运动控制系统总结 ppt课件
合集下载
运动控制系统课件
![运动控制系统课件](https://img.taocdn.com/s3/m/18df4caddd3383c4bb4cd2c4.png)
在弱磁调速范围内,转速越高,磁通越 弱,容许输出转矩减小,而容许输出转矩 与转速的乘积则不变,即容许功率不变, 为“恒功率调速方式 。 恒功率调速方式” 恒功率调速方式
Shanghai university
两种调速方式: 两种调速方式:
U Te Φ P
ΦN
UN Te U P nN
变电压调速 两种调速方式 弱磁调速
Shanghai university
绪论
一。什么是运动控制系统?
运动控制系统(Motion Control System)也可称作电力 拖动控制系统(Control Systems of Electric Drive) 运动控制系统--通过对电动机电压、电流、频率等 输入电量的控制,来改变工作机械的转矩、速度、位 移等机械量,使各种工作机械按人们期望的要求运行, 以满足生产工艺及其他应用的需要。工业生产和科学 技术的发展对运动控制系统提出了日益复杂的要求, 同时也为研制和生产各类新型的控制装置提供了可能。
直流电机 速度控制 位置控制 直流调速系统* 直流调速系统 直流伺服系统 交流电机
(异步电机*、同步电机) 异步电机 、同步电机)
交流调速系统* 交流调速系统 交流伺服系统
直流调速系统--第一篇,运动控制( 直流调速系统--第一篇,运动控制(一) --第一篇 交流调速系统--第二篇,运动控制( 交流调速系统--第二篇,运动控制(二) --第二篇
Shanghai university
电力拖动自动控制系统
第1Biblioteka 篇直流拖动控制系统
Shanghai university
直流调速方法
根据直流电动机转速方程
U − IR n= KeΦ
式中 n — U— I — R— Φ— Ke— (1-1)
第六章 运动控制
![第六章 运动控制](https://img.taocdn.com/s3/m/607b05b9b0717fd5360cdc98.png)
第六章 运动控制
马萍
侯莹
第一节 神经系统对姿势与运动的控制 一、低位中枢对肌紧张的控制
第六章 运动控制
马萍
侯莹
第一节 神经系统对姿势与运动的控制 一、低位中枢对肌紧张的控制
第六章 运动控制
马萍
侯莹
第一节 神经系统对姿势与运动的控制 一、低位中枢对肌紧张的控制
第六章 运动控制
马萍
侯莹
第一节 神经系统对姿势与运动的控制 一、低位中枢对肌紧张的控制
第六章 运动控制
马萍
侯莹
第一节 神经系统对姿势与运动的控制
各级神经 大脑皮层 基底节 小脑 中脑 脑干 脑桥 主要功能 随意运动,高级脑功能 运动的设计及肌张力控制 运动中的平衡、协调、肌张 力 瘫痪类 康复治 型 疗方法
上运动 神经元 瘫痪
神经促 技术 动 通 元 为主 并 经 动 元
延髓
翻正反射(四肢支撑)、平 衡反应(双足支撑) 上运 神经 或合 状态反射,翻正反射 脑神 下运 神经 咽喉、舌肌运动,内脏运动 瘫痪
第六章 运动控制
马萍
侯莹
第六章引言:运动控制理论 运动模式化理论
3.模式化运动:运动形式固定、有节奏和连 续性运动、主观意识控制运动开始与结束 由中枢模式调控器(central pattern generator,CPG)调控。 除了CPG机制外,模式化运动已知与锥体外 系和小脑系统的机能相关,出现下意识的 横纹肌自动节律性收缩来“控制”。 步行是典型的模式化运动。
运动控制与障碍
第六章 运动控制
马萍
侯莹
第二节
二、步态控制 划圈步态
运动控制与障碍
第六章 运动控制
马萍
侯莹
【PPT】什么是运动控制系统.
![【PPT】什么是运动控制系统.](https://img.taocdn.com/s3/m/b7589f3e6bd97f192279e972.png)
从电能的转换及传递(传输)角度来看,把电力拖动称为电 力传动,把电力拖动控制系统称为电力传动控制系统。由于 这类系统的基本任务是通过控制和调节电动机的旋转速度或 转角来实现工作机械对速度或位移的要求,因此把电力拖动 控制系统又称为运动控制系统。 电力拖动控制系统按被控制量的不同分为两大类: 以电动机的转速为被控制量的系统叫做调速系统; 以工作机械的角位移或直线位移为被控制量的系统叫做位 置伺服系统,又叫做位置随动系统。 电力拖动控制系统还有其他多种类型,如张力控制系统, 多电动机同步控制系统等。虽然电力拖动控制系统种类很多, 但是,各种电力拖动控制系统都是通过控制电动机转速来工 作的,因此,调速系统是最基本的电力拖动控制系统。
0.3 运动控制系统的发展过程及应用
纵观运动控制的发展历程,交、直流两大电气传动并 存于各个工业领域,虽然各个时期科学技术的发展使它 们所处的地位、所起的作用不同,但它们始终是随着工 业技术的发展,特别是电力电子和微电子技术的发展, 在相互竞争、相互促进中,不断完善并发生着变化。由 于历史上最早出现的是直流电机,所以19世纪80年代以 前,直流电气传动是惟一的电气传动方式。直到19世纪 末,出现了交流电,且解决了三相制交流电的输送和分 配问题,并制成了经济适用的鼠笼异步电机,这就使交 流电气传动在工业中逐步地得到广泛的应用。由于大量 使用异步电机,严重影响到电网的功率因数,同步电机 的诞生和使用大大缓解了功率因数问题。在20世纪的大 部分时间里,基本形成直流调速、交流不调速的格局。
运动控制系统的共同特点(续)
(7)可以控制单台电机运行,也可多台协调控制运行, 只是控制方法略有不同而已。 (8)只要合理地选择控制方案,几乎可以适用于任何 传动场合。 由于上述特点,运动控制系统被广泛地用于相关行 业的各个实际需求中。据统计,我国电动机的装机容 量约为4亿多千瓦,其用电量占当年全国发电量的 60%一70%,如何合理、有效、经济地利用好这一 部分电能,提高劳动生产率,运动控制系统的设计者 们对此有着不可推卸的责任。
精品课件-运动控制系统(贺昱曜)-第9章
![精品课件-运动控制系统(贺昱曜)-第9章](https://img.taocdn.com/s3/m/dfd84da91eb91a37f0115c5a.png)
第9章 异步电动机串级调速系统
9.2 9.2.1
1. 理想空载转速 根据式(9-5), 当系统在理想空载状态下运行时 (Id=0), 转子直流回路的电压平衡方程式变成
K1s0Er0=K2U2Tcosβ 式中: s0为异步电动机在串级调速时对应于某一β角的理想
第9章 异步电动机串级调速系统
取K1=K2, 则
(9-4)
第9章 异步电动机串级调速系统
2. 在异步电机转子回路中附加交流电动势调速的关键就是 在转子侧串入一个可变频、 可变幅的电压。 对于只用于次 同步电动状态的情况来说, 比较方便的办法是将转子电压 先整流成直流电压, 然后再引入一个附加的直流电动势, 控制此直流附加电动势的幅值, 就可以调节异步电动机的 转速。 这样, 就把交流变压变频这一复杂问题转化为与频率 无关的直流变压问题, 对问题的分析与工程实现都方便多 了。
第9章 异步电动机串级调速系统
图9-3
(a) 大电机;
(b)
第9章 异步电动机串级调速系统
3. 整流器和逆变器容量的选择主要依据其电流与电压的 定额。 电流定额取决于异步电动机转子的额定电流IrN和 所拖动的负载, 电压定额则取决于异步电动机转子的额定 相电压(即转子开路电动势)Er0和系统的调速范围D。 为 了简便起见, 按理想空载状态来定义调速范围, 并认为 异步电动机的同步转速nsyn就是最大的理想空载转速, 于
子额定相电压值。
第9章 异步电动机串级调速系统
式(9-1)表明, 绕线型异步电动机工作时, 其转子电动 势Er 值与转差率s成正比。 此外, 转子频率f2也与s成正比, f2=sf1。 在转子短路情况下, 转子相电流Ir的表达式为
Ir
sEr0 Rr2 (sX r0 )2
高精度运动控制系统的关键技术及综合运用ppt课件
![高精度运动控制系统的关键技术及综合运用ppt课件](https://img.taocdn.com/s3/m/988b001976232f60ddccda38376baf1ffd4fe37a.png)
公司自主研制的0.1微米级精密运动平台及集成 控制系统是微电子制造和测试设备的核心部件,也 是生物医疗设备和精密制造业发展的关键部件,这 些产品在以上领域的应用可以极大提高我国的制造 水平,缩小和先进国家的差距。
3
公司简介(二)
此外公司还与秦皇岛海纳科技公司 合作研发了国内首款可驱动直线电机和 旋转电机的通用型伺服驱动器。该驱动 器具有高阶轨迹生成、支持用户编程等 高端功能,产品性能已达到国际先进水 平,可广泛用于高精密运动控制系统的 驱动和控制。
17
总结
❖ 运动控制技术是多学科复合技术:机械与电子、硬件和软件、算法 和分析
❖ 运动控制应用范围广:开环控制或闭环控制、半闭环或全闭环控制 ❖ 采用闭环控制首要考虑的是系统稳定性 ❖ 运动控制的性能不仅要考核时域响应,还要考核频域特性 ❖ 运动控制系统由控制平台、功率放大器/驱动器、执行机构/电机/
安装误差的影响
15
实例:编码器安装对信号质量及精度的影响(续) 信号质量对误差影响
16
运动控制系统的保护
软件级 •计算错误保护 •位置误差保护 •饱和保护 •震荡保护 •RMS功率保护 •电源故障保护 •急停保护
机械级 •机械限位装置 •机械刹车/卡紧装置 •机械防撞装置 •… …
硬件级 •限位传感器保护 •看门狗保护 •电源故障保护 •过功率保护 •驱动器短路保护 •驱动器过压/欠压保护 •驱动器过温保护 •驱动器RMS电流保护 •… …
➢ 光栅尺的精度
➢ 线距,或信号周期(每毫米线数,或每圈线)
➢ 光栅尺的热敏系数
➢ 差值技术
➢ 信号质量
➢ 频率响应与最高速度
旋转编码器最大速度 = [工作频率 (Hz) / (每转线数) ]*60 [RPM]
3
公司简介(二)
此外公司还与秦皇岛海纳科技公司 合作研发了国内首款可驱动直线电机和 旋转电机的通用型伺服驱动器。该驱动 器具有高阶轨迹生成、支持用户编程等 高端功能,产品性能已达到国际先进水 平,可广泛用于高精密运动控制系统的 驱动和控制。
17
总结
❖ 运动控制技术是多学科复合技术:机械与电子、硬件和软件、算法 和分析
❖ 运动控制应用范围广:开环控制或闭环控制、半闭环或全闭环控制 ❖ 采用闭环控制首要考虑的是系统稳定性 ❖ 运动控制的性能不仅要考核时域响应,还要考核频域特性 ❖ 运动控制系统由控制平台、功率放大器/驱动器、执行机构/电机/
安装误差的影响
15
实例:编码器安装对信号质量及精度的影响(续) 信号质量对误差影响
16
运动控制系统的保护
软件级 •计算错误保护 •位置误差保护 •饱和保护 •震荡保护 •RMS功率保护 •电源故障保护 •急停保护
机械级 •机械限位装置 •机械刹车/卡紧装置 •机械防撞装置 •… …
硬件级 •限位传感器保护 •看门狗保护 •电源故障保护 •过功率保护 •驱动器短路保护 •驱动器过压/欠压保护 •驱动器过温保护 •驱动器RMS电流保护 •… …
➢ 光栅尺的精度
➢ 线距,或信号周期(每毫米线数,或每圈线)
➢ 光栅尺的热敏系数
➢ 差值技术
➢ 信号质量
➢ 频率响应与最高速度
旋转编码器最大速度 = [工作频率 (Hz) / (每转线数) ]*60 [RPM]
倍福运动控制技术介绍PPT课件
![倍福运动控制技术介绍PPT课件](https://img.taocdn.com/s3/m/14b1d0f42f60ddccdb38a0bd.png)
sincos1vssttl单圈或多圈endathiperfacebiss24dc控制和制动电压点数字量io例如启用限位开关捕获输入故障信息ethercat系统总线直流电源直流母线可选的接口板用插槽例如附加反馈制动控制电机温度监控可选的重启锁定用插槽或可选的twinsafe安全卡navigationstasten电机动力电路执行材质鉴定导航键enterupdownax5000数字式紧凑型伺服驱动器功能特点beckhoff运动控制驱动解决方案ax5000支持第三方的伺支持第三方的伺服电机服电机功能特点beckhoff现场总线连接各种现场总线接口可以轻松地集成到各种控制系统中rs232接口用于参数设置和canopen接口控制信号带有电气隔离伺服准备就绪的信号中继设定值输入显示器输出数字量输入输出启用输入模拟量数字量信号接地24dc辅助电源电压电源接口用于连接外部平稳电阻直流中间电路电机和制动器接口旋变信号仿真为编码器信号输出编码器控制输入主从功能脉冲方向输入反馈装置旋转变压器输入接口用于高分辨率正余弦编码器或绝对值编码器等反馈装置的输入接口ax20xxam30xx同步伺服电机am308x电机达到150nm具备食品级涂装的am3000用于食品工业的am3000系列电机一台通过特殊涂装的标准电机具备了不锈钢电机的防护等级相比不锈钢电机最小降低
动 ▪ 采用 DIN66025 编程语言 ▪ 坐标轴转换
N 0 0 # K IN ID [1 ] N10 #RTCP ON
N 20 G 01 G 18 X0 Y0 Z0 B90 F500 N 3 0 X -4 N 4 0 G 0 2 X -2 0 I-4 0 B -9 0 F 2 0 0 0 N 5 0 ................. ........................
动 ▪ 采用 DIN66025 编程语言 ▪ 坐标轴转换
N 0 0 # K IN ID [1 ] N10 #RTCP ON
N 20 G 01 G 18 X0 Y0 Z0 B90 F500 N 3 0 X -4 N 4 0 G 0 2 X -2 0 I-4 0 B -9 0 F 2 0 0 0 N 5 0 ................. ........................
运动控制相关理论ppt课件
![运动控制相关理论ppt课件](https://img.taocdn.com/s3/m/b692fe5ff121dd36a22d8293.png)
最新版整理ppt
10
理论提供了:
• 解释行为的理论框架:理论允许治疗师看到超过 某个患者的行为之外的东西,将应用拓宽到更多 的病例中
• 指导临床操作:理论为治疗师提供了一个可能的 操作指导。
• 新的观点:理论是动作的,不断改变的,以反映 与理论相关的更多的认识。
• 检查和治疗有效地假设:理论因其抽象性,并不 是可直接进行测试的,确切地说。理论产生可进 行验证的假说。通过验证假说所得到的信息用来 证实该理论有效与否。
47损伤水平策略水平改变步态适应性腘绳肌牵伸踩夹子滑轮踝牵伸下肢前伸后踢腿屈膝半蹲星形伸展平衡仰卧抬腿踏步练习走斜坡上下台阶后上下台阶行走的整体模式练习48第1趾骨第25趾骨第1跖骨第2跖骨第3跖骨第4跖骨第5跖骨足弓足跟内侧和足跟外侧足刚开始着地时相跖骨刚开始着地时相趾骨刚开始着地时相足跟离开地面时相趾离地时相
最新版整理ppt
3
最新版整理ppt
4
个体内限制动作的因素
• 在个体中动作是通过许多大脑结构和程序 的合作而出现的。
• 动作是由相互作用、相互影响的多个程序 产生的,包括那些与其相关的知觉,认知 和行为。
最新版整理ppt
5
最新版整理ppt
6
任务对动作的限制
• 任务对动作的神经组织加上了限制。
• 在日常生活中,我们执行大量各种需要运动的功 能活动。所执行任务的本质在部分程度上决定了 所需要的动作类型。
• 中枢神经系统功能的康复要求患者针对感觉/知觉, 运动和认识损伤形成适合功能任务需要的运动模 式。因此,帮助患者学习/重新学习执行功能任务, 并要考虑到潜在的功能缺损的治疗策略,是最大 限度使患者恢复功能独立的基础。
最新版整理ppt
7
运动控制系统PPT参考课件
![运动控制系统PPT参考课件](https://img.taocdn.com/s3/m/167a8d7dbed5b9f3f90f1cd8.png)
9
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
运动控制系统总结
![运动控制系统总结](https://img.taocdn.com/s3/m/2388ac6b960590c69fc3767e.png)
• 再按照控制对象确定电流调节器的类型,按动态 性能指标要求确定电流调节器的参数。
• 电流环设计完成后,把电流环等效成转速环(外 环)中的一个环节,再用同样的方法设计转速环 为典型II型系统。
图3-26 双闭环调速系统内环和外环的开环对数幅频特性 I——电流内环 n——转速外环
(3)内、外环开环对数幅频特性的比较 • 外环的响应比内环慢,这是按上述工程设计方法设计多环控
• 准确的测速时间是用所得的高频时钟脉冲个数M2 计算出来的,即 Tt M2/ f0,
• 电动机转速为
n 60 60 f0 ZTt ZM2
(2-80)
• T(M法2-测1)速时的转分速辨的率变定化义量为,时钟脉冲个数由M2变成
Q 6f0 0 6f0 0 6f0 0 Z(M 21 ) Z2 MZ2 M (M 21 )
h
3
4
5
6
7
Hale Waihona Puke 89 1052.6% 43.6% 37.6% 33.2% 29.8% 27.2% 25.0% 23.3%
tr / T 2.4 2.65 2.85 3.0 3.1 3.2 3.3 3.35
ts / T 12.15 11.65 9.55 10.45 11.30 12.25 13.25 14.20
异步电动机传递的电磁功率
Pm
3I
'2 r
Rr'
s
机械同步角速度
m1
1
np
异步电动机的机械特性
异步电动机的电磁转矩(机械特性方程式 )
Te
Pm
m1
3np
1
Ir'2
Rr' s
1Rs
3npUs2Rr' /s
• 电流环设计完成后,把电流环等效成转速环(外 环)中的一个环节,再用同样的方法设计转速环 为典型II型系统。
图3-26 双闭环调速系统内环和外环的开环对数幅频特性 I——电流内环 n——转速外环
(3)内、外环开环对数幅频特性的比较 • 外环的响应比内环慢,这是按上述工程设计方法设计多环控
• 准确的测速时间是用所得的高频时钟脉冲个数M2 计算出来的,即 Tt M2/ f0,
• 电动机转速为
n 60 60 f0 ZTt ZM2
(2-80)
• T(M法2-测1)速时的转分速辨的率变定化义量为,时钟脉冲个数由M2变成
Q 6f0 0 6f0 0 6f0 0 Z(M 21 ) Z2 MZ2 M (M 21 )
h
3
4
5
6
7
Hale Waihona Puke 89 1052.6% 43.6% 37.6% 33.2% 29.8% 27.2% 25.0% 23.3%
tr / T 2.4 2.65 2.85 3.0 3.1 3.2 3.3 3.35
ts / T 12.15 11.65 9.55 10.45 11.30 12.25 13.25 14.20
异步电动机传递的电磁功率
Pm
3I
'2 r
Rr'
s
机械同步角速度
m1
1
np
异步电动机的机械特性
异步电动机的电磁转矩(机械特性方程式 )
Te
Pm
m1
3np
1
Ir'2
Rr' s
1Rs
3npUs2Rr' /s
伺服运动控制系统PPT课件
![伺服运动控制系统PPT课件](https://img.taocdn.com/s3/m/81f26494453610661fd9f48e.png)
伺服驱动器的选型方法 伺服驱动器的额定值与特性(略) 外围装置的规格与外形图(略)
7
第四章 交流伺服驱动器的选择
本章以安川Σ-II 系列SGM□H/SGDM 型伺服驱动器的用户为对 象,对以下内容进行说明 :
伺服驱动器的选型方法 伺服驱动器的额定值与特性 外围装置的规格与外形图
8
第四章 交流伺服驱动器的选择
5
第四章 交流伺服驱动器的选择
设计伺服系统就是根据负载,选择伺服驱动器型号的过程,交流 伺服系统目前在我国使用的比较普遍,以安川公司生产的伺服驱动器 为例说明伺服系统的集成过程。
伺服系统:由伺服驱动 器和上级装置以及外围 装置组合而成的一组完 整的伺服控制系统
6
第四章 交流伺服驱动器的选择
本章以安川Σ-II 系列SGM□H/SGDM 型伺服驱动器的用户为对 象,对以下内容进行说明 :
28
第四章 交流伺服驱动器的选择
一、伺服驱动器及外围装置的选型
1、伺服电机的选型 ①型号说明 ②伺服电机选型流程图
SGMAH,SGMPH,SGMGH,SGMSH,SGMDH 型伺服电机的选型请 按下述流程图进行。
29
第四章 交流伺服驱动器的选择
一、伺服驱动器及外围装置的选型
1、伺服电机的选型 ①型号说明 ②伺服电机选型流程图
19
第四章 交流伺服驱动器的选择
一、伺服驱动器及外围装置的选型
1、伺服电机的选型 ①型号说明 ②伺服电机选型流程图
SGMAH,SGMPH,SGMGH,SGMSH,SGMDH 型伺服电机的选型请 按下述流程图进行。
20
第四章 交流伺服驱动器的选择
一、伺服驱动器及外围装置的选型
1、伺服电机的选型 ①型号说明 ②伺服电机选型流程图
7
第四章 交流伺服驱动器的选择
本章以安川Σ-II 系列SGM□H/SGDM 型伺服驱动器的用户为对 象,对以下内容进行说明 :
伺服驱动器的选型方法 伺服驱动器的额定值与特性 外围装置的规格与外形图
8
第四章 交流伺服驱动器的选择
5
第四章 交流伺服驱动器的选择
设计伺服系统就是根据负载,选择伺服驱动器型号的过程,交流 伺服系统目前在我国使用的比较普遍,以安川公司生产的伺服驱动器 为例说明伺服系统的集成过程。
伺服系统:由伺服驱动 器和上级装置以及外围 装置组合而成的一组完 整的伺服控制系统
6
第四章 交流伺服驱动器的选择
本章以安川Σ-II 系列SGM□H/SGDM 型伺服驱动器的用户为对 象,对以下内容进行说明 :
28
第四章 交流伺服驱动器的选择
一、伺服驱动器及外围装置的选型
1、伺服电机的选型 ①型号说明 ②伺服电机选型流程图
SGMAH,SGMPH,SGMGH,SGMSH,SGMDH 型伺服电机的选型请 按下述流程图进行。
29
第四章 交流伺服驱动器的选择
一、伺服驱动器及外围装置的选型
1、伺服电机的选型 ①型号说明 ②伺服电机选型流程图
19
第四章 交流伺服驱动器的选择
一、伺服驱动器及外围装置的选型
1、伺服电机的选型 ①型号说明 ②伺服电机选型流程图
SGMAH,SGMPH,SGMGH,SGMSH,SGMDH 型伺服电机的选型请 按下述流程图进行。
20
第四章 交流伺服驱动器的选择
一、伺服驱动器及外围装置的选型
1、伺服电机的选型 ①型号说明 ②伺服电机选型流程图
运动控制与运动再学习 ppt课件
![运动控制与运动再学习 ppt课件](https://img.taocdn.com/s3/m/0c135088dd3383c4bb4cd29d.png)
•调节运动功能的重要作用, 它与随意运动的稳定性、 肌紧张的控制、运动程序 和本体感觉传入冲动信息 的处理有关; • 为一切运动提供必要 的“配合活动”
ppt课件
40
大脑皮质在运动控制中的调节
•大脑的反射与调控-平衡反射(见前表)
•大脑对下位中枢的调节
抑制区:皮层运动区、纹状体、小脑前叶蚓部
易化区:前庭核、小脑前叶两侧部
高水平(随意 运动控制) 大脑
脊髓 指令 效应器 运动控制器 输出
小脑 中等水平 基底节 脑干
低水平(反射 肌肉骨骼系统
运动控制)
控制结果的行 为表现
ppt课件
运动
32
神经-运动等级调控
高级中枢实现对反射的逐级控制
脊髓水平
(more、屈肌退缩反射)
延髓水平 (粗大运动) 中脑、桥脑水平
(姿势、调整反射)
调节脊髓前角运动神经元和中间神经元的兴 奋性,易化或抑制由其它途径引起的活动, 特别是在快速随意控制肌肉的精细、协调运 动中起基本作用。 组成:它是由皮质运动区锥细胞发出的神经, 经内囊处汇聚成束下行,止于脑干神经核运 动神经元(皮质脑干束)和脊髓运动神经元 及中间神经元(皮质脊髓束),在锥体束下 行过程中一部分交叉至对侧。
ppt课件
16
反射模型
核心思想: 反射是运动的基本单位; 人体运动是各种反射的总和或整合的结果;
人体复杂运动:简单反射(腱反射)+复杂反射(Moro 反 射等)
运动反应的中枢控制依赖外周感觉输入(反射弧完整); 感觉输入能够控制运动的输出—神经促进技术理论基础 (破坏平衡诱发平衡运动反应)。
ppt课件
ppt课件
27
(3)优势现象
在中枢神经系统内,当某一中枢受 到较强刺激,其兴奋水平不断提高, 这个提高兴奋水平的中枢,称兴奋优 势灶,它能综合其他中枢扩散而来的 兴奋,提高其自身的兴奋水平,对其 临近中枢却发生抑制作用。
ppt课件
40
大脑皮质在运动控制中的调节
•大脑的反射与调控-平衡反射(见前表)
•大脑对下位中枢的调节
抑制区:皮层运动区、纹状体、小脑前叶蚓部
易化区:前庭核、小脑前叶两侧部
高水平(随意 运动控制) 大脑
脊髓 指令 效应器 运动控制器 输出
小脑 中等水平 基底节 脑干
低水平(反射 肌肉骨骼系统
运动控制)
控制结果的行 为表现
ppt课件
运动
32
神经-运动等级调控
高级中枢实现对反射的逐级控制
脊髓水平
(more、屈肌退缩反射)
延髓水平 (粗大运动) 中脑、桥脑水平
(姿势、调整反射)
调节脊髓前角运动神经元和中间神经元的兴 奋性,易化或抑制由其它途径引起的活动, 特别是在快速随意控制肌肉的精细、协调运 动中起基本作用。 组成:它是由皮质运动区锥细胞发出的神经, 经内囊处汇聚成束下行,止于脑干神经核运 动神经元(皮质脑干束)和脊髓运动神经元 及中间神经元(皮质脊髓束),在锥体束下 行过程中一部分交叉至对侧。
ppt课件
16
反射模型
核心思想: 反射是运动的基本单位; 人体运动是各种反射的总和或整合的结果;
人体复杂运动:简单反射(腱反射)+复杂反射(Moro 反 射等)
运动反应的中枢控制依赖外周感觉输入(反射弧完整); 感觉输入能够控制运动的输出—神经促进技术理论基础 (破坏平衡诱发平衡运动反应)。
ppt课件
ppt课件
27
(3)优势现象
在中枢神经系统内,当某一中枢受 到较强刺激,其兴奋水平不断提高, 这个提高兴奋水平的中枢,称兴奋优 势灶,它能综合其他中枢扩散而来的 兴奋,提高其自身的兴奋水平,对其 临近中枢却发生抑制作用。
运动控制系统
![运动控制系统](https://img.taocdn.com/s3/m/a530a56501f69e314332944e.png)
(1). 跟随性能指标: 在给定信号或参考输入信号的作用下, 系统输出量的变化情况可用跟随性能指 标来描述。常用的阶跃响应跟随性能指 标有 tr — 上升时间 — 超调量 ts — 调节时间
• 突加扰动的动态过程和抗扰性能指标
C
N
C 1
±5%(或±2%) Cb
N
Cmax
C2
一.运动控制系统概述
运动控制系统的发展趋势:
驱动的交流化 驱动系统的高速化和超小、超大型化 高转速--上万转/分钟 超小型化--应用于微型机器人、微型飞行器 超大型化--数MKW 系统的集成化 控制的数字化、智能化和网络化
二.控制系统的计算机仿真
控制系统计算机仿真的基本概念 1.计算机仿真是用来帮助设计人员进行设计的一种新技术,它 包含控制系统分析、综合、设计、检验等多方面的计算机处 理。计算机仿真是基于计算机的高速而精确的计算,来实现 各种功能的。 2.自动控制系统的计算机仿真,是一门涉及到计算机技术、计 算数学与控制理论、系统辨识、控制工程以及系统科学的综 合性学科。他为控制系统的分析、计算、研究、综合设计以 及自动控制的计算机辅助教学提供了快速、经济、科学以及 有效的手段. 3.应用MATLAB的TOOLBOX工具箱及其SIMULINK仿真集 成环境作仿真工具,这就是MATLAB仿真。它是控制系统 计算机仿真一个特殊软件工具的子集.
调速系统静态指标
调速范围: 生产机械要求电动机提供的最高转速和最低转速之 比叫做调速范围,用字母 D 表示,即
nmax D nmin
(1-31)
其中nmin 和nmax 一般都指电机额定负载时的转 速,对于少数负载很轻的机械,例如精密磨床, 也可用实际负载时的转速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/24 C e(1K pK s /C e) C e(1K ) C e(1K ) 31
2020/11/24
32
转速负反馈闭环直流调速系统稳态 结构框图
•
2020/11/24
33
2020/11/24
图2-21 额定励磁下直流电动机 的动态结构框图
(a)电压电流间的结构框图 (b)电流电动势间的结构框图 (c)直流电动机的动态结构
Ws(
s
)
Ks 1Tss
2020/11/24
21
直流PWM变换器-电动机系统
2020/11/24
22
不可逆PWM变换器-直流电动机系统
2020/11/24 电压和电流波形
Ud tTonUs Us
23
有制动电流通路的不可逆 PWM变换器-直流电动机系统
一般电动状态的 电压、电流波形
2020/11/24
37
M法测速
• 记取一个采样周期内旋转编码器发出的脉冲个
数来算出转速的方法称为M法测速,又称频率
法测速。
n 60M1 r/min ZTc
(2-77)
2020/11/24
38
• M法测速分辨率为
Q6(0M11)6M 0160 ZcT ZcT ZcT
(2-78)
• M法测速的分辨率与实际转速的大小无关。
a)位能性恒转矩负载 b) 反抗性恒转矩负载
2020/11/24
11
恒功率负载
TL
PL
m
常数
m
2020/11/24
12
直流调速系统
• 电枢回路
ud0 EidRLdddit
2020/11/24
13
调节直流电动机转速的方法
(1)调节电枢供电电压; (2)减弱励磁磁通; (3)改变电枢回路电阻。
n U IR Ke
运动控制系统总结
第1章 绪论
2020/11/24
1
什么是运动控制系统
• 运动控制系统是以机械运动的驱动设备— —电动机为控制对象,以控制器为核心, 以电力电子功率变换装置为执行机构,在 自动控制理论的指导下组成的电气传动自 动控制系统。
2020/11/24
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
换向器与电刷的位置保证了电枢电流 与励磁电流的解耦,使转矩与电枢电流成 正比。
2020/11/24
6
交流调速系统
交流电动机(尤其是笼型感应电动机) 结构简单
交流电动机动态数学模型具有非线性 多变量强耦合的性质,比直流电动机复杂 得多。
2020/11/24
7
运动控制系统的转矩控制规律
忽略阻尼转矩和扭转弹性转矩,运动 控制系统的简化运动方程式
2020/11/24
18
晶闸管整流器-电动机系统
•
Ud KsUc
2020/11/24
19
电流连续时V-M系统的机械特性
•
n 1 Ce
(Ud0
IdR)
2020/11/24
20
晶闸管触发电路与整流装置的传递函数
• 输入输出关系为
U d0K sU c 1 (tT s)
Ws(s)U Udc0((ss))KseTss
26
U s R d IE R d IC e n
2020/11/24 直流PWM调速系统(电流连续)的机械特性
27
转速控制的要求和稳态调速性能指标
调速范围
静差率s
D n max n min
s nN 100% n0
2020/11/24
28
静差率指标应以最低速时所能达到的数值为准
• 特性a和b的硬 度相同,
• M法的测速误差率的最大值为
60 M1 60 (M11)
ma x
ZcT
Zc T 60 M1
ZcT
10% 0 1 10% 0
M1
(2-79)
• δmax与M1成反比。转速愈低,M1愈小,误差率愈
大。 2020/11/24
39
T法测速
• T法测速是测出旋转编码器两个输出脉冲之间的间隔 时间来计算转速,又被称为周期法测速。
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
运动控制系统及其组成
2020/11/24
5
直流调速系统
直流电动机的数学模型简单,转矩易 于控制。
• 准确的测速时间是用所得的高频时钟脉冲个数M2 计算出来的,即 Tt M2/ f0,
• 电动机转速为
2020/11/24
n 60 60 f0 ZTt ZM2
(2-80)
40
• T(M法2-测1)速时的转分速辨的率变定化义量为,时钟脉冲个数由M2变成
框图
34
反馈控制规律
2020/11/24
35
2.4 直流调速系统的数字控制
2020/11/24
36
数字测速方法的精度指标
• 当被测转速由n1变为n2时,引起记数值增量 为1,则该测速方法的分辨率是
Qn2 n1
• 转速实际值和测量值之差与实际值之比定 义为测速误差率
n100%
n
2020/11/24
• 特性a和b额定 速降相同,
• 特性a和b的静 差率不相同。
2020/11/图24 2-14 不同转速下的静差率
29
调速范围、静差率和额定速降之间的关系
D nNs nN (1 s)
2020/11/24
30
转速反馈控制直流调速系统
•
n K pK sU n *IdRK pK sU n * R Id
2020/11/24
14
n
n0
nN
n1
UN
n2
U1
n3
U2
U3
O
IL
I
调压调速特性曲线
2020/11/24
15
n
n0
nN
n1
Ra
n2 n3
R1
R2
R3
O
IL
I
调阻调速特性曲线
2020/11/24
16
n
n3
n0
nn12 nN
N
O
TL
1 2 3
Te
调磁调速特性曲线
2020/11/24
17
第2章
转速反馈控制的直流调速系统
J
d m
dt
Te
TL
d m
dt
m
2020/11/24
8
• 转矩控制是运动控制的根本问题
J
dm
dt
Te
TL
• 磁链控制同样重要
Te KTIa
2020/11/24
9
生产机械的负载转矩特性
• 生产机械的负载转矩TL是一个必然存 在的不可控扰动输入。
J
dm
dt
Te
TL
2020/11/24
10
恒转矩负载
Ud E
24
U g 1 的正脉冲比 负脉冲窄 ,
E Ud
i d 始终为负。
制动状态的电压、电流波形 图20220-/1111/24有制动电流通路的不可逆PWM变换器-直流电动机系统25
VT1、VD2、VT2和VD1
id
四个管子轮流导通。
1
2
0
t4
4
ton
t2 T
t
3
2020/11/24
(d) 轻载电动状态的电流波形
2020/11/24
32
转速负反馈闭环直流调速系统稳态 结构框图
•
2020/11/24
33
2020/11/24
图2-21 额定励磁下直流电动机 的动态结构框图
(a)电压电流间的结构框图 (b)电流电动势间的结构框图 (c)直流电动机的动态结构
Ws(
s
)
Ks 1Tss
2020/11/24
21
直流PWM变换器-电动机系统
2020/11/24
22
不可逆PWM变换器-直流电动机系统
2020/11/24 电压和电流波形
Ud tTonUs Us
23
有制动电流通路的不可逆 PWM变换器-直流电动机系统
一般电动状态的 电压、电流波形
2020/11/24
37
M法测速
• 记取一个采样周期内旋转编码器发出的脉冲个
数来算出转速的方法称为M法测速,又称频率
法测速。
n 60M1 r/min ZTc
(2-77)
2020/11/24
38
• M法测速分辨率为
Q6(0M11)6M 0160 ZcT ZcT ZcT
(2-78)
• M法测速的分辨率与实际转速的大小无关。
a)位能性恒转矩负载 b) 反抗性恒转矩负载
2020/11/24
11
恒功率负载
TL
PL
m
常数
m
2020/11/24
12
直流调速系统
• 电枢回路
ud0 EidRLdddit
2020/11/24
13
调节直流电动机转速的方法
(1)调节电枢供电电压; (2)减弱励磁磁通; (3)改变电枢回路电阻。
n U IR Ke
运动控制系统总结
第1章 绪论
2020/11/24
1
什么是运动控制系统
• 运动控制系统是以机械运动的驱动设备— —电动机为控制对象,以控制器为核心, 以电力电子功率变换装置为执行机构,在 自动控制理论的指导下组成的电气传动自 动控制系统。
2020/11/24
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
换向器与电刷的位置保证了电枢电流 与励磁电流的解耦,使转矩与电枢电流成 正比。
2020/11/24
6
交流调速系统
交流电动机(尤其是笼型感应电动机) 结构简单
交流电动机动态数学模型具有非线性 多变量强耦合的性质,比直流电动机复杂 得多。
2020/11/24
7
运动控制系统的转矩控制规律
忽略阻尼转矩和扭转弹性转矩,运动 控制系统的简化运动方程式
2020/11/24
18
晶闸管整流器-电动机系统
•
Ud KsUc
2020/11/24
19
电流连续时V-M系统的机械特性
•
n 1 Ce
(Ud0
IdR)
2020/11/24
20
晶闸管触发电路与整流装置的传递函数
• 输入输出关系为
U d0K sU c 1 (tT s)
Ws(s)U Udc0((ss))KseTss
26
U s R d IE R d IC e n
2020/11/24 直流PWM调速系统(电流连续)的机械特性
27
转速控制的要求和稳态调速性能指标
调速范围
静差率s
D n max n min
s nN 100% n0
2020/11/24
28
静差率指标应以最低速时所能达到的数值为准
• 特性a和b的硬 度相同,
• M法的测速误差率的最大值为
60 M1 60 (M11)
ma x
ZcT
Zc T 60 M1
ZcT
10% 0 1 10% 0
M1
(2-79)
• δmax与M1成反比。转速愈低,M1愈小,误差率愈
大。 2020/11/24
39
T法测速
• T法测速是测出旋转编码器两个输出脉冲之间的间隔 时间来计算转速,又被称为周期法测速。
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
运动控制系统及其组成
2020/11/24
5
直流调速系统
直流电动机的数学模型简单,转矩易 于控制。
• 准确的测速时间是用所得的高频时钟脉冲个数M2 计算出来的,即 Tt M2/ f0,
• 电动机转速为
2020/11/24
n 60 60 f0 ZTt ZM2
(2-80)
40
• T(M法2-测1)速时的转分速辨的率变定化义量为,时钟脉冲个数由M2变成
框图
34
反馈控制规律
2020/11/24
35
2.4 直流调速系统的数字控制
2020/11/24
36
数字测速方法的精度指标
• 当被测转速由n1变为n2时,引起记数值增量 为1,则该测速方法的分辨率是
Qn2 n1
• 转速实际值和测量值之差与实际值之比定 义为测速误差率
n100%
n
2020/11/24
• 特性a和b额定 速降相同,
• 特性a和b的静 差率不相同。
2020/11/图24 2-14 不同转速下的静差率
29
调速范围、静差率和额定速降之间的关系
D nNs nN (1 s)
2020/11/24
30
转速反馈控制直流调速系统
•
n K pK sU n *IdRK pK sU n * R Id
2020/11/24
14
n
n0
nN
n1
UN
n2
U1
n3
U2
U3
O
IL
I
调压调速特性曲线
2020/11/24
15
n
n0
nN
n1
Ra
n2 n3
R1
R2
R3
O
IL
I
调阻调速特性曲线
2020/11/24
16
n
n3
n0
nn12 nN
N
O
TL
1 2 3
Te
调磁调速特性曲线
2020/11/24
17
第2章
转速反馈控制的直流调速系统
J
d m
dt
Te
TL
d m
dt
m
2020/11/24
8
• 转矩控制是运动控制的根本问题
J
dm
dt
Te
TL
• 磁链控制同样重要
Te KTIa
2020/11/24
9
生产机械的负载转矩特性
• 生产机械的负载转矩TL是一个必然存 在的不可控扰动输入。
J
dm
dt
Te
TL
2020/11/24
10
恒转矩负载
Ud E
24
U g 1 的正脉冲比 负脉冲窄 ,
E Ud
i d 始终为负。
制动状态的电压、电流波形 图20220-/1111/24有制动电流通路的不可逆PWM变换器-直流电动机系统25
VT1、VD2、VT2和VD1
id
四个管子轮流导通。
1
2
0
t4
4
ton
t2 T
t
3
2020/11/24
(d) 轻载电动状态的电流波形