实验二 离散信道及其容量
实验二 计算信道容量

PXi[i] = ((PXi[i] * a[i]) / sum);
}
n ++;
}
}while(cap_max-cap_result>= e);
printf("\n\n迭代次数为:%d\n" ,n);
for(i=0;i<X_num;i++)
{
printf("最佳信源概率:%f\n" ,PXi[i]);
}
/**************************************************************************
函数名:double Calculate_cap_result(double PXi[],double a[])
功能:计算并输出迭代法所需的参数cap_result
double Calculate_cap_max(double a[])
{
int i;
double max_a = a[0];
for(i=0;i<X_num;i++)
{
if(a[i] > max_a)
{
max_a = a[i];
}
}
printf("较大值=%f",log(max_a));
return log(max_a);
for(i=0;i<X_num;i++)
{
for(j=0;j<Y_num;j++)
{
printf("P[%d][%d]=",i,j);
scanf("%lf",&P[i][j]);
5-2 离散信道的信道容量

1
离散信道的信道容量
一、离散信道容量的定义 二、信道模型 三、离散信道容量的表达式
2
离散信道的信道容量
一、离散信道容量的定义
定义1: C- 每个符号能够传输的平均信息量最大值
定义2: Ct -单位时间(秒)内能够传输的平均信息量最大值
两者之间可以互换:已知信道每秒能够传输的符号数
i =1
j=1
i =1
n
∑ H ( x ) = − P ( x i ) log 2 P ( x i ) i=1
-每个发送符号xi的平均信息量,称为信源的熵
m
n
∑ ∑ H( x / y) = − P( y j ) P( xi / y j )log2 P( xi / y j )
j =1
i =1
-接收yj符号已知后,发送符号xi的平均信息量
0
P(0/0) = 127/128
0
发 送 端 P(0/1) = 1/128
接
收
P(1/0) = 1/128
端
P(1/1) = 127/128
1
1
对称道模型
离散信道的信道容量
信源的平均信息量(熵)
∑ H
(x)
=
−
n i=1
P ( x i ) log
2
P ( xi
)
=
−
⎡ ⎢⎣
1 2
log
2
1 2
离散信道的信道容量
③ 无噪声信道 信道模型
发 x1
送 端
x2
x。 3
。
P(xi) 。 xn
P(y1/x1) P(yn/xn)
离散信道及其信道容量

信道的任务是以信号方式传输信息和存储信息。 研究信道中能够传送或存储的最大信息量,即信道容量。
2.1
信道的数学模型和分类
干扰源
信源
编码器
调制器
物理信道 实际信道
解调器
译码器
信宿
编码信道
等效信道
图2.1.1 数字通信系统的一般模型
一、信道的分类
根据载荷消息的媒体不同
邮递信道
C max { I ( X ;Y )}
解:X:{0,1} Y:{0,1,2} 此时,r =2,s =3, 传递矩阵为:
0 0 1 2 1
1- p
q
1
p 1 p 0 0 1 q q
符号“2”表示接收到了“0”、“1”以外的特殊符 号
• 一般离散单符号信道的传递概率可用矩阵形式表示,即 b1 b2 … bs
a1 P(b1|a1) P(b2|a1) … P(bs|a1) a2 P(b1|a2) P(b2|a2) … P(bs|a2) … …. … …
R = I(X;Y) = H(X) – H(X|Y) (比特/符号)
• 信道中每秒平均传输的信息量----信息传输速率Rt (设传递一个符号用时为t).
Rt = R/t = I(X;Y)/t = H(X)/t – H(X|Y)/t (比特/秒)
一、 信道容量的定义
I ( X ; Y ) I (Y ; X ) P( xy ) log
a1 a2 b1 b2
X
.
. ar
P(bj/ai)
.
. bs
Y
[例1] 二元对称信道,[BSC,Binary Symmetrical Channel] 解:此时,X:{0,1} ; Y:{0,1} ; r=s=2,a1=b1=0;a2=b2=1。 传递概率: 1-p
离散信道及其信道容量

(2)有反馈信道
第一节 信道的数学模型及分类
根据信道参数与时间的关系: (1)固定参数信道 (2)时变参数信道 根据输入输出信号的特点
(1)离散信道
(2)连续信道
(3)半离散半连续信道:
(4)波形信道 以下我们只研究无反馈、固定参数的单用户离散信道。
第一节 信道的数学模型及分类
2、离散信道的数学模型
…
…
…
…
… xn p(y1/xn) p(y2/xn)
ym
p(ym/x1) p(ym/x2)
… p(ym/xn)
第一节 信道的数学模型及分类
[例1] 二元对称信道(BSC) X={0,1}; Y={0,1}; p(0/0)=p(1/1)=1-p; p(0/1)=p(1/0)=p;
0
1
[P]=
0
1-p
y021由此可见一般单符号离散信道的传递概率可以用矩阵表示第一节信道的数学模型及分类第一节信道的数学模型及分类为了表述简便可以写成第一节信道的数学模型及分类1联合概率其中称为前向概率描述信道的噪声特性称为后向概率有时也把称为先验概率把称为后验概率表明输出端收到任一符号必定是输入端某一符号输入所致第二节平均互信息1信道疑义度这是收到后关于x的后验熵表示收到后关于输入符号的信息测度这个条件熵称为信道疑义度表示输出端在收到一个符号后对输入符号尚存的不确定性这是由信道干扰造成的如果没有干扰hxy0一般情括下hxy小于hx说明经过信道传输总能消除一些信源的不确定性从而获得一些信息
X
p
p
? H (Y) ? [ p log 1 ? p log 1 ] ? H (Y) ? H ( p)
p
p
第三节 平均互信息的特性 而: P( y ? 0) ? ? p ? ? p P ( y ? 1 ) ? ? p ? ? p
信息论—离散信道及其信道容量

I ( X ; Y | Z ) H ( X | Z ) H ( X | YZ )
I ( X ; YZ ) I ( X ; Y ) I ( X ; Z | Y ) I ( X ; Z ) I ( X ;Y | Z )
例题
四个等概率分布的消息 M1 , M 2 , M 3 , M 4 被送入一个二 元无记忆对称信道进行传送。通过编码使
已知y,z的条件下,总共获得关于x的互信息
P( x | yz) P( x | y ) P( x | yz) I ( x; yz) log log log P( x) P( x) P( x | y ) I ( x; y ) I ( x; z | y)
同样
I ( x; yz) I ( x; z ) I ( x; y | z )
信道的分类
用户数 输入与输出的 关系
与时间的关系 输入、输出信 号的特点
两端(单用户)信道 多端(多用户)信道 无反馈信道 有反馈信道 固定参数信道 时变参数信道
离散信道、连续信道、半离散 或半连续信道、波形信道
离散信道的数学模型
X
X ( X1 ,, X i , X N )
信道
P( y | x )
r s
s
s
r
平均互信息
I ( X ;Y ) H ( X ) H ( X | Y )
1 1 I ( X ; Y ) P( x) log P( xy) log P( x) X ,Y P( x | y ) X P( y | x) P( xy) log P( y ) X ,Y
用矩阵来表示
0 1 0 1 p p 1 p 1 p
信息论基础第3章离散信道及其信道容量

《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配
信息论离散信道及其容量

p(x 1, y 0) p(x 1) p( y 0 | x 1) p p(x 1, y 1) p(x 1) p( y 1| x 1) p
p(Y 0) p(0, 0) p(1, 0) p (1 ) p p p
p(Y 1) p(0,1) p(1,1) p (1 ) p p p
pXY (0?) pY (?) pXY (1?) pY (?)
pXY pY
(01) (1)
1
pXY pY
(11) (1)
0
1 3 2 3
0 P( X ,Y )PY
1
由此可得
H ( X ) 1 log 1 3 log 3 0.811 4 44 4
H (Y ) 1 log 1 3 log 3 1 log 1 1.406 8 88 82 2
第4章 离散信道及其 容量
通信系统模型
信息论的研究基础是通信系统模型。
信源
编码器
信道
消息
信号
干扰
干扰器
译码器
信宿
消息
4.1 信道的数学模型及其分类
信道是信息传输的通道。
干扰
X
信道
Y
由于干扰的存在,信道的输出Y与信道的输入X不
完全相同,用条件概率p(y|x)描述。
而输入和输出又有各自的统计特性,分别用 表示。
离散信道中常用的几种概率
先验概率:p(ai),PX=[p(a1) p(a2) … p(ar)]
联合概率:p(aibj)=p(ai)p(bj|ai)=p(bj)p(bj|ai)
p11 p12 L p1s
信道传递概率:p(bj|ai)=pij,P
p21 M
p22 M
L M
p2s
信息论基础离散信道及其信道容量

通信与信息基础教学部
30
信息论课件
平均互信息
互信息:信道输出端接收到某消息y(或
某消息序列y)后获得关于输入端某消息x (或某消息序列x)的信息量
I (x; y) log P(x / y) log P(xy) log P( y / x)
通信与信息基础教学部
16
信息论课件
几个重要的单符号离散信道
对称离散信道:信道矩阵中的行元素集 合相同,列元素集合也相同的信道,称 为对称信道。
通信与信息基础教学部
17
信息论课件
例:二元对称信道Binary Symmetric Channel (BSC)
1 p
0
0
p
p
1 1 p 1
通信与信息基础教学部
既不作“1”,也不作“0”
通信与信息基础教学部
21
信息论课件
例:二元删除信道Binary Erasure Channel (BEC)
p
0
0
1 p
1 q
e
1
q
1
通信与信息基础教学部
22
信息论课件
单符号离散信道的一些概率关系
对于信道[ X, P, Y ],
先
后
输入和输出符号的联合概率
验 概
验 概
通信与信息基础教学部
4
信道分类
信息论课件
根据信道的用户多少:
两端(单用户)信道 ■ 多端(多用户)信道
根据信道输入端和输出端的关联:
无反馈信道
■ 反馈信道
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 离散信道及其容量
一、[实验目的]
1、理解离散信道容量的内涵;
2、掌握求二元对称信道(BSC )互信息量和容量的设计方法;
3、掌握二元扩展信道的设计方法并会求其平均互信息量。
二、[实验环境]
windows XP,MATLAB 7
三、[实验原理]
若某信道输入的是N 维序列x ,其概率分布为q(x ),输出是N 维序列y ,则平均互信息量记为I(X ;Y ),该信道的信道容量C 定义为()
max (X;Y)q x C I =。
四、[实验内容]
1、给定BSC 信道,信源概率空间为
信道矩阵 0.990.010.010.99P ⎡⎤=⎢⎥⎣⎦
求该信道的I(X;Y)和容量,画出I(X;Y)和ω、C 和p 的关系曲线。
2 、编写一M 脚本文件t03.m ,实现如下功能:
在任意输入一信道矩阵P 后,能够判断是否离散对称信道,若是,求出信道容量C 。
3、已知X=(0,1,2);Y=(0,1,2,3),信源概率空间和信道矩阵分别为
求: 平均互信息量;
4、 对题(1)求其二次扩展信道的平均互信息I(X;Y)。
五、[实验过程
] X
P 0 1
0.6 0.4
= X
Px 0 1 2 0.3 0.5 0.2
= 0.1 0.3 0 0.6 0.3 0.5 0.2 0 0.1 0.7 0.1 0.1
P=
每个实验项目包括:1)设计思路2)实验中出现的问题及解决方法;
1)设计思路
1、信道容量( )
max (X; Y)
q x
C = I
,因此要求给定信道的信道容量,只要知道该信道
的最大互信息量,即求信道容量就是求信道互信息量的过程。
程序代码:
clear all,clc;
w=0.6;
w1=1-w;
p=0.01;
X
P
01
= 0.6 0.4
p1=1-p;
save data1 p p1;
I_XY=(w*p1+w1*p)*log2(1/(w*p1+w1*p))+(w*p+w1*p1)*log2(1/(w*p+w1*p1))- ...
(p*log2(1/p)+p1*log2(1/p1));
C=1-(p*log2(1/p)+p1*log2(1/p1));
fprintf('互信息量:%6.3f\n信道容量:%6.3f',I_XY,C);
p=eps:0.001:1-eps;
p1=1-p;
C=1-(p.*log2(1./p)+p1.*log2(1./p1));
subplot(1,2,1),plot(p,C),xlabel('p'),ylabel('C');
load data1;
w=eps:0.001:1-eps;
w1=1-w;
I_XY=(w.*p1+w1.*p).*log2(1./(w.*p1+w1.*p))+(w.*p+w1.*p1).*log2(1./(w.*p+w1.*p1))- . .
.(p.*log2(1./p)+p1.*log2(1./p1));
subplot(1,2,2),plot(w,I_XY)
xlabel('w'),ylabel('I_XY');
实验结果:
互信息量:0.891
信道容量:0.919
I(X;Y)和ω、C和p的关系曲线图:
0 0.5 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
p
C
0 0.5 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
w
I X Y
2、离散对称信道:当离散准对称信道划分的子集只有一个时,信道关于输入和输出对称。
离散准对称信道:若一个离散无记忆信道的信道矩阵中,按照信道的输出集Y 可以将信道划分成n个子集,每个子矩阵中的每一行都是其他行同一组元素的不同排列。
实验代码:
clc;clear;
P=input('输入信道转移概率矩阵:');
[r,c]=size(P);
if sum(P,2)-1~=zeros(1,r)';
error('输入的信道矩阵不合法!');%矩阵行和一定要为1
end
l=1;
Sum=0;
for j=2:c
for i=1:r%i是行变量
for k=1:r
if P(k,j)==P(i,1)
Sum=Sum+1;
break;
end
end
end
end
if Sum==r*(c-1)
fprintf('是离散输出对称信道!\n',j);
else fprintf('不是对称信道!');
end
实验结果:
输入信道转移概率矩阵:[0.01 0.99;0.99 0.01]
是离散输出对称信道!
输入信道转移概率矩阵:[0.4 0.6;0.3 0.7]
不是对称信道!
3、二次扩展信道的互信息量I(X;Y)=H(Y)-H(Y|X).
实验代码:
clc,clear;
p=0.01;
P_X1=[0.6,0.4];
p1=1-p;
X2=[0,0;0,1;1,0;1,1];%二次扩展输入符号阵
Y2=X2;%二次扩展输出符号
P_X2=[P_X1(1)^2,P_X1(1)*P_X1(2),P_X1(2)*P_X1(1),P_X1(2)^2];
%求二次扩展后信道矩阵N
N=zeros(4);
for i=1:4
for j=1:4
l=length(find(xor(X2(i,:),Y2(j,:))==0));%比较得正确传递元素个数
N(i,j)=p1^l*p^(2-l);
end
end
%下面求I
P_Y2=P_X2*N;
P_XY2=[P_X2(1)*N(1,:);P_X2(2)*N(2,:);P_X2(3)*N(3,:);P_X2(4)*N(4,:)];%联合分布H_Y2=sum(-P_Y2.*log2(P_Y2));
H_Y_X2=sum(sum(-P_XY2.*log2(N)));
I_XY2=H_Y2-H_Y_X2;
fprintf('2次扩展信道的平均互信息为:%5.3f',I_XY2);
实验结果:
2次扩展信道的平均互信息为:1.783
2)实验中出现的问题及解决方法;
1、信道容量与互信息量有关,而互信息量又与信源熵相关,所以要求得信道容量就必须知道信道传递概率,然后根据公式一步一步计算。
2、对于判断离散对称信道,不需要弄清楚的是它的概念,根据定义来判断。
3、对于扩展信道,分有记忆的和无记忆的,在不确定的情况下计算扩展信源的熵,我们要根据定义来计算。
六、[实验总结]
通过本次实验,我对于信道的分类,各种信道的特点有了一定的认识和了解。
实验中涉及的主要是二元对称信道,而它的最佳分布是输入和输出均对称。
实验中最主要的部分还是关于信道容量的计算,此次实验,让我们验证了课
本上的定理,也让我们更好地理解和掌握了课堂上所学的知识。
__。