正数的均值不等式:若a ,b ,c >0,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =x +1x 的最小值是2.()(2)|b a +a b |≥2.()(3)已知0<x <12,则x (1-2x )的最大值为18.()(4)函数f (x )=sin x +4sin x 的最小值为4.()答案(1)×(2)√(3)√(4)×2.小题热身(1)设a >0,则9a +1a 的最小值为()A .4B .5C .6D .7答案C 解析9a +1a≥29a ·1a =6,当且仅当9a =1a ,即a =13时,等号成立.(2)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是()A .4 B.92C.322D .2答案B解析依题意,可得a >0,b >0,则6=a +2b ≥2a ·2b =22·ab ,当且仅当a =2b 时取等号,所以ab ≤628=92,即矩形面积的最大值为92.故选B.(3)(2024·河南郑州高三模拟)已知实数a >0,b >0,a +b =2,则1a +ab 的最小值为________.答案12+2解析1a +a b =12×a +b a +a b =12+b 2a +a b ≥12+2b 2a ·a b =12+2,当且仅当b 2a =ab,即a =22-2,b =4-22时,等号成立.(4)(人教A 必修第一册习题2.2T1(2)改编)函数y =x (3-2x )(0≤x ≤1)的最大值是________.答案98解析因为0≤x ≤1,所以3-2x >0,所以y =12·2x ·(3-2x )≤122x +(3-2x )22=98,当且仅当2x =3-2x ,即x =34时取等号.(5)(人教A 必修第一册复习参考题2T5改编)已知a ,b >0,且ab =a +b +3,则ab 的取值范围为________.答案[9,+∞)解析因为a,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).考点探究——提素养考点一利用基本不等式求最值(多考向探究)考向1配凑法求最值例1(1)(2024·福建福州四校高三期中联考)已知0<x<2,则y=x4-x2的最大值为() A.2B.4C.5D.6答案A解析因为0<x<2,所以y=x4-x2=x2(4-x2)≤x2+(4-x2)2=2,当且仅当x2=4-x2,即x=2时,等号成立,即y=x4-x2的最大值为2.故选A.(2)函数y=x2+3x+3x+1(x<-1)的最大值为()A.3B.2C.1D.-1答案D解析y=x2+3x+3x+1=(x+1)2+(x+1)+1x+1=--(x+1)+1-(x+1)+1≤-1=-1,当且仅当x+1=1x+1=-1,即x=-2时,等号成立.故选D.【通性通法】配凑法求最值的关键点【巩固迁移】1.函数y =3x ()A .8B .7C .6D .5答案D解析因为x >13,所以3x -1>0,所以y =3x +43x -1=(3x -1)+43x -1+1≥2(3x -1)·43x -1+1=5,当且仅当3x -1=43x -1,即x =1时,等号成立,故函数y =3x 值为5.故选D.2.(2023·浙江杭州高三教学质量检测)已知a >1,b >1,且log 2a =log b 4,则ab 的最小值为()A .4B .8C .16D .32答案C解析∵log 2a =log b 4,∴12log 2a =log b 4,即log 2a =2log 24log 2b ,∴log 2a ·log 2b =4.∵a >1,b >1,∴log 2a >0,log 2b >0,∴log 2(ab )=log 2a +log 2b ≥2log 2a ·log 2b =4,当且仅当log 2a =log 2b =2,即a =b =4时取等号,所以ab ≥24=16,当且仅当a =b =4时取等号,故ab 的最小值为16.故选C.考向2常数代换法求最值例2(1)已知0<x <1,则9x +161-x 的最小值为()A .50B .49C .25D .7答案B解析因为0<x <1,所以9x +161-x =(x +1-x )25+9(1-x )x+16x 1-x ≥25+29(1-x )x ·16x 1-x =49,当且仅当9(1-x )x=16x 1-x ,即x =37时,等号成立,所以9x +161-x 的最小值为49.故选B.(2)已知a >0,b >0,a +2b =3,则1a +1b 的最小值为()A.223B.233C .1+223D .1+233答案C解析因为a +2b =3,所以13a +23b =1,+23b =13+23+a 3b +2b 3a≥1+2a 3b ·2b3a=1+223,当且仅当a 3b =2b3a ,即a =3(2-1),b =3(2-2)2时,等号成立.故选C.【通性通法】常数代换法求最值的基本步骤【巩固迁移】3.若正实数x ,y 满足2x +y =9,则-1x -4y 的最大值是()A.6+429B .-6+429C .6+42D .-6-42答案B解析因为1x +4y =19x +y )+y x +8x y+6+429,当且仅当y x =8xy ,即x =9(2-1)2,y =9(2-2)时,等号成立,所以-1x -4y ≤-6+429.故选B.4.(2024·湖北荆门三校高三联考)已知实数a ,b 满足lg a +lg b =lg (a +2b ),则2a +b 的最小值是()A .5B .9C .13D .18答案B解析由lg a +lg b =lg (a +2b ),可得lg (ab )=lg (a +2b ),所以ab =a +2b ,即2a +1b =1,且a >0,b >0,则2a +b =(2a +b 5+2b a +2ab ≥5+22b a ·2a b =9,当且仅当2b a =2ab,即a =b =3时,等号成立,所以2a +b 的最小值为9.故选B.考向3消元法、换元法求最值例3(1)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是()A.14B.45C.255D .2答案B解析因为5x 2y 2+y 4=1,所以x 2=1-y 45y 2,又x 2≥0,所以y 2∈(0,1],所以x 2+y 2=y 2+1-y 45y2=4y 4+15y 2=y 2≥15×24y 2·1y 2=45,当且仅当4y 2=1y 2,即y 2=12,x 2=310时取等号,所以x 2+y 2的最小值是45.故选B.(2)(2024·浙江嘉兴第一中学高三期中)若x >0,y >0,且1x +1+1x +2y=1,则2x +y 的最小值为()A .2B .23C.12+3D .4+23答案C解析设x +1=a ,x +2y =b ,则x =a -1,y =b -a +12,且a >0,b >0,则1a +1b =1,2x +y=2(a -1)+b -a +12=3a +b 2-32,而3a +b =(3a +b 4+3a b +ba ≥4+23a b ·ba=4+23,当且仅当3a b =ba ,即a =3+33,b =3+1时,等号成立,则2x +y ≥4+232-32=12+ 3.故选C.【通性通法】当所求最值的代数式中变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【巩固迁移】5.(2023·江苏南京高三调研)设a ≥0,b ≥0,且2a +b =1,则ab 的最小值为__________.答案解析因为2a +b =1,所以a =(b -1)24,所以a b =(b -1)24b=b 4+14b -12≥2b 4·14b-12=0,当且仅当a =0,b =1时取等号.6.(2024·湖北襄阳五中高三质量检测)若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是________.答案223-12解析设u =2-2a ,v =2-b ,则a =2-u 2,b =2-v ,则u +v =3(u >0,v >0),所以a 2-2a +b2-b=1-12u u+2-v v =1u +2v -32=13(u +v 32+v u +-32+321+223-32=223-12,当且仅当v =6-32,u =32-3时,等号成立,所以a 2-2a +b 2-b 的最小值为223-12.考向4“和”“积”互化求最值例4(多选)设a >1,b >1,且ab -(a +b )=1,那么()A .a +b 有最小值22+2B .a +b 有最大值22-2C .ab 有最大值3-22D .ab 有最小值3+22答案AD解析∵a >1,b >1,∴ab -1=a +b ≥2ab ,当a =b 时取等号,即ab -2ab -1≥0,解得ab ≥2+1,∴ab ≥(2+1)2=3+22,∴ab 有最小值3+2 2.又ab ,当a =b 时取等号,∴1=ab -(a +b )-(a +b ),即(a +b )2-4(a +b )≥4,则[(a +b )-2]2≥8,解得a +b -2≥22,即a +b ≥22+2,∴a +b 有最小值22+2.故选AD.【通性通法】“和”“积”互化求最值的方法(1)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值.(2)如果条件中含有两个变量的和与积的形式,可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解,或者通过构造一元二次方程,利用根的分布解决问题.【巩固迁移】7.正实数x ,y 满足4x 2+y 2+xy =1,则xy 的最大值为________,2x +y 的最大值为________.答案152105解析∵1-xy =4x 2+y 2≥4xy ,∴5xy ≤1,∴xy ≤15,当且仅当y =2x ,即x =1010,y =105时取等号.∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,∴(2x +y )2-1=3xy =32·2x ·y,即(2x +y )2-1≤38(2x +y )2,∴(2x +y )2≤85,∴2x +y ≤2105,当且仅当2x =y ,即x =1010,y=105时取等号.考点二基本不等式的综合应用例5(2024·河南濮阳外国语学校模拟)若对任意正数x ,不等式2x 2+4≤2a +1x恒成立,则实数a 的取值范围为()A .[0,+∞) B.-14,+∞C.14,+∞ D.12,+∞答案B解析依题意得,当x >0时,2a +1≥2x x 2+4=2x +4x恒成立,又x +4x ≥4,当且仅当x =2时取等号,所以2x +4x 的最大值为12,所以2a +1≥12,解得实数a 的取值范围为-14,+故选B.【通性通法】1.利用基本不等式求参数的值或范围时,要观察题目的特点,先确定是恒成立问题还是有解问题,再利用基本不等式确定等号成立的条件,最后通过解不等式(组)得到参数的值或范围.2.当基本不等式与其他知识相结合时,往往是为其他知识提供一个应用基本不等式的条件,然后利用常数代换法求最值.【巩固迁移】8.在等腰三角形ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则△ABC 面积的最大值是()A .6B .12C .18D .24答案A解析设AB =AC =2m ,BC =2n ,因为∠ADB =π-∠CDB ,所以m 2+9-4m 26m =-m 2+9-4n 26m,整理得m 2=9-2n 2.设△ABC 的面积为S ,则S =12BC =12×2n ×4m 2-n 2=3n 4-n 2=3n 2(4-n 2)≤3×n 2+4-n 22=6,当且仅当n =2时,等号成立.故选A.考点三基本不等式的实际应用例6网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案37.5解析由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.【通性通法】利用基本不等式解决实际应用问题的技巧【巩固迁移】9.一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为m g ,则()A .m >10B .m =10C .m <10D .以上都有可能答案A解析由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a ≠b ,设先称得黄金为xg ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =5a b ,y =5b a ,∴x +y =5a b +5ba=5×2a b ·b a =10,当且仅当a b =ba,即a =b 时,等号成立,但a ≠b ,等号不成立,即x +y >10.因此顾客实际购得的黄金克数m >10.故选A.课时作业一、单项选择题1.当x <0时,函数y =x +4x ()A .有最大值-4B .有最小值-4C .有最大值4D .有最小值4答案A解析y =x +4x=-(-x )-4,当且仅当x =-2时,等号成立.故选A.2.(2023·陕西咸阳高三模拟)已知x >0,y >0,若2x +y =8xy ,则xy 的最小值是()A.18B.14C.24D.22答案A解析因为2x +y ≥22xy ,所以8xy ≥22xy ,解得xy ≥18,当且仅当2x =y ,即x =14,y =12时,等号成立.故选A.3.已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6答案C解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|=9,当且仅当|MF 1|=|MF 2|=3时,等号成立.故选C.4.(2024·浙江绍兴第一中学高三期中)已知直线ax +by -1=0(ab >0)过圆(x -1)2+(y -2)2=2024的圆心,则1a +1b 的最小值为()A .3+22B .3-22C .6D .9答案A解析由圆的方程知,圆心为(1,2).∵直线ax +by -1=0(ab >0)过圆的圆心,∴a +2b =1(ab >0),∴1a +1b =(a +2b )=3+a b +2ba≥3+2a b ·2b a=3+当且仅当a b =2ba,即a =2b ,∴1a +1b的最小值为3+2 2.故选A.5.(2023·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是()A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则第一种方案:两次加油的平均价格为40x +40y 80=x +y 2>xy ,第二种方案:两次加油的平均价格为400200x +200y =2xyx +y <xy ,故无论油价如何起伏,第二种方案都比第一种方案更划算.故选B.6.(2023·浙江杭州调研)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为()A .4 B.92C.2D .22答案D 解析由m 2-amn +2n 2≥0得m 2+2n 2≥amn ,即a ≤m 2+2n 2mn=m n +2n m 恒成立,因为m n +2nm≥2m n ·2n m =22,当且仅当m n =2nm,即m =2n 时取等号,所以a ≤22,故实数a 的最大值为2 2.故选D.7.(2024·浙江名校协作体高三模拟)设x ,y 为正实数,若2x +y +2xy =54,则2x +y 的最小值是()A .4B .3C .2D .1答案D解析因为x ,y 为正实数,且54=2x +y +2xy =(2x +1)(y +1)-1,令m =2x +1,n =y +1,则mn =94,所以2x +y =m +n -2≥2mn -2=1,当且仅当m =n ,即y =12,x =14时取等号.故选D.8.(2024·湖北襄阳第四中学高三适应性考试)若a ,b ,c 均为正数,且满足a 2+2ab +3ac +6bc =1,则2a +2b +3c 的最小值是()A .2B .1C.2D .22答案A解析因为a 2+2ab +3ac +6bc =1,所以a (a +2b )+3c (a +2b )=(a +2b )(a +3c )=1,又a ,b ,c 均为正数,(a +2b )(a +3c )=(2a +2b +3c )24,当且仅当a +2b =a +3c =1时取等号,所以(2a+2b+3c)24≥1,即2a+2b+3c≥2.故选A.二、多项选择题9.下列四个函数中,最小值为2的是()A.y=sin xxB.y=ln x+1ln x(x>0,x≠1)C.y=x2+6 x2+5D.y=4x+4-x 答案AD解析对于A,因为0<x≤π2,所以0<sin x≤1,则y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,故y=sin x x2,符合题意;对于B,当0<x<1时,ln x<0,此时y=ln x+1ln x为负值,无最小值,不符合题意;对于C,y=x2+6x2+5=x2+5+1x2+5,设t=x2+5,则t≥5,则y≥5+15=655,其最小值不是2,不符合题意;对于D,y=4x+4-x=4x+14x≥24x·14x=2,当且仅当x=0时取等号,故y=4x+4-x的最小值为2,符合题意.故选AD.10.(2024·湖北部分名校高三适应性考试)已知正实数a,b满足ab+a+b=8,下列说法正确的是()A.ab的最大值为2B.a+b的最小值为4C.a+2b的最小值为62-3D.1a(b+1)+1b的最小值为12答案BCD解析对于A,因为ab+a+b=8≥ab+2ab,即(ab)2+2ab-8≤0,解得0<ab≤2,则ab≤4,当且仅当a=b=2时取等号,故A错误;对于B,ab+a+b=8≤(a+b)24+(a+b),即(a+b)2+4(a+b)-32≥0,解得a+b≤-8(舍去),a+b≥4,当且仅当a=b=2时取等号,故B正确;对于C,由题意可得b(a+1)=8-a,所以b=8-aa+1>0,解得0<a<8,a+2b=a+2·8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D ,因为1a (b +1)+1b =181a (b +1)+1b [a (b +1)+b ]=182+b a (b +1)+a (b +1)b ≥18+2)=12,当且仅当b a (b +1)=a (b +1)b ,即b =4,a =45时取等号,故D 正确,故选BCD.11.已知a >0,b >0,且a +b =1,则()A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D.a +b ≤2答案ABD解析对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.三、填空题12.(2023·山东滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案3解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.13.(2024·河北衡水中学高三第三次综合素养评价)已知实数a >b >1,满足a +1a -1≥b +1b -1,则a +4b 的最小值是________.答案9解析由已知条件,得a -b ≥1b -1-1a -1=(a -1)-(b -1)(b -1)(a -1)=a -b (b -1)(a -1),∵a -b >0,∴1≥1(b -1)(a -1),又a -1>0,b -1>0,∴(b -1)(a -1)≥1,∴a +4b =(a -1)+4(b -1)+5≥2(a -1)·4(b -1)+5=9,-1=4(b -1),-1)(a -1)=1,=3,=32时,等号成立.14.(2023·湖北荆宜三校高三模拟)已知正数a ,b 满足a +3b +3a +4b =18,则a +3b 的最大值是________.答案9+36解析设t =a +3b ,则3a +4b =18-t ,所以t (18-t )=(a +3b 15+9b a +4ab≥15+29b a ·4ab=27,当且仅当2a =3b 时取等号.所以t 2-18t +27≤0,解得9-36≤t ≤9+36,即a +3b 的最大值是9+36,当且仅当2a =3b ,即a =3+6,b =2+263时取等号.15.(2024·浙江名校联盟高三上学期第一次联考)已知正实数x ,y 满足1x +4y +4=x +y ,则x+y 的最小值为()A.13-2B .2C .2+13D .2+14答案C解析因为正实数x ,y 满足1x +4y+4=x +y ,等式两边同乘以x +y ,可得(x +y )2=4(x +y )+5+y x +4xy≥4(x +y )+5+2y x ·4xy =4(x +y )+9,所以(x +y )2-4(x +y )-9≥0,因为x +y >0,所以x +y ≥2+13,当且仅当y =2x 时,等号成立.因此x +y 的最小值为2+13.故选C.16.已知点E 是△ABC 的中线BD 上的一点(不包括端点),若AE →=xAB →+yAC →,则2x +1y 的最小值为()A .4B .6C .8D .9答案C解析设BE →=λBD →(0<λ<1),∵AE →=AB →+BE →=AB →+λBD →=AB →+λ(AD →-AB →)=(1-λ)AB →+λ2AC →,∴x =1-λ,y =λ2(x >0,y >0),∴2x +1y =21-λ+2λ=-λ)+λ]=4+2λ1-λ+2(1-λ)λ≥4+22λ1-λ·2(1-λ)λ=8,当且仅当2λ1-λ=2(1-λ)λ,即λ=12时取等号,故2x +1y 的最小值为8.故选C.17.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析由x 2+y 2-xy =1得(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1得x 2+y 2-1=xy ,又x 2+y 2≥2x 2·y2=2|xy |,所以|x 2+y 2-1|≤x2+y 22即-x 2+y 22≤x 2+y 2-1≤x 2+y 22,所以23≤x 2+y 2≤2,当且仅当x =y =±1时,x 2+y 2=2,当x =33,y =-33或x =-33,y =33时,x 2+y 2=23,所以C 正确,D 错误.故选BC.18.(多选)(2024·湖北襄阳第五中学高三月考)若a >b >0,且a +b =1,则()A .2a +2b ≥22B .2a +ab ≥2+22C .(a 2+1)(b 2+1)<32D .a 2a +2+b 2b +1≥14答案BD解析因为a >b >0,且a +b =1,所以0<b <12,12<a <1.对于A ,因为2a +2b ≥22a ·2b =22a +b=22,当且仅当a =b =12时取等号,但a >b >0,所以等号取不到,故A 错误;对于B ,因为b a >0,a b >0,由基本不等式,得2a +a b =2a +2b a +a b =2+2b a +a b ≥2+22b a ·ab=2+22,当且仅当2b a =a b ,即a =2-2,b =2-1时,等号成立,所以2a +ab≥2+22,故B 正确;对于C ,因为a +b =1,所以(a 2+1)(b 2+1)=a 2b 2+a 2+b 2+1=a 2b 2+(a +b )2-2ab +1=a 2b 2-2ab +2=(ab -1)2+1,其中ab ≤(a +b )24=14,当且仅当a =b 时取等号,但a >b >0,所以等号取不到,所以0<ab <14,(a 2+1)(b 2+1)=(ab -1)2+1故C 错误;对于D ,a 2a +2+b 2b +1=[(a +2)-2]2a +2+[(b +1)-1]2b +1=(a +2)+4a +2-4+(b +1)+1b +1-2=4a +2+1b +1-2,因为a +b=1,所以a +2+b +1=4,故a +24+b +14=1,所以4a +2+1b +1==1+14+b +1a +2+a +24(b +1)≥54+2b +1a +2·a +24(b +1)=94,当且仅当b +1a +2=a +24(b +1),即a =23,b =13时,等号成立,所以a 2a +2+b 2b +1=4a +2+1b +1-2≥94-2=14,故D 正确.故选BD.19.(2024·湖北百校高三联考)已知正数x ,y 满足3x +4y =4,则y是________.答案1解析因为x ,y 是正数,所以=y xy +3+y 2xy +1=1x +3y +12x +1y,且x +3y +2x +1y =3x +4y =4,所以y=14+3y +2x·=+2x +1y x +3y +≥14×(2+2)=1,当且仅当2x +1y x +3y =x +3y 2x +1y,即x =45,y =52,等号成立,所以y 1.20.(2023·广东深圳高三二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的底线宽AB =72码,球门宽EF =8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P ,使得∠EPF 最大,这时候点P 就是最佳射门位置.当攻方球员甲位于边线上的点O 处(OA =AB ,OA ⊥AB )时,根据场上形势判断,有OA →,OB →两条进攻线路可供选择.若选择线路OA →,则甲带球________码时,到达最佳射门位置;若选择线路OB →,则甲带球________码时,到达最佳射门位置.答案72-165722-165解析若选择线路OA →,设AP =t ,其中0<t ≤72,AE =32,AF =32+8=40,则tan ∠APE =AEAP=32t ,tan ∠APF =AF AP =40t ,所以tan ∠EPF =tan(∠APF -∠APE )=tan ∠APF -tan ∠APE 1+tan ∠APF tan ∠APE=40t -32t 1+1280t 2=8t 1+1280t2=8t +1280t ≤82t ·1280t =520,当且仅当t =1280t ,即t =165时,等号成立,此时OP =OA -AP =72-165,所以若选择线路OA →,则甲带球72-165码时,到达最佳射门位置;若选择线路OB →,以线段EF 的中点N 为坐标原点,BA →,AO →的方向分别为x ,y 轴正方向建立如图所示的空间直角坐标系,则B (-36,0),O (36,72),F (-4,0),E (4,0),k OB =7236+36=1,直线OB 的方程为y =x +36,设点P (x ,x +36),其中-36<x ≤36,tan ∠AFP =k PF =x +36x +4,tan ∠AEP =k PE =x +36x -4,所以tan ∠EPF =tan(∠AEP -∠AFP )=tan ∠AEP -tan ∠AFP1+tan ∠AEP tan ∠AFP=x +36x -4-x +36x +41+x +36x -4·x +36x +4=8(x +36)x 2-161+(x +36)2x 2-16=8(x +36)+x 2-16x +36,令m =x +36∈(0,72],则x =m -36,所以x +36+x 2-16x +36=m +(m -36)2-16m =2m +1280m -72≥22m ·1280m72=3210-72,当且仅当2m =1280m,即m =810,即x =810-36时,等号成立,所以tan ∠EPF =82m+1280m-72≤83210-72=1410-9,当且仅当x=810-36时,等号成立,此时|OP|=2·|36-(810-36)|=722-165,所以若选择线路OB→,则甲带球722-165码时,到达最佳射门位置.。
高考数学二轮复习考点知识与题型专题讲解10---对数平均不等式、切线不等式
高考数学二轮复习考点知识与题型专题讲解 第10讲 对数平均不等式、切线不等式在高考压轴题中,经常考查与导数有关的不等式问题,这些问题可以用常规方法求解,也可以转变成对数平均不等式、切线不等式进行求解,起到事半功倍的效果.考点一 对数平均不等式例1 若a >0,b >0,a ≠b ,求证:ab <a -b ln a -ln b<a +b 2. 证明 不妨设a >b >0,①要证ab <a -b ln a -ln b成立, 即证ab <a -b ln a b,即证ln a b <a -b ab , 即证ln a b <a b -b a ,令a b=t (t >1), 则需证明2ln t <t -1t(t >1), 构造函数f (t )=2ln t -t +1t(t >1), 则f ′(t )=2t -1-1t 2=-(t -1)2t2<0, 所以f (t )在(1,+∞)上单调递减,又f (1)=0,所以f (t )<0,即2ln t <t -1t,原不等式得证. ②要证a -b ln a -ln b <a +b 2,只需证2·a -b a +b<ln a b ,即证2·a b -1a b+1<ln a b ,令t =a b (t >1), 即证2·t -1t +1<ln t .即证2-4t +1<ln t , 构造函数φ(t )=2-4t +1-ln t (t >1), φ′(t )=4(t +1)2-1t =-(t -1)2t (t +1)2<0, ∴φ(t )在(1,+∞)上单调递减,∴φ(t )<φ(1)=0,即2-4t +1<ln t , ∴原不等式得证. 综上,ab <a -b ln a -ln b<a +b 2. 规律方法 该类问题的特征是双变量,将双变量问题转变为单变量问题处理,即将a b看成一个新对象(整体),从而进行降维打击.跟踪演练1 已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,∴f (x )在(0,+∞)上单调递减. ②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. ∴f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减, 在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 2>x 1>0,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a (ln x 1-ln x 2)x 1-x 2=-2+a (ln x 1-ln x 2)x 1-x 2, 由对数平均不等式知x 1-x 2ln x 1-ln x 2>x 1x 2=1, 又x 2>x 1>0,∴x 1-x 2<0,ln x 1-ln x 2<0,∴0<ln x 1-ln x 2x 1-x 2<1, ∴f (x 1)-f (x 2)x 1-x 2=-2+a (ln x 1-ln x 2)x 1-x 2<-2+a , 即证原不等式成立.考点二 以泰勒公式为背景的切线不等式泰勒公式:将函数展开为一个多项式与一个余项的和.f (x )=f (x 0)+f ′(x 0)(x -x 0)+f ″(x 0)2!(x -x 0)2+…+f (n )(x 0)n !(x -x 0)n +R n (x ), 其中余项R n (x )=f (n +1)(ξ)(n +1)!(x -x 0)n +1(ξ在x 0与x 之间), 当x 0=0时为麦克劳林公式.其中e x 与ln(1+x )的麦克劳林公式为e x =1+x +12x 2+16x 3+o (x 3), ln(1+x )=x -12x 2+13x 3+o (x 3), 从中截取片段就构成了常见的不等式:e x ≥1+x 或e x≥1+x +x 22(x ≥0), ln(1+x )≤x (x ≥0)或ln x ≤x -1(x >0),ln(1+x )≥x -x 22(x ≥0),例2 设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ;(2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明 方法一 由(1)知,f (x )=e x ln x +2x·e x -1, 从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝⎛⎭⎫0,1e ,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e, 则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,g (x )>h (x ),即f (x )>1.方法二 f (x )=e x ln x +2xe x -1=e x ⎝⎛⎭⎫ln x +2e x . 当x >0时,e x >1+x ,所以e x -1≥x , 即e x e≥x ,e x ≥e x ,当x =1时等号成立, 即e -ln x ≥e(-ln x ),所以1x≥e(-ln x ), 即ln x ≥-1e x ,当x =1e时等号成立,所以e x ⎝⎛⎭⎫ln x +2e x ≥e x ⎝⎛⎭⎫-1e x +2e x =e xe x >1(等号不同时成立). 规律方法 指数的放缩.形如:e x -1≥x -1+1⇒e x ≥e x , e x n≥e·x n ⇒e x ≥e n n n x n . 对数的放缩.形如:e ln x ≥1+ln x ⇒ln x ≤x -1⇒ln(1+x )≤x ,ln ⎝⎛⎭⎫1+1x <1x ⇒ln(x +1)-ln x <1x, ln ⎝⎛⎭⎫1+⎝⎛⎭⎫-11+x <-11+x⇒ln(1+x )-ln x >11+x , ln x e ≤x e-1⇒x ≥eln x . 跟踪演练2 已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R ). (1)当a >0时,求函数f (x )的单调递增区间;(2)当a =0时,证明:f (x )<2e x -x -4.(1)解 f (x )的定义域为(0,+∞),f ′(x )=ax -(2a +1)+2x =(ax -1)(x -2)x, 当0<1a <2,即a >12时, 在⎝⎛⎭⎫0,1a 和(2,+∞)上,f ′(x )>0,f (x )单调递增; 当1a =2,即a =12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; 当1a >2,即0<a <12时, 在(0,2)和⎝⎛⎭⎫1a ,+∞上,f ′(x )>0,f (x )单调递增.综上所述,当a >12时,f (x )的单调递增区间为⎝⎛⎭⎫0,1a 和(2,+∞); 当a =12时,f (x )的单调递增区间为(0,+∞); 当0<a <12时,f (x )的单调递增区间为(0,2)和⎝⎛⎭⎫1a ,+∞. (2)证明 方法一 当a =0时,要证f (x )<2e x -x -4,即证e x -ln x -2>0,构造函数h (x )=e x -ln x -2(x >0),h ′(x )=e x -1x, 令φ(x )=e x -1x(x >0), 则φ′(x )=e x +1x 2>0, 所以h ′(x )在(0,+∞)上单调递增,h ′⎝⎛⎭⎫12=e -2<0,h ′(1)=e -1>0,故存在x 0∈⎝⎛⎭⎫12,1,使得h ′(x 0)=0,即0e x =1x 0. 当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减;当x ∈(x 0,+∞)时,h ′(x )>0,h (x )单调递增.所以当x =x 0时,h (x )取得极小值,也是最小值.h (x 0)=0e x -ln x 0-2=1x 0-01ln e 2x - =1x 0+x 0-2>21x 0·x 0-2=0, 所以h (x )=e x -ln x -2>0,故f (x )<2e x -x -4.方法二 当a =0时,要证f (x )<2e x -x -4,即证e x -ln x -2>0,由x >0时,e x >x +1可得e x -1>x ,由x >0时,ln x ≤x -1可得x ≥ln x +1,故e x -1>x ≥ln x +1,即e x -ln x -2>0,即原不等式成立.专题强化练1.(2022·葫芦岛模拟)已知函数f (x )=x +b (1+ln x )(b ∈R ).(1)求f (x )的单调区间;(2)设g (x )=f (x )-12sin x ,若存在0<x 1<x 2,使得g (x 1)=g (x 2),求证: ①b <0;②x 1x 2<4b 2.(1)解 由题意,定义域为(0,+∞),f ′(x )=x +b x, 若b ≥0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若b <0,令f ′(x )=0,得x =-b , 当x ∈(0,-b )时,f ′(x )<0,f (x )单调递减;当x ∈(-b ,+∞)时,f ′(x )>0,f (x )单调递增,综上,若b ≥0,f (x )的单调递增区间为(0,+∞),无单调递减区间;若b <0,f (x )的单调递减区间为(0,-b ),单调递增区间为(-b ,+∞).(2)证明 g (x )=x +b (1+ln x )-12sin x , g ′(x )=1-cos x 2+b x, ①若b ≥0,则由1-cos x 2>0,b x≥0得g ′(x )>0,g (x )在(0,+∞)上单调递增,故不存在0<x 1<x 2,使得g (x 1)=g (x 2),所以b <0.②令m (x )=x -sin x (x >0),m ′(x )=1-cos x ≥0,当x →0时,m (x )→0, 故m (x )>0,即x >sin x ,因为g (x 1)=g (x 2),即x 1+b (1+ln x 1)-12sin x 1 =x 2+b (1+ln x 2)-12sin x 2, 所以-b (ln x 2-ln x 1)=x 2-x 1-12(sin x 2-sin x 1)>12(x 2-x 1), 又0<x 1<x 2,所以-2b >x 2-x 1ln x 2-ln x 1>0, 根据对数平均不等式ab <a -b ln a -ln b<a +b 2, 所以x 2-x 1ln x 2-ln x 1>x 2x 1, 所以-2b >x 2x 1,故x 1x 2<4b 2.2.(2022·抚州模拟)已知函数f (x )=x (ln x +a ),a ∈R .(1)求f (x )的单调区间;(2)当a =1时,求证:f (x )≤x e x-1在(0,+∞)上恒成立. (1)解 因为f (x )=x (ln x +a ),故可得f ′(x )=ln x +a +1,又y =ln x +a +1为单调递增函数,令f ′(x )=0,解得x =e -a -1,故当0<x <e-a -1时,f ′(x )<0; 当x >e -a -1时,f ′(x )>0,故f (x )的单调递减区间为(0,e-a -1), 单调递增区间为(e -a -1,+∞).(2)证明 方法一 当a =1时,f (x )=x (ln x +1), 要证f (x )≤x e x -1,即证x (ln x +1)≤x e x -1,又x >0,则只需证ln x +1≤e x -1,即证ln x -x +1≤e x -1-x ,令m (x )=ln x -x +1,m ′(x )=1x -1=1-x x ,当0<x <1时,m ′(x )>0,m (x )单调递增, 当x >1时,m ′(x )<0,m (x )单调递减, 故当x =1时,m (x )取得最大值m (1)=0; 令n (x )=e x -1-x ,n ′(x )=e x -1-1,又y =n ′(x )为单调递增函数,且当x =1时,n ′(x )=0,当0<x <1时,n ′(x )<0,n (x )单调递减; 当x >1时,n ′(x )>0,n (x )单调递增, 故当x =1时,n (x )取得最小值n (1)=0. 则n (x )min =m (x )max ,且当x =1时,同时取得最小值和最大值, 故n (x )≥m (x ),即ln x -x +1≤e x -1-x ,故f (x )≤x e x -1在(0,+∞)上恒成立.方法二 当a =1时,f (x )=x (ln x +1),要证f(x)≤x e x-1,即证x(ln x+1)≤x e x-1,又x>0,则只需证ln x+1≤e x-1,又ln x+1≤x,e x-1≥x,且等号都在x=1处取得,所以ln x+1≤e x-1.即f(x)≤x e x-1在(0,+∞)上恒成立.11 / 11。
基本不等式完整版(非常全面)
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d a c b d ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥ 4、已知,,a b c R+∈,且1a b c ++=,求证:a b cc b a 8)1)(1)(1(≥--- 5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域(1)22213x x y += (2))4(x x y -= (3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
基本不等式ppt 课件-
解答:
AC=a,BC=b。过点 C作垂直于AB 的弦
可证△ACD∽△DCB,因而 CD= .由
DE,连接 AD,BD。你能利用这个图形,
于 CD 小于或等于圆的半径,用不等
得出基本不等式的几何解释吗?Leabharlann 式表示为+≤
显然,当且仅当点 C 与圆心重合,即
当a= 时,上述不等式的等号成立
2.2.4
分析:
(1) 矩形菜园的面积是矩形的两邻边之积,于是问题转
化为:矩形的邻边之积为定值,边长多大时周长最短。
(2) 矩形莱园的周长是矩形两邻边之和的 2倍,于是问
题转化为:矩形的邻边之和为定值,边长多大时面积
最大。
解答:
应用
例4:某工厂要建造一个长方体形无盖贮水池,
其容积为4 800 m³,深为3 m。如果池底每平
证明
证明方法一:作差法
证明方法二:借助完全平方公式
证明方法三:分析法
要证
≤
+
只要证 2 ≤ a+b
只要证 2 -a-b≤0
只要证 -( - )²≤0
只要证 ( − )²≥0
显然,最后一个成立,当且仅当a=b时,等号成
立
2.2.3
基本不等式的
几何解释
几何解释
如图:AB 是圆的直径,点C是AB 上一点
方米的造价为 150 元,池壁每平方米的造价为
解答:
设水池底的相邻两条边的边长分别为xm,ym,
水池的总价为z元,根据题意,有
120 元,那么怎样设计水池能使总造价最低?最
低总造价是多少?
由容积为4800m³,可得3xy=4 800,
高考数学复习专题 基本不等式
高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。
2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。
3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。
2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。
4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。
2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。
3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。
4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。
5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。
6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。
7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。
二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。
题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。
2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。
高考数学-基本不等式(知识点归纳)
高考数学-基本不等式(知识点归纳) 高中数学基本不等式的巧用一、基本不等式1.若$a,b\in\mathbb{R}$,则$a+b\geq 2ab$,$ab\leq\frac{(a+b)^2}{4}$(当且仅当$a=b$时取“=”)2.若$a,b\in\mathbb{R}$,则$\frac{a+b}{2}\geq\sqrt{ab}$(当且仅当$a=b$时取“=”)3.若$x>1$,则$x+\frac{1}{x}\geq 2$(当且仅当$x=1$时取“=”);若$x<1$,则$x+\frac{1}{x}\leq -2$(当且仅当$x=-1$时取“=”);若$x\neq 0$,则$x+\frac{1}{x}\geq 2$或$x+\frac{1}{x}\leq -2$(当且仅当$x=1$或$x=-1$时取“=”)4.若$a,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”);若$ab\neq 0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$或$\frac{a}{b}+\frac{b}{a}\leq -2$(当且仅当$a=b$时取“=”)注:(1)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”。
2)求最值的条件“一正,二定,三取等”。
3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用。
应用一:求最值例1:求下列函数的值域1.$y=3x+\frac{11}{2}$2.$y=x+\frac{1}{2x}$解:(1)$y=3x+\frac{11}{2}\geq 6$,所以值域为$[6,+\infty)$。
2)当$x>0$时,$y=x+\frac{1}{2x}\geq 2$;当$x<0$时,$y=x+\frac{1}{2x}\leq -2$;当$x=0$时,$y$无定义。
基本不等式知识点归纳
基本不等式知识点归纳基本不等式是数学中的重要概念,涉及到数值之间的大小关系。
在数学学习中,掌握基本不等式的知识点对于解决各类问题至关重要。
本文将对基本不等式的定义、性质以及常用的基本不等式进行归纳总结。
一、基本不等式的定义基本不等式是指关于变量的不等关系式,通常形式为a ≤ b 或 a < b,其中 a、b 为实数,表示 a 与 b 之间的大小关系。
二、基本不等式的性质1. 传递律:若a ≤ b 且b ≤ c,则a ≤ c。
2. 对称律:若a ≤ b,则b ≥ a。
3. 加法性:若a ≤ b,则a + c ≤ b + c。
4. 减法性:若a ≤ b,则 a - c ≤ b - c(其中 c 为正数)。
5. 乘法性:若a ≤ b 且c ≥ 0,则ac ≤ bc。
若c ≤ 0,则ac ≥ bc。
6. 除法性:若a ≤ b 且 c > 0,则a/c ≤ b/c。
若 c < 0,则a/c ≥ b/c。
三、常用的基本不等式1. 平均值不等式:对于任意非负实数 a₁、a₂、...、aₙ,有 (a₁ +a₂ + ... + aₙ)/n ≥ √(a₁a₂...aₙ)。
该不等式表明,若 n 个非负实数的算术平均值大于等于它们的几何平均值,那么这些数之间存在不等关系。
2. 柯西-施瓦茨不等式:对于任意实数 a₁、a₂、...、aₙ 和 b₁、b₂、...、bₙ,有(a₁b₁ + a₂b₂ + ... + aₙbₙ)² ≤ (a₁² + a₂² + ... + aₙ²)(b₁² + b₂²+ ... + bₙ²)。
柯西-施瓦茨不等式表明了两个向量内积的平方与两个向量长度乘积的平方之间的关系。
该不等式在数学分析、线性代数等领域有广泛应用。
3. 三角不等式:对于任意实数 a、b,有|a + b| ≤ |a| + |b|。
三角不等式表明了两个实数之和的绝对值小于等于两个实数的绝对值之和。
2022年新高考数学总复习:基本不等式
2022年新高考数学总复习:基本不等式知识点一重要不等式a 2+b 2≥__2ab __(a ,b ∈R )(当且仅当__a =b __时等号成立).知识点二基本不等式ab ≤a +b2(均值定理)(1)基本不等式成立的条件:__a >0,b >0__;(2)等号成立的条件:当且仅当__a =b __时等号成立;(3)其中a +b2叫做正数a ,b 的__算术平均数__,ab 叫做正数a ,b 的__几何平均数__.知识点三利用基本不等式求最大、最小值问题(1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当__x =y __时,x +y 有最小值2P .(简记:“积定和最小”)(2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)归纳拓展常用的几个重要不等式(1)a +b ≥2ab (a >0,b >0).(当且仅当a =b 时取等号)(2)ab (a ,b ∈R ).(当且仅当a =b 时取等号)≤a 2+b 22(a ,b ∈R ).(当且仅当a =b 时取等号)(4)b a +ab ≥2(a ,b 同号).(当且仅当a =b 时取等号).(5)21a +1b≤ab ≤a +b2≤a 2+b 22(a ,b >0当且仅当a =b 时取等号).双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f (x )=cos x +4cos x ,x 4.(×)(2)“x >0且y >0”是“x y +yx ≥2”的充要条件.(×)(3)(a +b )2≥4ab (a ,b ∈R ).(√)(4)若a >0,则a 3+1a 2的最小值为2a .(×)(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.(×)(6)两个正数的等差中项不小于它们的等比中项.(√)题组二走进教材2.(必修5P 100练习T1改编)若x <0,则x +1x (D)A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2[解析]因为x <0,所以-x >0,-x +1-x≥2,当且仅当x =-1时,等号成立,所以x+1x≤-2.3.(必修5P 100练习T3改编)设0<a <b ,则下列不等式中正确的是(B )A .a <b <ab <a +b2B .a <ab <a +b2<bC .a <ab <b <a +b 2D .ab <a <a +b2<b[解析]解法一(特值法):代入a =1,b =2,则有0<a =1<ab =2<a +b2=1.5<b =2.解法二(直接法):我们知道算术平均数a +b2与几何平均数ab 的大小关系,其余各式作差(作商)比较即可,答案为B .4.(必修5P 100A 组T2改编)若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__25__m 2.[解析]设矩形的一边为x m ,面积为y m 2,则另一边为12×(20-2x )=(10-x )m ,其中0<x <10,∴y =x (10-x )≤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25.题组三走向高考5.(2020·江苏,12,5分)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是__45__.[解析]由5x 2y 2+y 4=1知y ≠0,∴x 2=1-y 45y 2,∴x 2+y 2=1-y 45y 2y 2=1+4y 45y 2=15y 2+4y 25≥2425=45,当且仅当15y 2=4y 25,即y 2=12,x 2=310时取“=”.故x 2+y 2的最小值为45.6.(2019·天津,13)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy的最小值为__92__.[解析](x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy=2+5xy .∵x >0,y >0,∴4=x +2y ≥2x ·2y ,解得0<xy ≤2,当且仅当x =2y =2,即x =2且y =1时“=”成立.此时1xy ≥12,∴2+5xy ≥2+52=92,故(x +1)(2y +1)xy的最小值为92.考点突破·互动探究考点一利用基本不等式求最值——多维探究角度1拼凑法求最值例1(1)(2020·天津,14,5分)已知a >0,b >0,且ab =1,则12a +12b +8a +b的最小值为__4__.(2)(2021·吉林模拟)已知x >2,若f (x )=x +1x -2在x =n 处取得最小值,则n =(B )A .52B .3C .72D .4(3)(2021·重庆南开中学质检)已知实数a ,b >1,且满足ab -a -b =5,则2a +3b 的最小值为__17__.[解析](1)12a +12b +8a +b =a +b 2ab +8a +b =a +b 2+8a +b≥2a +b 2×8a +b=4,当且仅当a +b 2=8a +b ,即(a +b )2=16,也即a +b =4时取等号.又∵ab =1=2+3,=2-3或=2-3,=2+3时取等号,∴12a +12b +8a +b的最小值为4.(2)由f (x )=x +1x -2=(x -2)+1x -2+2≥4,当且仅当x -2=1x -2>0,即x =3时,取得等号,故选B .(3)由ab-a-b=5⇒6=(a-1)(b-1)⇒36=(2a-2)(3b-3)则2a+3b≥17,当且仅当a=4,b=3取最小值.[引申]f(x)=x+1x-2的值域为__(-∞,0]∪[4,+∞)__.[解析]f(x)=(x-2)+1x-2+2,∵|(x-2)+1x-2|=|x-2|+1|x-2|≥2(当且仅当|x-2|=1即x=3或1时取等号)∴(x-2)+1x-2≥2或x-2+1x-2≤-2,∴f(x)≥4或f(x)≤0,即f(x)的值域为(-∞,0]∪[4,+∞).名师点拨拼凑法求最值的技巧(1)用均值定理求最值要注意三个条件:一正、二定、三相等.“一正”不满足时,需提负号或加以讨论,“二定”不满足时,需变形,“三相等”不满足时,可利用函数单调性.(2)求乘积的最值.同样要检验“一正、二定、三相等”,如例(2)的关键是变形,凑出积为常数.角度2换元法求最值例2(1)已知x>54,求函数y=16x2-28x+114x-5的最小值;(2)(2021·百校联盟尖子生联考)已知a,b∈R+,且a+2b=ab-16,则ab的最小值为(B)A.16B.32C.64D.128[思路](1)通过换元转化为形如Ax+Bx+C形式的函数.[解析](1)设4x-5=t,则x=t+54.∵x>54,∴t>0.∴y=-28·t+54+11t=t2+3t+1t=t +1t+3≥2+3=5.当且仅当t =1即x =32时,上式取“=”号.∴x =32时,y min =5.(2)ab -16=a +2b ≥22ab ,令ab =t ,则t 2-22t -16≥0⇒t ≥22+722=42,故ab ≥32,即ab 最小值为32.(当且仅当a =8,b =4时取等号)故选B .[答案](1)5角度3常数代换法求最值例3(1)已知正数x ,y 满足x +2y =4,则2x +1y最小值为__2__;(2)已知正数x ,y 满足8x +1y =1,则x +2y 的最小值为__18__.[思路](2)先利用乘常数法或消元法,再利用基本不等式求解最值.[解析](1)2x +1y =x +2y )×14=+x y ++ 2.当且仅当x y =4yx ,即y 2=x 2,+2y =4=2,=1时取等号.(2)解法一:x +2y x +2y )=10+x y +16yx ≥10+2x y ·16yx =18,当且仅当+1y =1,=16y x=12,=3时“=”成立,故x +2y 的最小值是18.解法二(消元法):由8x +1y =1,得y =x x -8,由y >0⇒x x -8>0,又x >0⇒x >8,则x +2y =x+2x x -8=x +2(x -8)+16x -8=x +2+16x -8=(x -8)+16x -8+10≥2(x -8)·16x -8+10=18,当且仅当x -8=16x -8,即x =12(x =4舍去),y =3时,“=”成立,故x +2y 的最小值为18.名师点拨常数代换法的技巧(1)常数代换法就是利用常数的变形以及代数式与“1”的积、商都是自身的性质,通过代数式的变形构造和式或积式为定值,然后利用基本不等式求最值.(2)利用常数代换法求解最值应注意:①条件的灵活变形,常数化成1是代数式等价变形的基础;②利用基本不等式求最值时“一正、二定、三相等”的检验,否则容易出现错解.〔变式训练1〕(1)(角度1)(2021·宁夏银川一中月考)已知正数x 、y 满足x +y =1,则1x +41+y 的最小值为(B)A .2B .92C .143D .5(2)(角度2)(2021·山东师大附中模拟)若正数x ,y 满足x +5y =3xy ,则5x +y 的最小值为__12__;(3)(角度3)(2020·天津七校期中联考)已知a >0,b >0,且1a +1+1b =1,求a +b 的最小值__3__.[解析](1)∵x +y =1,所以x +(1+y )=2,则[x+(1+y =4x 1+y +1+y x +5≥24x 1+y ·1+y x+5=9,所以1x +41+y ≥92,=1+yx 1=23=13时取等号∴1x +41+y 的最小值为92,故选B .(2)∵x >0,y >0,x +5y =3xy ,即5x +1y =3,∵5x +yx +y )+5y x ++12,(当且仅当x =y =2时取等号)∴5x +y 的最小值为12,另解:∵x >0,y >0,x +5y =3xy ,即x =5y3y -1,令3y -1=t ,则y =t +13,(t >0),∴5x +y =25y 3y -1+y+t +13=263+≥263+2325t·t =12.(当且仅当t =5,即x =y =2时取等号)∴5x +y 的最小值为12.(3)∵a >0,b >0,且1a +1+1b=1,∴a +b =[(a +1)+b ]-1a +1)+b ]-1=b a +1+a +1b+1≥2b a +1·a +1b+1=3,当且仅当a +1=b ,即a =1,b =2时取等号,∴a +b 的最小值为3,另解:(换元法)由1a +1+1b =1得b =1+1a ,(a >0),∴a +b =a +1a+1≥2a ·1a+1=3,当且仅当a =1,b =2时取等号,∴a +b 的最小值为3.考点二利用基本不等式求参数的范围——师生共研例4若正数a ,b 满足ab =a +b +3,则(1)ab 的取值范围是__[9,+∞)__;(2)a +b 的取值范围是__[6,+∞)__.[解析](1)∵ab =a +b +3≥2ab +3,令t =ab >0,∴t 2-2t -3≥0,∴(t -3)(t +1)≥0.∴t ≥3即ab ≥3,∴ab ≥9,当且仅当a =b =3时取等号.(2)∵ab =a +b +3,∴a +b +3.今t =a +b >0,∴t 2-4t -12≥0,∴(t -6)(t +2)≥0.∴t ≥6即a +b ≥6,当且仅当a =b =3时取等号.名师点拨利用方程的思想是解决此类问题的常规解法.另外,本例第二问也可用如下方法求解:由已知b=a+3a-1>0,∴a-1>0,∴a+b=a+a+3a-1=a+a-1+4a-1=a+1+4a-1=(a-1)+4a-1+2≥6.当且仅当a=b=3时取等号.〔变式训练2〕(2020·黑龙江哈尔滨三中期中)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是__4__. [解析]解法一:∵x>0,y>0,x+2y+2xy=8.∴(2y+1)(x+1)=9且x+1>0,2y+1>0∴x+2y=(2y+1)+(x+1)-2≥2(2y+1)·(x+1)-2=4.(当且仅当x=2,y=1时取等号)∴x+2y的最小值为4.解法二:∵x>0,y>0,∴2xy=(2y+x)42(当且仅当x=2,y=1时取等号)又x+2y+2xy=8,∴x+2y+(x+2y)42≥8,∴(x+2y-4)(x+2y+8)≥0,∴x+2y-4≥0,即x+2y≥4(当且仅当x=2,y=1时取等号)∴x+2y的最小值为4.解法三:∵x>0,y>0,x+2y+2xy=8,∴x=8-2y1+2y=92y+1-1,∴x+2y=92y+1+(2y+1)-2≥292y+1·(2y+1)-2=4(当且仅当y=1时取等号)∴x+2y的最小值为4.秒杀解法:x+2y+2xy=8,即x+2y+x·2y=8.由条件及结论关于x、2y的对称性知当x =2y=2时x+2y取最小值为4.考点三利用基本不等式解决实际问题——师生共研例5某人准备在一块占地面积为1800m2的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1m的小路(如图所示),大棚总占地面积为S m2,其中a∶b=1∶2,则S 的最大值为__1568__.[解析]由题意可得xy=1800,b=2a,x>3,y>3,则y=a+b+3=3a+3,所以S=(x-2)a+(x-3)b=(3x-8)a=(3x-8)y-33=1808-3x-83y=1808-3x-83×1800x=18083x+4800x1808-23x×4800x=1808-240=1568,当且仅当3x=4800x,即x=40,y=45时等号成立,S取得最大值,所以当x=40,y=45时,S取得最大值为1568.名师点拨应用基本不等式解决实际问题的步骤:①仔细阅读题目,深刻理解题意;②找出题目中的数量关系,并设出未知数,并用它表示其它的量,把要求最值的量设为函数;③利用基本不等式求出最值;④再还原成实际问题,作出解答.〔变式训练3〕某工厂建造一个无盖的长方体贮水池,其容积为4800m3,深度为3m.如果池底每1m2的造价为150元,池壁每1m2的造价为120元,要使水池总造价最低,那么水池底部的周长为__160__m.[解析]设水池底面一边的长度为x m,则另一边的长度为48003xm,由题意可得水池总造价f(x)=150×48003+1202×3x+2×3×48003x=240000+720x+1600x(x>0),则f(x)=720x+1600x240000≥720×2x ·1600x+240000=720×2×40+240000=297600,当且仅当x =1600x,即x =40时,f (x )有最小值297600,此时另一边的长度为48003x=40(m),因此,要使水池的总造价最低,水池底部的周长应为160m.名师讲坛·素养提升基本不等式的综合应用角度1基本不等式与其他知识交汇的最值问题例6设等差数列{a n }的公差为d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是__92__.[解析]a n =a 1+(n -1)d =n ,S n =n (1+n )2,所以S n +8a n=n (1+n )2+8n =+16n+2n ·16n+=92,当且仅当n =4时取等号,所以S n +8a n 的最小值是92.角度2求参数值或取值范围例7已知不等式(x +y 9对任意正实数x ,y 恒成立,则正实数a 的最小值为(B)A .2B .4C .6D .8[解析]已知不等式(x +y 9对任意正实数x ,y 恒成立,只要求(x +y 最小值大于或等于9,∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9,第11页共11页∴a ≥2或a ≤-4(舍去),∴a ≥4,即正实数a的最小值为4,故选B .名师点拨求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.〔变式训练4〕(1)(角度1)已知函数f (x )=ax 2+bx (a >0,b >0)的图象在点(1,f (1))处的切线的斜率为2,则8a +b ab的最小值是(B )A .10B .9C .8D .32(2)设x >0,y >0,不等式1x +1y +m x +y≥0恒成立,则实数m 的最小值是__-4__.[解析](1)由函数f (x )=ax 2+bx ,得f ′(x )=2ax +b ,由函数f (x )的图象在点(1,f (1))处的切线斜率为2,所以f ′(1)=2a +b =2,所以8a +b ab=1a +8b =a+b )+b a ++=12(10+8)=9,当且仅当b a =16a b ,即a =13,b =43时等号成立,所以8a +b ab 的最小值为9,故选B .(2)原问题等价于m x +y≥∵x >0,y >0,∴等价于m ≥x +y )的最大值.x +y )=-2-2-2=-4,当且仅当x =y 时取“=”,故m ≥-4.。
基本不等式知识点高考
基本不等式知识点高考在高考数学中,基本不等式是一个重要且常见的知识点。
掌握基本不等式对于解答不等式题型至关重要。
本文将介绍基本不等式的定义、性质以及与高考数学相关的应用。
一、基本不等式的定义和性质首先,我们来了解基本不等式的定义。
基本不等式是指对于任意实数 x,都有某种不等关系成立的基本不等式。
常见的基本不等式有:1. 二次函数的非负性当 a>0 时,对于二次函数 f(x) = ax^2 + bx + c,如果存在实数 x,使得f(x) ≥ 0,则称f(x) ≥ 0 为二次函数的非负性基本不等式。
2. 二次函数的正定性当 a>0 时,对于二次函数 f(x) = ax^2 + bx + c,如果存在实数 x,使得 f(x) > 0,则称 f(x) > 0 为二次函数的正定性基本不等式。
接下来,我们来讨论基本不等式的性质:1. 注意基本不等式的方向性在解不等式题目时,要始终注意基本不等式的方向性。
根据不等式的定义,只有把不等式的方向确定正确,我们才能得到正确的解。
2. 转化与分析在解不等式题目时,常常需要将不等式进行转化,然后根据不等式的性质进行分析。
例如,我们可以将含有绝对值的不等式转化成一个二次不等式,从而利用二次不等式的性质进行求解。
3. 合并和分离有时候,我们遇到的不等式可能是由多个基本不等式组合而成的。
在解决这类问题时,我们需要根据不等式的性质来进行合并或者分离,得到最终的解。
二、基本不等式的应用掌握基本不等式不仅仅对于解答不等式题型重要,还能够帮助我们更好地理解和应用数学知识。
以下是一些常见的与高考数学相关的应用:1. 解不等式方程在高考数学中,我们经常会遇到需要解不等式方程的题目。
这时,我们可以利用基本不等式的性质,将不等式方程转化成二次不等式,再通过求解二次不等式来得到最终的解。
2. 解优化问题优化问题是高考数学中常见的一个题型。
在解决这类问题时,我们可以通过利用基本不等式,将优化问题转化成一个不等式问题,然后利用不等式的性质来得到最优解。
知识讲解_基本不等式_基础
基本不等式编稿:张希勇 审稿:李霞【学习目标】1. 理解基本不等式的内容及其证明.2. 能应用基本不等式解决求最值、证明不等式、比较大小求取值范围等问题.【要点梳理】要点一、基本不等式1.对公式222a b ab +≥及2a b +≥. (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;(2)取等“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等”.2.由公式222a b ab +≥和2a b +≥ ①2b a a b+≥(,a b 同); ②2b a a b+≤-(,a b 异);③20,0)112a b a b a b +≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.a +b 2的证明 方法一:几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形.设直角三角形的两条直角边长为a 、b.这样,4个直角三角形的面积的和是2ab ,正方形ABCD 的面积为22a b +.由于4个直角三角形的面积小于正方形的面积,所以:222a b ab +≥.当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有222a b ab +=.得到结论:如果+,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等“=”)特别的,如果0a >,0b >,分别代替a 、b ,可得:如果0a >,0b >,则a b +≥a b =时取等“=”).通常我们把上式写作:如果0a >,0b >2a b +≤,(当且仅当a b =时取等“=”) 方法二:代数法∵2222()0a b ab a b +-=-≥,当a b ≠时,2()0a b ->;当a b =时,2()0a b -=.所以22()2a b ab +≥,(当且仅当a b =时取等“=”).要点诠释:特别的,如果0a >,0b >,分别代替a 、b ,可得:如果0a >,0b >,则a b +≥a b =时取等“=”).通常我们把上式写作:如果0a >,0b >2a b +≤,(当且仅当a b =时取等“=”).2a b +≤的几何意义 如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =. 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2,其中当且仅当点C 与圆心重合,即a b =时,等成立.要点诠释:1.在数学中,我们称2b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2.如果把2b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.2a b +≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等.① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值;③ 三取等:函数的解析式中,含变数的各项均相等,取得最值.要点诠释:1.两个不等式:222a b ab +≥与2a b +≥a ,b 都是实数,后者要求a ,b 都是正数.如22(3)(2)2(3)(2)-+-≥⨯-⨯-是成立的,而(3)(2)2-+-≥的.2.两个不等式:222a b ab +≥与2a b +≥都是带有等的不等式,对于“当且仅当……时,取“=”这句话的含义要有正确的理解.当a=b 取等,其含义是2a b a b +=⇒=;仅当a=b 取等,其含义是2a b a b +==.综合上述两条,a=b 是2a b +=的充要条件. 3.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.4.利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③各项能取得相等的值.5.基本不等式在解决实际问题中有广泛的应用,在应用时一般按以下步骤进行:①先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;②建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;③在定义域内,求出函数的最大或最小值;④写出正确答案.【典型例题】类型一:对公式222a b ab +≥及2a b +≥ 例1.下列结论正确的是( )A .当x >0且x ≠1时,1lg 2lg x x +≥ B .当x >02≥ C .当x ≥2时,1x x+的最小值为2 D .当0<x ≤2时,1x x-无最大值 【思路点拨】利用基本不等式求最值,要注意使用的条件“一正、二定、三相等”,三个条件缺一不可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考向二、基本不等式的实际应用
运货卡车以每小时 x 千米的速度匀速行驶 130 千米,按交通法规限制 50≤x≤100(单位:千米/时).假 设汽油的价格是每升 2 元,而汽车每小时耗 油2+3x620升,司机的工资是每小时 14 元.
(1)求这次行车总费用 y 关于 x 的表达式; (2)当 x 为何值时,这次行车的总费用最低,并求出 最低费用的值.
4.(2017·郑州质检)已知正数 x,y 满足 x2+2xy-3=0,则 2x +y 的最小值是________. 解析:由题意得y=3-2xx2, ∴2x+y=2x+3-2xx2=3x22+x 3=32x+1x≥3, 当且仅当x=y=1时, 等号成立. 答案:3
类型二: 和定求积的最值
1.设 0<x<32,则函数 y=4x(3-2x)的最大值为________. 解析:y=4x(3-2x)=2[2x(3-2x)]≤22x+23-2x2=92, 当且仅当2x=3-2x,即x=34时,等号成立. 又∵34∈0,32, ∴函数y=4x(3-2x)0<x<32的最大值为92.答案:92
正实数a的最小值为
()
A.2
B.4
C.6
D.8Βιβλιοθήκη 解析:(x+y)1x+ay
=1+a+
y x
+
ax y
≥1+a+2
a =(
a+
1)2(x,y,a>0),当且仅当y= a x时取等号,所以(x+
y)·1x+ay 的最小值为( a +1)2,于是( a +1)2≥9恒成立.所 以a≥4,故选B. 答案:B
2.已知正数 x,y 满足 x+2 2xy≤λ(x+y)恒成立,则实数 λ 的 最小值为________. 解析:依题意得 x+2 2xy≤x+(x+2y)=2(x+y),即 x+x2+y2xy≤2(当且仅当 x=2y 时取等号),即x+x2+y2xy的 最大值为 2.又 λ≥x+x2+y2xy,因此有 λ≥2,即 λ 的最 小值为 2. 答案:2
[由题悟法] 求解含参数不等式的求解策略 (1)观察题目特点,利用基本不等式确定相关成立条件,从 而得参数的值或取值范围. (2)在处理含参数的不等式恒成立问题时,往往将已知不等 式看作关于参数的不等式,体现了主元与次元的转化.
[即时应用]
1.已知不等式(x+y) 1x+ay ≥9对任意的正实数x,y恒成立,则
2.基本不等式的两个变形:
(1)a2+2 b2≥a+2 b2≥ab(a,b∈R,当且
仅当 a=b 时取等号).
(2)
a2+b2 a+b 2 ≥2≥
ab
≥
2 1a+1b
(a>0,b>0,当且仅当 a=b 时取等号).
[易错与防范] 1.使用基本不等式求最值,“一正”“二定”“三相 等”三个条件缺一不可. 2.“当且仅当 a=b 时等号成立”的含义是“a=b”是 等号成立的充要条件,这一点至关重要,忽视它往往会导致 解题错误. 3.连续使用基本不等式求最值要求每次等号成立的条件 一致.
)
× (4)若 a>0,则 a3+a12的最小值为 2 a.(
)
2.若 a,b∈R,且 ab>0,则下列不等式中,恒成立
的是( )
A.a2+b2>2ab
B.a+b≥2 ab
C.1a+1b>
2 ab
D.ba+ab≥2
D [∵a2+b2-2ab=(a-b)2≥0,∴A 错误;对于 B,C, 当 a<0,b<0 时,明显错误.对于 D, ∵ab>0,∴ab+ba≥2 ba·ab=2.]
当且仅当 x = 360 x, 即 x=18 10,等号成立.8 分
故当 x=18 10千米/时,这次行车的总费用最低,最低费用的值为
26 10元.
12 分
[由题悟法] 解实际应用题的3个注意点 (1)设变量时一般要把求最大值或最小值的变量定义 为函数. (2)根据实际问题抽象出函数的解析式后,只需利用 基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题 有意义的自变量的取值范围)内求解.
2.已知函数f(x)=
x2+ax+11 x+1
(a∈R),若对于任意的x∈N*,
f(x)≥3恒成立,则a的取值范围是________.
解析:对任意 x∈N*,f(x)≥3,即x2+xa+x+1 11≥3 恒成立,即
a≥-x+8x+3.设 g(x)=x+8x,x∈N*,则 g(x)=x+8x≥4 2, 当 x=2 2时等号成立,又 g(2)=6,g(3)=137.∵g(2)>g(3), ∴g(x)min=137.∴-x+8x+3≤-83, ∴a≥-83,故 a 的取值范围是-83,+∞.答案:-83,+∞
已知x>0,y>0,则
相等缺一不可)
(1)如果xy是定值p,那么当且仅当x=y时,x+y有最小值是
_2___p_(简记:积定和最小).
(2)如果x+y是定值q,那么当且仅当x=y时,xy有最大值是 q2 _4__(简记:和定积最大).
补充公式完整的均值不等式
设a,b R ,则 2 ab a b a2 b2
【考点分析】 考向一:利用基本不等式求最值
类型一: 积定求和的最值
1.(2016·安徽合肥二模)若 a,b 都是正数,则1+ba1+4ba的最小值为(
)
A.7
B.8
C.9
D.10
C [∵a,b 都是正数,∴1+ba1+4ba=5+ba+4ba≥5+2 ba·4ba=9, 当且仅当 b=2a>0 时取等号,故选 C.]
x=3,即 a=3,选 C.]
变式:
(1).已知x 1,求f (x) x2 x 1的最小值. x 1
(2)当x
0时,f
(x)
x
2x 2
的最大值(). 1
A. 1 2
B.1
C.2
D.4
3.函数 f(x)=x+1x的值域为____________________. 答案:(-∞,-2]∪[2,+∞)
[解] (1)由题意得,
100+0.5x+2+4+6+…+2x
y=
x
,
即 y=x+1x00+1.5(x∈N*).5 分
(2)由基本不等式得:
y=x+1x00+1.5≥2 x·1x00+1.5=21.5,8 分 当且仅当 x=1x00,即 x=10 时取等号.
故该企业 10 年后需要重新更换新的污水处理设备. 12 分
高考数学复习考点知识专题讲解讲义
第10讲 基本不等 式
【知识梳理】
1.基本不等式 ab≤a+2 b
(1)基本不等式成立的条件:
.
(2)等号成立的条件:当且仅当 .
a>0,b>0
a=b
2.几个重要的不等式 (1)a2+b2≥ 2ab (a,b∈R);(重要不等式) (2)ba+ab≥ 2 (a,b 同号); (3)ab≤a+2 b2(a,b∈R);(基本不等式的变形) (4)a+2 b2≤a2+2 b2(a,b∈R).
类型三: 和定求和的最值
1、已知 a>0,b>0,1a+1b=4,则 a+b 的最小值为________.
解析:由1a+1b=4,得41a+41b=1.
∴a+b=
41a+41b
(a+b)=
1 2
+
b 4a
+
a 4b
≥
1 2
+2
1.当且仅当a=b=12时取等号.
答案:1
ba 4a·4b
=
2、已知正数 x,y 满足 x+2y=2,则x+xy8y的最小值 为__________.
类型四:利用基本不等式解决参数问题
[变式训练 1] (1)(2016·湖北七市 4 月联考)已知 a>0,b>0,且 2a+b
=1,若不等式2a+1b≥m 恒成立,则 m 的最大值等于( )
A.10
B.9
C.8
D.7
B 解析∵a2+b1=22aa+b+2a+ b b=4+2ab+2ba+1 =5+2ba+ba≥5+2×2 ba×ab=9,当且仅当 a=b=31时取等号.又2a+1b≥m,∴m≤9,即 m 的最大值等于 9,故选 B.
[解] (1)设所用时间为 t=1x30(h),
y=13x0×2×2+3x620+14×1x30,x∈[50,100].
2分
所以这次行车总费用 y 关于 x 的表达式是
130×18 2×130
y=
x
+
360
x,x∈50,100.
(或 y=2 3x40+1138x,x∈50,100).
5分
(2)y=130× x 18+2×361030x≥26 10, 130×18 2×130
11
2
2
ab
调和平均值 几何平均值 算数平均值 平方平均值
【概念辨析】
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
× (1)函数 y=x+1x的最小值是 2.(
)
× (2)函数 f(x)=cos x+co4s x,x∈0,π2的最小值等于 4.(
)
× (3)x>0,y>0 是xy+xy≥2 的充要条件.(
解析:由已知得x+22y=1. 则x+xy8y=1y+x8=1y+8xx+22y =1210+xy+1x6y≥12(10+2 16)=9, 当且仅当 x=43,y=13时取等号.]
3、(2016·湖南雅礼中学一模)已知实数 m,n 满足 m·n>0, m+n=-1,则m1 +n1的最大值为__________.
[变式训练 3] 某化工企业 2016 年年底投入 100 万元,购入一套污水处理设 备.该设备每年的运转费用是 0.5 万元,此外每年都要花费一定的维护费, 第一年的维护费为 2 万元,由于设备老化,以后每年的维护费都比上一年增 加 2 万元.设该企业使用该设备 x 年的年平均污水处理费用为 y(单位:万元). (1)用 x 表示 y; (2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设 备.则该企业几年后需要重新更换新的污水处理设备.