第三章离散信道及其信道容量
合集下载
第三章离散信道及其信道容量

0
0 1
不是一一对应,无扰有信息损失
1
(2)有扰信道 例3:
a1
0.9
X
0.1
a2
0.2 0.8
b1
Y
b2
0.9 0.1 [P] 0.2 0.8 有扰有信息损失,干扰严重
例4:
a1
X
a2
1/2 1/2 1/2 1/2
b1
Y
b2
1/ 2 1 / 2 [P] 1/ 2 1 / 2
P yi xi P xi yi
即E{log x} ≤log{E(X)}
即E{log x} ≤log{E(X)}
I(X
;Y
)
X
Y
P(x,
y)
log
P( x)P( y) P(x, y)
log
XY
P(x,
y)
P( x)P( y) P(x, y)
log1
0
∴ I(X;Y) ≥ 0
∵ logx为∩ 型凸函数,只有当且仅当 p(x.y)=P(x)P(y),即x和Y统计独立时I(X;Y)=0
根据输入和输出信号的特点,信道可以分为: (1)离散信道。指输入和输出的随机变量的取值都 有是离散的信道。 (2)连续信道。指输入和输出的随机变量的取值都 是连续的信道。 (3)半离散半连续信道。输入变量是离散型的但相 应的输出变量是连续的信道,或者相反。 (4)波形信道。信道的输入和输出都是一些时间上 连续的随机信号。即信道输入和输出的随机变量的 取值是连续的,并且还随时间连续变化。一般用随 机过程来描述其输入和输出。
p( x1 ) 4
a2 1 4
a3 1 4
a4
1
4
1 P 1
课件:第三章信道及其容量

第三章 信道及其容量
1
研究信道的目的是研究信道能传输的最大信息量, 即信道的最大传输能力。 1、如何描述在信道中传输的消息的信息量大小—— 平均互信息/信息传输率 2、信道的最大信息传输率是多少?——信道容量/ 传信能力
2
第三章 信道及其容量
3.1 信道的数学模型与分类 3.2 信道疑义度与平均互信息 3.3 离散无记忆的扩展信道 3.4 离散信道的信道容量 3.5 连续信道的信道容量 3.6 信源与信道的匹配 3.7 信道编码定理
效地折合成信道干扰,看成是由一个噪声源产生的,它将作用 于所传输的信号上。 a) 加性干扰:它是由外界原因产生的随机干扰,它与信道的
输入信号统计无关,因而信道的输出是输入和干扰的叠加。 【主要研究的干扰】 b) 乘性干扰:信道的输出信号可看成输入信号和某些随机参 量相乘的结果。
16
(6)根据信道有无记忆特性将信道分为: 无记忆信道 输出仅与当前输入有关,而与过去的输入和输 出无关。 有记忆信道 输出不仅与当前输入有关,而且与过去的输入 和输出有关。 本章的讨论基于无记忆、恒参、单用户离散信道,它是
|
x)
1 0
y f (x) y f (x)
其典型信道如下图所示:
22
(2)有干扰无记忆信道
该信道为实际常用信道,信道中存在干扰。 信道输入和输出符号之间不存在确定的对应关系,接收到Y后 不能完全消除对X的不确定性。信道输入和输出间的条件概率是一 般的概率分布。 信道任一时刻的输出符号只统计依赖于对应时刻的输入符号, 则这种信道称为无记忆信道,其条件概率满N 足
p(y | x) p(Y1, ,YN | X1, , XN )
条件概率p( y | x) 称为信道的传递概率或转移概率。 信道的数学模型可以用数学符号表示为:
1
研究信道的目的是研究信道能传输的最大信息量, 即信道的最大传输能力。 1、如何描述在信道中传输的消息的信息量大小—— 平均互信息/信息传输率 2、信道的最大信息传输率是多少?——信道容量/ 传信能力
2
第三章 信道及其容量
3.1 信道的数学模型与分类 3.2 信道疑义度与平均互信息 3.3 离散无记忆的扩展信道 3.4 离散信道的信道容量 3.5 连续信道的信道容量 3.6 信源与信道的匹配 3.7 信道编码定理
效地折合成信道干扰,看成是由一个噪声源产生的,它将作用 于所传输的信号上。 a) 加性干扰:它是由外界原因产生的随机干扰,它与信道的
输入信号统计无关,因而信道的输出是输入和干扰的叠加。 【主要研究的干扰】 b) 乘性干扰:信道的输出信号可看成输入信号和某些随机参 量相乘的结果。
16
(6)根据信道有无记忆特性将信道分为: 无记忆信道 输出仅与当前输入有关,而与过去的输入和输 出无关。 有记忆信道 输出不仅与当前输入有关,而且与过去的输入 和输出有关。 本章的讨论基于无记忆、恒参、单用户离散信道,它是
|
x)
1 0
y f (x) y f (x)
其典型信道如下图所示:
22
(2)有干扰无记忆信道
该信道为实际常用信道,信道中存在干扰。 信道输入和输出符号之间不存在确定的对应关系,接收到Y后 不能完全消除对X的不确定性。信道输入和输出间的条件概率是一 般的概率分布。 信道任一时刻的输出符号只统计依赖于对应时刻的输入符号, 则这种信道称为无记忆信道,其条件概率满N 足
p(y | x) p(Y1, ,YN | X1, , XN )
条件概率p( y | x) 称为信道的传递概率或转移概率。 信道的数学模型可以用数学符号表示为:
第3章 离散信道概述

求: 1. 联合概率: p(xi yj)= p(xi)p(yj| xi)= p(yj)p(xi | yj) i=1,2,…,r;j=1,2,…,s
16
2. 输出符号概率: p( y j ) p( xi y j ) p( xi ) p( y j | xi )
i 1 i 1
1.离散单符号信道的数学模型 r r
问题:在什么条件下,通过信道的信息量最大,即
信道容量的问题。
3
信道的主要研究内容: 信道的分类和建模(信道的统计特性描述) √
信道传输信息的能力(信道容量) √
在有噪信道中能否实现可靠传输?怎样实现可靠 传输?
4
信道分类
按输入/输出信号的幅度和时间特性划分:
幅度 时间
信道分类名称
离散 离散 离散信道/数字信道(例如:数字电话) 连续 离散 连续信道 连续 连续 模拟信道/波形信道(例如:普通电话) 离散 连续 (理论和实用价值均很小)
5
信道分类
根据输入、输出信号的时间特性和取值特性,可以 将信号划分为:
◦
◦
离散信道:指输入输出随机变量均为离散的信道 连续信道:指输入输出随机变量均为离散的信道
Y y2
ys
i 1, 2,..., r ; j 1, 2,..., s
满足: (1)0≤ p(yj|xi) ≤ 1 (i=1,2,…,r;j=1,2,…,s) (2)
p( y
j 1
s
j
| xi ) 1
(i=1,2,…,r)
11
1.离散单符号信道的数学模型
信道传递概率可以用信道矩阵来表示:
PY PX PY | X
17
1.离散单符号信道的数学模型
16
2. 输出符号概率: p( y j ) p( xi y j ) p( xi ) p( y j | xi )
i 1 i 1
1.离散单符号信道的数学模型 r r
问题:在什么条件下,通过信道的信息量最大,即
信道容量的问题。
3
信道的主要研究内容: 信道的分类和建模(信道的统计特性描述) √
信道传输信息的能力(信道容量) √
在有噪信道中能否实现可靠传输?怎样实现可靠 传输?
4
信道分类
按输入/输出信号的幅度和时间特性划分:
幅度 时间
信道分类名称
离散 离散 离散信道/数字信道(例如:数字电话) 连续 离散 连续信道 连续 连续 模拟信道/波形信道(例如:普通电话) 离散 连续 (理论和实用价值均很小)
5
信道分类
根据输入、输出信号的时间特性和取值特性,可以 将信号划分为:
◦
◦
离散信道:指输入输出随机变量均为离散的信道 连续信道:指输入输出随机变量均为离散的信道
Y y2
ys
i 1, 2,..., r ; j 1, 2,..., s
满足: (1)0≤ p(yj|xi) ≤ 1 (i=1,2,…,r;j=1,2,…,s) (2)
p( y
j 1
s
j
| xi ) 1
(i=1,2,…,r)
11
1.离散单符号信道的数学模型
信道传递概率可以用信道矩阵来表示:
PY PX PY | X
17
1.离散单符号信道的数学模型
第三章 信道模型和信道容量

这是可知疑义度H(X/Y)=0,平均交互信息量达到最大值 I(X,Y)=H(X),C=logr。从平均意义上讲,这种信道可以把信源 的信息全部传递道信宿。这种每列只有一个非0元素的信道也 是一种无噪声信道,称为无噪声信道。
确定信道
这类信道的转移概率等于1或者等于0, 每一列的元素可有一个或多个1,可知其 噪声熵H(Y/X)=0,此时的平均交互信息 量达到最大值。
离散信道
X
P(Y/X)
Y
离散信道分类: 无干扰信道 有干扰无记忆信道 有干扰有记忆信道
离散信道三种表达方式
概率空间描述 X={a1,a2,……ar} P(Y/X)={p(bj/ai)}
j=1,2,……s) Y={b1,b2,……bs} 0≤p(bj/ai)≤1
(i=1,2,……r;
转移矩阵描述
信道组合
串联信道 并联信道
4.4 时间离散的无记忆连续 信道
可加噪声信道
P(y|x)=p(y-x)=p(z)
Hc (Y | X ) Hc (Z ) I (X ;Y ) Hc (Y ) Hc (Z )
可加噪声信道
高斯噪声信道
I
(X
;Y
)
H
(Y
)
Hc
(X
)
1 2
log(1
2 x 2 z
)
例已知一个二元信源连接一个二元信道, 如图给出。X={x1,x2}, [p(xi)]={1/2,1/2}
求I(X;Y),H(X,Y),H(X/Y),和H(Y/X)。
信道容量
C max R max I (X ;Y )bit / 符号
PX
PX
1
Ct
max PX
Rt
信息论-第3章+信道的数学数学模型及分类

给定信源概率分布 P( x)
信道传递概率不同,平均互信息量不同 一定存在一种信道,使平均互信息量最小(0)
第3章 离散信道 及其信息容量
3.1 信道的数学模型及分类 3.2 平均互信息及平均条件互信息 3.3 平均互信息的特性
3.4 信道容量及其一般计算方法 3.5 离散无记忆扩展信道及其信道容量 3.6 独立并联信道及其信道容量 3.7 串联信道的互信息和数据处理定理 3.8 信源与信道的匹配
单用户(两端)信道
一个输入端、一个输出端 必须是单向通信 例:对讲机
多用户(多端)信道
输入输出至少有一端有两个以上用户 可以是双向通信 例:计算机网络
3.1.1 信道的分类 —— 按输入输出的关联分
无反馈信道
输出端无信号反馈到输入端 例:无线电广播
反馈信道
3.4.1 离散无噪信道的信道容量 —— 无损(有噪)信道
H(X)
H(X Y):损失熵
信道
I ( X ;Y )
H (Y )
H(Y X ) :噪声熵
H (X Y ) 0 ,H (YX ) 0
I(X ;Y ) H (X ) H ( Y )
C m { I ( X a ;Y )x } m { H ( X a ) x } lo r g
传递矩阵:
b1
b2
bs
a1 P(b1 a1) P(b2 a1) P(bs a1)
a2 P(b1 a2) P(b2 a2) P(bs a2)
ar P(b1 ar ) P(b2 ar ) P(bs ar )
3.2.1 信道疑义度 —— 先验熵
信源
X
信道
信道传递概率不同,平均互信息量不同 一定存在一种信道,使平均互信息量最小(0)
第3章 离散信道 及其信息容量
3.1 信道的数学模型及分类 3.2 平均互信息及平均条件互信息 3.3 平均互信息的特性
3.4 信道容量及其一般计算方法 3.5 离散无记忆扩展信道及其信道容量 3.6 独立并联信道及其信道容量 3.7 串联信道的互信息和数据处理定理 3.8 信源与信道的匹配
单用户(两端)信道
一个输入端、一个输出端 必须是单向通信 例:对讲机
多用户(多端)信道
输入输出至少有一端有两个以上用户 可以是双向通信 例:计算机网络
3.1.1 信道的分类 —— 按输入输出的关联分
无反馈信道
输出端无信号反馈到输入端 例:无线电广播
反馈信道
3.4.1 离散无噪信道的信道容量 —— 无损(有噪)信道
H(X)
H(X Y):损失熵
信道
I ( X ;Y )
H (Y )
H(Y X ) :噪声熵
H (X Y ) 0 ,H (YX ) 0
I(X ;Y ) H (X ) H ( Y )
C m { I ( X a ;Y )x } m { H ( X a ) x } lo r g
传递矩阵:
b1
b2
bs
a1 P(b1 a1) P(b2 a1) P(bs a1)
a2 P(b1 a2) P(b2 a2) P(bs a2)
ar P(b1 ar ) P(b2 ar ) P(bs ar )
3.2.1 信道疑义度 —— 先验熵
信源
X
信道
信息论基础第3章离散信道及其信道容量

也就是说,通过信息处理后,一般只会增加信息的 损失,最多保持原来获得的信息,不可能比原来获得的 信息有所增加。一旦失掉了信息,用任何处理手段也不 可能再恢复丢失的信息,因此也称为信息不增性原理。
《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配
《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配
第3章信道容量

其信道容量
C max I ( X ;Y ) max H ( Y ) log m
p ( xi ) p ( xi )
达到此类信道的信道容量的概率分布是使信道输出分布为 等概分布的输入分布。
8
离散无噪信道(总结)
对于无噪信道,求信道容量C的问题,已经 从求I(X;Y)的极值问题退化为求H(Y)或H(X)的 极值问题。
H(X/Y)称为损失熵,即信道疑义度。表示信源符号通过有噪 信道传输后引起的信息量的损失。 因为H(X/Y)=H(X)-I(X;Y) 损失熵等于信源X所含有的信息量减去信道输出端接收到符号 集Y之后平均每个符号所获得的关于输入集X的信息量。 H(Y/X)称为噪声熵,反映了信道中噪声源的不确定性。 因为H(Y/X)=H(Y)-I(X;Y)
i 1 j 1 n n
p( x i ) H ni
i 1
n
H ni p( y j / x i ) log p( y j / x i ) 由 于 信 道 的 对 称 性 , 一 每行 都 是 同 一 集 合 诸素 元的 不 同 排 列 。
其信道容量
C max I ( X ;Y ) max H ( X ) log n
p ( xi ) p ( xi )
6
3.具有归并性能的无噪信道(确定信道)
确定信道的一个输出对应着多个 互不相交的输入,如右图所示。
信道矩阵中每行中只有一非零元 素,即已知X后,Y不再有任何 不确定度。故噪声熵H(Y/X)=0
11
强对称信道的几个特性
强对称信道是对称信道的一个特例;
输入符号数与输出符号数相等; 信道中总的错误概率为p,对称地平均分配给 n-1个输出符号,n为输入符号的个数; 均匀信道中不仅各行之和为1,而且各列之和也 为1。 一般信道各列之和不一定等于1
第三章离散信道及其信道容量

p(ym/x1)
p(ym/x2) … p(ym/xn)
第一节 信道的数学模型及分类 为了表述简便,可以写成 P(bj / ai ) pij
p11 p P 21 ... pr1 p12 ... p22 ... pr 2 ... p1s p2 s ... prs
i 1 r
P(aibj ) P(ai )P(bj / ai ) P(bj )P(ai / bj )
(3)后验概率
P(ai / b j )
P(aib j ) P(b j )
P(a / b ) 1
i 1 i j
r
表明输出端收到任一符号,必定是输入端某一符号 输入所致
第二节 平均互信息
第三节 平均互信息的特性
1、平均互信息的非负性 I(X;Y)>=0 该性质表明,通过一个信道总能传递一些信息,最 差的条件下,输入输出完全独立,不传递任何信息,互 信息等于0,但决不会失去已知的信息。
2、平均互信息的极值性
I(X;Y)<=H(X) 一般来说,信到疑义度总是大于0,所以互信息总是 小于信源的熵,只有当信道是无损信道时,信道疑义度 等于0,互信息等于信源的熵。
C max{I ( X , Y )} max{H ( X ) H ( X / Y )}
P( X ) P( X )
信道容量与与信源无关,它是信道的特征参数,反 应的是信道的最大的信息传输能力。 对于二元对称信道,由图可以看出信道容量等于 1-H(P)
第四节 信道容量及其一般计算方法
1、离散无噪信道的信道容量 (1)具有一一对应关系的无噪声信道 x1 x2 x3 I(X;Y)=H(X)=H(Y) y1 y2 y3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扩 展 两 次: X ( X 1 , X 2 ), Y (Y1 , Y2 )
Y : 1 (0,0), 2 (0,1), 3 (1,0), 4 (1,1)
0.64 0.16 PY X 0.16 0.04
X : a1 (0,0),a 2 (0,1), a 3 (1,0), a4 (1,1)
离散信道模型如图:
X(t) 信道 干扰源 N(t) Y(t)
1.基本信道(最简单的信道) 发端 X:{a1,a2,…,aq} 收端 Y:{b1,b2,…,bm} (m不一定等于q) 信道用一信道矩阵来描述:
b1 p a 1 p b1 a 2 [ p] b p 1 aq b2 bm p p a a 1 1 b b p 2 a p m a 2 2 b b p 2 p m aq aq
根据输入和输出信号的特点,信道可以分为: (1)离散信道。指输入和输出的随机变量的取值都 有是离散的信道。 (2)连续信道。指输入和输出的随机变量的取值都 是连续的信道。 (3)半离散半连续信道。输入变量是离散型的但相 应的输出变量是连续的信道,或者相反。 (4)波形信道。信道的输入和输出都是一些时间上 连续的随机信号。即信道输入和输出的随机变量的 取值是连续的,并且还随时间连续变化。一般用随 机过程来描述其输入和输出。
0.16 0.64 0.04 0.16 0.16 0.04 0.64 0.16 0.04 0.16 0.16 0.64
有扰有信息损失的信道
(2)考虑到信道对前后码元的影响
a. 无记忆信道
pY
Y1 , Y2 , YN p X , X , X X N 1 2 Yi p X i i 1
有扰无信息损失
2.扩展信道(延长信道) 一般离散信道输入和输出却是一系列时间(或空间) 离散的随机变量,即随机序列。其信道模型如下:
X ( X1 , X 2 ,, X N )
信 道
Y (Y1 ,Y2 ,,YN )
Y1 , Y2 ,YN Y P P X , X , X X N 1 2
N
p
Y1
X1
p
Y2
p Y N X2 X N
信道转移矩阵
按有无噪声来分类: (1)无干扰(无噪声)信道 例1 X={a1,a2,a3,a4}
1 0 0 0 1 0 [P] 0 0 1 0 0 0
0 0 0 1
这为收端与发端一一对应的情况。(无扰无损)
例2:
X Y
无扰有损信道
1 1 [P] 0 0
1 1 P a 0 0 0 0 1 1
无干扰有信息损失。 ☆☆ ☆无扰不等于无损!!!
b、有扰信道 例3:基本信道 X={a1=0,a2=1} X={b1=0,b2=1}
0.8 0.2 P 0.2 0.8
0 0 不是一一对应,无扰有信息损失 1 1
(2)有扰信道 例3:
a1
X
0.9 0.1 0.2 0.8
b1
Y
a2
b2
0.9 0.1 [P] 有扰有信息损失,干扰严重 0.2 0.8
例4:
a1
X
1/2
1/2
1/2 1/2
b1
Y
a2
b2
yi P xi xi P y i
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
无干扰无信息损失。
例2 :
X X1 , X 2 , X 3
Y 1 0, 2 1
Y P X
X a1 (0,0,0), a 2 (0,1,1), a3 (1,0,1), a4 (1,1,0)
第三章 离散信道及其信道容量
主讲:易波老师
3.1 离散信道的统计描述及分类
离散信道的统计描述及分类 信道的输入和输出之间一般不是确定的函数关系, 而是统计依赖的关系。只要知道信道的输入信号、 输出信号,以及它们之间的统计依赖关系,那么信 道的全部特性就确定了。 根据信道的用户多少,可以分为: (1)两端(单用户)信道。它是只有一个输入端和一 个输出端的单向通信的信道。 (2)多端(多用户)信道。它是在输入端或输出端至 少有一端有二个以上的用户,并且还可以双向通信 的信道。
1 / 2 1 / 2 [P] 1 / 2 1 / 2
信息全部被信道损耗。
从信道有无损失的观点来看:有扰全损信道!
例 5:
a1 о
X
1/2 1/2 1/2 1/2
о о о о
1 2 0
b1 B1 b2
Y
b3 b4
0 1 2
a2 о
B2
0 1 2
1 2 [P] 0
(Y ) , Y 扩展离散信道 X , P X
(1)有无干扰的角度对信道分类 a、无扰信道 例1:X={a1=0,a2=1} Y={b1=0,b2=1} N=2,2维扩展
1 2 3 4 p a1 p a1 p a1 p a 1 pY X 1 2 3 4 p a p a p a p a 4 4 4 4